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1. Introduction. In a 3-dimensional differentiable manifold over which
a direction field is given, we shall consider a necessary and sufficient condition
for the existence of a complete Riemannian metric which leaves the field to be
a parallel field Our purpose is to find this condition from the global structure
of the manifold related with the integral curves of the field. We first treat of
the structure of a 3-dimensional complete Riemannian manifold over which a
parallel field of directions is given. The major part (§ 3—6) of this paper is devoted
to it and the main result will be seen in Theorems 1—5. From the last section
we may see that a part of our purpose is at ained. See Theorems 6—8.

We shall begin with some conventions to be used throughout this paper.
By differentiability we shall always understand that of class C~. A neighborhood
is an open set homeomorphic to a Euclidean space. An isometry is an isometric
diffeomorphism. The product operation “x” sometimes expresses the operation
of metric product. Let E be the Euclidean 1-space with the coordinate system
{t| — o0 < t < oo} and dt denotes the infinitesimal distance. Let E be the
part {£]0 <t < oo} of E. For a constant L > 0, let [L] be the part {£/0 <¢
<L} of E. Let us suppose that indices a, @, A, u take the following ranges
of values:

a=1,2; a=1,2,3; A, u=1, 2,...... (to o).

Take a Riemannian manifold X. For any z, v € X, let [z, y] denote a geodesic
arc from z to y. Given a constant ¢ and a unit tangent vector v at z, g(x, v, ¢)
is defined to be the geodesic arc issuing from z whose length is |c| and whose
initial vector is v or — v according as ¢ >0 or < 0. Let (x,v,c) denote its
terminal point. Take a point sequence {x:} < X converging to a point x € X,
in which there exists a constant N > 0 such that == 2z for all A > N. Such
a point sequence is said to be essential. Moreover corresponding to each A > N,
take a vector v), such that g(x, v, c1) for suitable ¢x > 0 becomes a minimizing
geodesic from z to xi. If there is the vector v at x such that vy — v(A = o),
the unit vector v and the vector space generated from v are called the tangential
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vector and the tangential straight line of {x\} respectively. If there are two
subsequences of the sequence {x1} with tangential vectors w, — w respectively
and there is no subsequence having other vector as tangential vector, the vector
space generated from w is also called the tangential straight line of {x\}. In
the case dim X = 2, take an isometry J of X onto itself leaving a point x € X
fixed. J induces the congruent transformation in the Euclidean vector space at
x tangent to X. Under a suitable frame it is represented by

<1 0 cos) — sinf
) o )
0 -1 sin 6 cos 6
where 0 < 6 < 7. According to these matrices, J is said to be a symmetry or
a rotation at x. The 6 is called the rotation angle.

Here we shall show two lemmas, without proof. Lzt X, Y be 2-dimensional
connected complete differentiable Riemannian manifolds. First suppose that there
is given a sequence {Ji} of isometries of X onto Y. For a point x, € X, let
F, be a 2-frame at x, tangent to X. Put y» = Ji(x,) and Gy = Ji-Fo. If yr—>y,
and G, —> Gy(A = o) where G, is a frame at y, € Y, then we have

LEMMA 1.1. There exists the isometry J of X onto Y such that J(x;)
= yo and J'FO = GO ([3]; p. 404 5 [51, p- 93)'

The isometry J is called the limit of {Ji}.

Next, suppose in X that all of the rotations at x, € X form 1-dimensional
torus group. We denote this transformation group by G. Then the following
lemma seems to be already known.

LEMMA 1.2. X is homeomorphic onto Euclidean or elliptic or spherical 2-
space, according as the cut-locus for x, is empty or is composed of more than
one point or consists of one point alone®. Moreover by changing on X its
Riemannian metric alone, it is possible to let X become Euclidean or elliptic
or spherical 2-space according to the respective case above, so that G is the
group of rotations there, too.

2. S-manifold. Let V be an n-dimensional connected Hausdorff differen-
tiable manifold over which a differentiable field of directions is given. So, to
each point & € V there is assigned the direction, i.e., the oriented straight line,
tangent to V at x where all of the directions form a differentiable field. This field is
called the S-field of V and such a manifold V an n-dimensional S-manifold.
Through each point £ € V there passes a maximal integral curve of the S-field.

1) Elliptic space and spherical space mean the ones which are Riemannian spaces with
constant positive curvature. For the definition of cut-loci, see [7], p.702.
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Let S(x) denote it, and S(z) is called the S-orbit passing through x € V. By
the orientations of the S-orbits we understand what are concordant with the
S-field.

In V suppose that there exists a connected open submanifold V° which
satisfies the following conditions :

1) V° is a union of S-orbits and dense in V;

2) V° is a maximal subspace which becomes a differentiable principal
bundle, where each fibre is an S-orbit and the standard fibre is 1-dimensional
connected Lie group.”

Then V is said to be the almost principal S-bundle with kernel V°. In
this case if V = V°, V is simply said to be a principal S-bundle.

In two S-manifolds V,, V, of the same dimension, an S-diffeomorphism of
V. into V, is a diffeomorphism of V, into V, which carries S-orbits to S-orbits.

Let D be the part in the Euclidean 3-space defined by z* + y* <1 and
0 <=2 <1, where z, y, = denote usual orthogonal coordinates. Take a constant
6(0 << 8 < ) such that =/6 = rational number. In D, identify (z,y,1) with
(xcos® — ysinf, zsinf + ycosh, 0) for all x, y. The manifold thus obtained
is regarded as an S-manifold where each S-orbit is locally defined by x = const.,
y = const. Such a 3-dimensional S-manifold is called an C,\-manifold. Again in
D, identify (x,y, 1) with (x, — ¥, 0) for all x, y. Then, just as defined above,
we obtain a 3-dimensional S-manifold. This is called a C,-manifold. In each of
them, the S-orbit passing through (0, 0,0) is called its central S-orbit.

3. RS-manifold. Let M be an z-dimensional connected complete diffe-
rentiable Riemannian manifold (#z > 1) over which a parallel field of directions
is given. M is also regarded as an S-manifold whose S-field is the parallel
field. Accordingly, we shall call the parallel field the S-field of M. Thus S-orbit,
S(z) (x € M) etc. are defined under the same sense as §2. Every S-orbit is a
geodesic of M. Take the field of (# — 1)-dimensional tangent vector subspaces
which is orthogonal to the S-field at each point of M. This field is called the
R-field of M. The R-field becomes a parallel field over M and hence involutive
(as distribution). So, through any z € M there passes its maximal integral
manifold. We call this manifold with the Riemannian metric induced from M
an R-orbit of M. Let R(x) denote it. Such a manifold M is called an 7-dimen-
sional RS-manifold® In M, the following fact is well-known : At a point x € M
there exists an admissible coordinate system (%) (8 =1, 2,...... ,n) in which the
metric is expressed by the form completely decomposed as

2) By the word “maximal” it is meant that there are no subspaces, DV =V which
have the same property. The differentiability of the principal bundle must be concordant
with that of V.

3) This paper is closely related with [2], but our RS-manifolds are slightly distinct from
those of [2].
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and the equation x" = const. expresses a part of an R-orbit. Such a coordinate
system is called a reduced coordinate system. Moreover let us recall that each
R-orbit is totally geodesic and complete as Riemannian manifold.

From now on let d(x) denote the unit tangent vectorat x € M which ex-
presses the direction through x in the S-field. For any points z, ¥ of an R-orbit,
let di(x,y) denote the length of a minimizing geodesic in the R-orbit from x to
y. Take any x, € M. Let I(x,) denote the set R(x,) N S(x,). Let Tr(x,) denote
the Euclidean (n — 1)-space tangent to R(x) at x,. An R-neighborhood of x,
is a neighborhood in R(x,). If, for a constant ¢ >0, a part {x|z € R(x),
di(xy, ) < ¢} can be covered by a normal coordinate system in R(x,) with
center x,, it is called a normal R-neighborhood of x, and is denoted by Nx(x, ; ¢).
Then, the constant ¢ is said to be a normal R-radius at x,. Take an R-orbit
R of M. That M is of one of the following types I—III means that for suitable
L, J, there is an isomeiry of M onto the corresponding Riemannian manifold
which maps each R-orbit onto ¢ = const. (¢ € E or [L]).

Type I: The Riemannian manifold R X E.

Type II: The Riemannian manifold constructed from R X [L] by identi-
fying (x, L) with (x,0) for all £ € R.

Provided that there exists a non-trivial isometry J of R onto itself, we define

Type III: The Riemannian manifold constructed from R X [L] by iden-
tifying (x, L) with (J(x), 0) for all x € R.

Again take any x, € M. we shall express S(x,) by z(s) (— o0 < s < o)
where x, = 2(0) and s denotes arc-length. If S(x,) is closed, it represents S(x,)
many times. Let %, be a unit vector at z, tangent to R(x,) and let ¢ be a
constant. Now displace w#, parallelly along the curve x(s). Corresponding to each
s, we get the vector u(s) at x(s) tangent to R(z(s)). Hence g(z(s), u(s),¢c) <
R(x(s)). Put =z, = (xq, %o, ©).

LEMMA 3.1. The curve (z(s),u(s),c) (— oo < s < o) represents S(z,)
and the parameter s plays the role of the arc-length in S(z,), too ([2], p. 333).

For an R-orbit R and an S-orbit S, we have

LEMMA 3.2. The set R N S is non-empty and at most countable ([2],
p- 333).

For any x, € M and a constant ¢, we have

LEMMA 3.3. The set {(z,d(x), c)|z € R(zo)} forms R(y,) where y, =
(&0, d(xy), ), and the map



28 S.KASHIWABARA

S R(zo) = R(y,) defined by flx) = (z, d(z), ¢)
is an onto-isometry ([2], p. 334).

Such a map is called the R-map with respet to a geodesic arc g(x,, d(x), ¢).
If the topology of an R-orbit coincides with the relative one induced from
M, then this holds also good for other R-orbit and we have

LEMMA 3.4. M is of one of types I-—III ([2], p.335).

Next, take two RS-manifolds M,;, M, of the same dimension. An S-diffeo-
morphism of M, onto M, which carries R-orbits to R-orbits, is called an RS-
diffeomorphism. A 2-dimensional RS-manifold is called an RS-torus if its un-
derlying manifold is a torus. This is a Euclidean space form.? Let X be an
RS-torus whose S-orbits are all non-closed, and let Sx be any one of its S-orbits.
When we regard the Euclidean space form X X E as an RS-manifold where
each S-orbit is defined by (Sx, t) for fixed ¢t € E, such a 3-dimensional RS-
manifold is called an A;-manifold. Let J be an isometry of X onto itself which
is an RS-diffeomorphism preserving the orientations of the S-orbits. In X x[L],
identify (x, L) with (J(x),0) for all £ € X. When we regard the Euclidean
space form thus obtained as an RS-manifold where each S-orbit is defined by
(Sx, t) for fixed ¢t € [L], such a 3-dimensional RS-manifold is called an A,-
manifold. Let J, be an involutive isometry of X onto itself, having no fixed
point, which is an RS-diffeomorphism.? Let X, be the Euclidean space form
obtained by identifying £ € X with Ji(x) for all x € X. X, is regarded as an
RS-torus whose S-orbits are those induced from the S-orbits of X by the iden-
tification. Its S-orbits are all non-closed.” Let Sy be any one of them. In
X x E, identify (x,0) with (Jy(x),0) for all x € X. When we regard the
Euclidean space form thus obtained as an RS-manifold whose S-orbits are
defined by (Sx,0), (Sx,z) for fixed £(5=0) € E’, such a 3-dimensional RS-
manifold is called an A;-manifold. Furthermore take an involutive isometry J,
of X onto itself, having the same property as J,.” By the same manner as
the construction of X,, we obtain the RS-torus X, if we use J, instead of J,.
Let Sx, be any one of its S-orbits. In X x [L], identify (x,0) with (Jy(x),0)
and (x, L) with (Jy(x), L) for all £ € X. When we regard the Euclidean space
form thus obtained as an RS-manifold whose S-orbits are defined by (Sx, 0),
(Sx, L), (Sg, t) for fixed ¢ (=0, L) € [L], such a 3-dimensional RS-manifold is
called an A,-manifold. Let Y be Euclidean, elliptic, or spherical 2-space. Take

4) Space form always means connected complete Riemannian manifold of constant cur-
vature.

5) That the map J; is involutive means that J,(J;(x)) =z for all z€X. We can see that
J; preserves the orientations of the S-orbits.

6) Note that X 1s a double covering manifold of Xj.

7) J; and J, may be the same one. Such a note will be omitted hereafter.
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a rotation J of Y at a point x, € Y, whose rotation angle 6 satisfies /6 =
irrational number. In Y X [L], identify (x, L) with (J(x),0) for all x € Y.
When we regard the Riemannian manifold thus obtained as an RS-manifold
where each R-orbit is defined by # = const. (¢ € [L]), such a 3-dimensional
RS-manifold is called a B;- or a B,- or a By-manifold according as Y is Euclidean
or elliptic or spherical. Finally, suppose that Y is spherical. Let L, be the half
of the length of closed geodesic on Y. Let « be any tangent unit vector at z,.
In Y x [L], identify ((xo, u, s), L) with ((xo, J-u, L, — s), 0) for all u and
s (0=<s=<L,. When we regard the Riemannian manifold thus obtained as an
RS-manifold where each R-orbit is defined by z = const. (¢ € [L]), such a 3-
dimensional RS-manifold is called a By-manifold.

4. 3-dimensional RS-manifold whose S-orbits are all non-closed. Let
M be such an RS-manifold throughout this section.

HYPOTHESIS 1. There is a point 2y € M which is not a limit point of
I(z,) relative to R(z,).

Then we have

LEMMA 4.1. Any point x € M is not a limit point of I(x) relative to
R(x) and M becomes a fibre bundle where each fibre is an S-orbit ([2], p.342).

THEOREM 1. In a 3-dimensional RS-manifold M, suppose that all the
S-orbits are non-closed and that M satisfies Hypothesis 1. Then, M is reduced
to a principal S-bundle and the R-field defines a connection® Furthermore M
is S-diffeomorphic onto an RS-manifold of type I.

As M becomes a fibre bundle by Lemma 4.1, we denote its base space by
B. Let m: M — B b= the projection. Over B, a complete differentiable Rieman-
nian metric is naturally induced from M by . So we treat B as the Riemannian
manifold. For any &, € B there is a neighborhood U of &, and a coordinate
function

¢: U X E— M where ¢(b, E) = 7w '(b) for each b € U.
Hence, for the same U we can find an into-isometry
V. U x E—> M where ¥/(b, E) = 7 '(b) for each b € U,

so that YU, 0) is an R-neighborhood and the orientation of E corresponds to
that of each S-orbit by ¥. By Lemma 3.3 we can take such Y as coordinate
function. Under such coordinate functions the former part of our theorem is
easily verified. Here the principal S-bundle M has a differentiable cross-section,
its fibre being solid. So the latter part is also true.

8) For the definition of connections, see [1], p.431.
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HYPOTHESIS II. Every point x € M is a limit point of I(z) relative to
R(2).

This is assumed for M from here to the last of this section. For a subset
W of an R-orbit, let W denote its closure relative to the R-orbit. If a sequence
is composed of points of the same R-orbit (or frames tangent to the same R-orbit),
its convergency is always treated relative to the R-orbit. An R-isometry is an
isometry of an R-orbit R onto an R-orbit R. If it is the limit of a sequence
of R-maps of R onto R, it is said to be canonical. So all of R-maps are
canonical R-isometries.” For two points z, y on an S-orbit of M, let S[z,y]
denote the subarc of the S-orbit from = to y. An R-frame F at x € M is an
orthonormal 2-frame at x tangent to R(x) and usually is denoted by (z, F).
Take a point xy € M. An (x,)-sequence is a point sequence which is a subset
of I(x,). For an (x,)-sequence {z:} and an R-frame F, at x,, if an R-frame
Fy at x, is the image of F, by the R-map with respect to the geodesic arc
S[z,, x:], then the sequence {(x1, F1)} is called an (xo, Fo)-sequence and {x}
is called its base sequence. If {x)\} is essential, the sequence {(xi, F1)} is said
to be base-essential.'”® That a normal R-radius ¢ at z, is small means that
there is a normal R-radius at x, greater than c. Give a straight line / passing
through x, and tangent to R(x,), an angle 6(0 < # < /8), and a small normal
R-radius ¢ at x,. Let X[z, 1,6, c] denote the part of R(x,) which consists of
all £ € N«(z, ; ¢) such that an angle between I and [z, z] © Ni(zo; c) is not
greater than 6. This closed region is called an X-region at z,. It consists of
two sectors having x, alone as common, each of which is called its A-region.
Let I[x,; c] denote I(x,) N Nelx, ; ©).

Take an R-orbit R of M and a point o € R. Let F, be an R-frame at
xo. If yo € m, then we have

LEMMA 4.2. 1) I(x,) = I(y,). 2) There exists a canonical R-isometry
J of R onto itself which maps x, to y,, and the inverse map J™ ' also is a
canonical R-isometry.

If y, € I(x,), it is evident.

First we prove 1). Let {xa} be an (x,)-sequence converging to 3y,. Take
any y € I(y,). Let 'J be the R-map with respect to S[y,,y]. Put zx = "J(xn).
Then {x:} is an (x,)-sequence converging to y. Hence y € I(x,). So, I(y,)CI(z,).
Next take any z € I(x,) and let Ji be the R-map with respect to S[xi, x]. Put
v = Ji(yo)- Then {y,} becomes a (y,)-sequence and dw(y,, 1) = dr(y, x). So,

9) For, an R-map is considered as the limit of the sequence whose terms are all the same
R-map.
10) Then this frame sequence need not converge, though {zx\} must converge.
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y—>x (A o). Hence, x € I(y,) and I(x,) < I(y,). Consequently 1) is proved.

To prove 2), take an (x,, Fy)-sequence {(x, F3)} converging to an R-frame
at yo. This R-frame we denote by (yo, F). Let Ji be the R-map with respect
to S[x,, 1]. Then Ji-(xo, Fo) = (a2, F1). By Lemma 1.1, the limit J of {Ji}
does exist and J-(x,, Fy) = (yo, F'). Obviously J is a canonical R-isometry which
is desired. And J! also is a canonical R-isometry, being the limit of {Ji'}.

LEMMA 4.3. There exists a base-essential (x,, F,)-sequence converging to
(o, Fy).

If we choose a suitable frame F at x,, we can find a base-essential (x,, Fo)-
sequence {(x1, F1)} converging to (xo, F'). Let Ji be the R-map with respect to
Slxr, 2r41]. Put (ya, Gi) = Ji-(xo, Fo). Then, {(yr, G1)} becomes a base-essential
(xo, Fy)-sequence converging to (xo, Fy), since S(x,) is non-closed.

If there is an (&, Fy)-sequence converging to (xo, F,) whose base sequence
has tangential vector v,, then we have

LEMMA 4. 4. There exists an (x,, F,)-sequence converging to (x., F,) whose
base sequence has — v, as its tangential vector.

Let {(x1, Fi)} be an (xo, Fo)-sequence converging to (xz,, F,) whose base
sequence has tangential vector v,. Let Ji be the R-map with respect to S|z, o]
Put (yi, Gr) = Ji-(xo, Fy). Then the sequence {(y), G1)} becomes a base-essential
(zo, Fy)-sequence converging to (x,, F,). We shall prove that the base sequence
{ya} has — v, as its tangential vector. Let gi be a minimizing geodesic from
Zo t0 xa. Put by = Ji-ga. Let (af, F¥) and (y%, GX) be the developements in
Tw(xo) of (a1, Fy) and (ya, Gy) along g1 and hi' respectively. Let JY be the
congruent transformation in T&(x,) which carries (z%, F¥) to (xo, F,). Then,
JE(zo, Fo) =(y%, G}). Now, for sufficiently large A, denote the points z%, y¥ by
Zo + dzo, xo + 8z, and the frames Fy, G} by (e,), (e, + 8e,) respectively. Put
dx, = @"e,. Then, — 8z, = 0"(e, + 8¢,). Neglecting its higher order, we have
8z, = — w"e,. This implies that {y:} has — v, as its tangential vector. So our
lemma is true.

If there is an (x,)-sequence converging to x, which has tangential vector
vy, then we have

LEMMA 4.5. There exists an(x,)-sequence converging io x, which has
— vy as its tangential vector.

For a suitable R-frame F at x,, there exists an (x,, Fo)-sequence {(xx, F1)}
converging to (x,, F') whose base sequence has v, as its tangential vector. If
F, = F, our lemma follows from Lemma 4.4. So suppose that F,== F. Let Jj,
be the R-map with respect to S[x:, z,]. By Lemma 1.1, for fixed A there is
the limit Jy of {Ji,lp=1,2,...... {. This is a canonical R-isometry such that
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Ji(zr, Fr) = (20, F). Put (y1, Gi) = Ji-(zo, F). Then, (yr. Gr) = (20, F) (A —> 0),
and by the same way as in the proof of Lemma 4.4, it is shown that the
sequence {y\} has — v, as its tangential vector. Moreover, when A is again
fixed, for any & > 0 we can find N, > 0 such that

Alxu, x0) < &/2, de(Jr(xo), Ji(zxo) < E/2 for all u > N
Here dr (Jiu(z.), Jou(o)) <&/2. So we have de(J.(zu), y1) < & As Jy(x.) € L(z0)

for all u, we can find an (z,)-sequence converging to yi. From these facts our
lemma is verified.

If there is an essential (x,)-sequence converging to zo, which has not
tangential straight line, then we have

LEMMA 4.6. I(x,) is dense in R.

By Lemma 4.5, we can find (x,)-sequences Z(i = 1,2,3,4) converging to
x, and having tangential vectors v,, v, — v, — v. respectively such that
0< v/l\vz < 7, where '0:“\02 denotes the angle between v, v,. Now suppose that
I(x,) is not dense in R. Take y, € R — I(x,). There is 2’ € I(x,) such that
Ay, ) = d(yo, I(z,)). Put ¢ = de(yo, ). Then ¢ > 0 and

(4.1) {yly € R, d(yo,y) < c} N Iz,) = 0.

On the other hand, by Lemma 4.2 we can find a canonical R-isometry J
which maps x, to z'. So there is a sequence {Ji} of R-maps which has J as
its limit. As Jy-Z, © I(z,), we have J-Z, < I(z,). The sequences J-Z; converge
to £ and have tangential vectors J-v;,, J-vs, — (J-v;), — (J-vy) respectively.
Here (J-vl/)\(J-'vz) = v:';).z. These properties of the sequences J-Z; are contrary
to (4.1). So, I(x,) must be dense in R.

Take z,, yo € I(z,). Let J, 'J be the R-maps with respect to S[xo, zil,
S[xo, yo] respectively. Put y, = "J(x,).

LEMMA 4.7. 'J-J=J-"J, and diz., x,) = @y, y1)s Alxo,y0) = A1, y1).

We can find constants a, & such that S[x, ] = g(xs, dx0), @) and S[zo, ¥,]
= g(xo, d(x,), b). Then 'J-J is the R-map with respect to ¢(zo, d(xo), @ + b).

Similarly, J-'J is the R-map with respect to g(z,, d(x,), & + a). So 'J-J =J-'J.
On the other hand, we have

/J(xo) = Yo ,J(xl) =Y J(xo) = Xx, J(yo) = ,J‘J‘/J~l(yo) =Y

From this, the latter part of our lemma follows.
Under Hypothesis II, let us assume

HYPOTHESIS II,. For a point 2z, € M, all the essential (z,)-sequences
converging to z, have the same tangential straight line.
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LEMMA 4.8. For every x € M, all the essential (x)-sequences converging
10 x have the same tangential straight line.

To prove this, suppose that for a point x, € R(z,) there exists an essential
(x0)-sequence converging to x, which has not tangential straight line. Then,
I(z,) = R(z,) by Lemma 4.6 and so I(z,) = R(z,) by Lemma 4.2. This con-
tradicts with Hypothesis II,. So, for every x € R(z,), all the essential (x)-
sequences converging to x have the same tangential straight line. Therefore,
by Lemma 3.3 our lemma is easily verified.

Take an R-orbit R of M and a point 2o € R. lLet [, be the tangential
straight line of all the essential (x,)-sequences converging to x,. Take a constant
#, such that 0 < 8, < /8. The following lemma is now evident:

LEMMA 4.9. At x, there is a small normal R-radius c, such that
X[xo, Lo, o, ] D ITxo 5 c] for 0 < c = co.

Now we take any y € I(x,). As there is by Lemma 4.2 a canonical R-
isometry J which maps x, to y, ¢, is also regarded as a small normal R-radius
at y. Put I = J-[,. Then, for the same 6,, ¢, we have

LEMMA 4.10. 1) J-I[xe; cl=I{y;cl; 2) Xy,l,60,c]1DI[y; cl

Since J is the limit of a sequence of R-maps, we denote the sequence by
§id. Put 2 = Ji(x,). Then, xx € I(x,), and a2 —> y(A — ). Furthermore

Jollzo; €] = Ilar 5 ¢] = Kzo) N Nelaa 3 ¢) = I(y) N Nelza 5 ©).
Hence J-I[ze; ] =I(y) N Ndy; ¢)=1[y; cl.
L e, 1) holds good. Next, by Lemma 4.9,
J-X[zo, Lo, 00, c] D J-I[x4; .
By 1), Xy, 1, 600,c]DI[y; cl
So, 2) also holds good.

Let A be a A-region of the X-region X[z, 6, c]l. Let v, be the unit
vector at x, tangent to A and generating ,. Put Is[xe; c] = A N [z ; cl.

LEMMA 4.11. There exists a constant 10 < L < c¢,) such that the map
4.2 f: Llxo; L1—>[L] defined by f(x) = dlx,, x)
where x € Ix,; L], becomes onto and one-to-one. The inverse map ftis

continuous as a map of [L] into R(= R(x,)).

First suppose that for any L(0 < L < ¢,) the map f of (4.2) is not one-
to-one (into). Then we can find two essential sequences {yi}, {zi} converging to
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Zo such that
Y 2 € L[z ; co/A], Ao, y12) = Az, 21), Y2 F 2.

By Lemma 4.9, they have the same tangential vector v,. Hence, there is an
integer £ > 0 such that in a geodesic triangle zqy,2; constructed from minimi-
zing geodesics,

(4.3) m/4 < the angle zoyiz < 37/4,
the length of the side [y, 2:] < co.
On the other hand, if J is a canonical R-isometry which maps x, to y, then
X[y JLo, 0o, €0l D I[yy ;5 col-

by Lemma 4.10. So, x;, 2; € X[yx, J-lo, 60, co]. However, 0 < 6, < =/8. This
is contrary to (4.3). Accordingly we can find a constant L(0 < L <¢,) such
that the map f of (4.2) becomes one-to-one (into).

Next suppose that for our L the map f is not onto. Since I [z,; L] is
closed in R, we can find y, € Iz,; L], @, € (0 <a < a+ &< L) such that

4.4)  fy)=a, Ifx,; L1 N (Nzo; a + &) — Ny ; a)) = 0.
If we take a canonical R-isometry J, which maps x, to y,, then
X[yo; Jolo, 60, €01 D I[_’yo, Col.

So from Lemmas 4.5 and 4.8 each A-region of X[yo, Jo-lo, 6o, co] contains an
essential (y,)-sequence converging to y,. Here, any (y,)-sequence is a subset of
m and X[y, Jo-lo, 00, co] contains the minimizing geodesic [xo,¥o]. This is
contrary to (4.4), since 0 < 6, < /8. Accordingly the map f must be onto.
So the former part of our lemma has been proved.

To prove the latter part, suppose that for the same L, the inverse map
S :[L]— R is not continuous at £,(0 < ¢, < L). Put y, =f (). We can
choose a sequence {fi}, 0 < #, < L, converging to #, such that the sequence
§y1}, y2 = f'(t1), converges to a point y( ==y,). So, dxe,y) =1 and y €
I\[x,; L]. Hence f(y,) = fy) =t,. As this contradicts with the fact that f is
one-to-one, the map f ' must be continuous. This completes the proof of our
lemma.

LEMMA 4.12. The arc C: git)=f"'(t) (0<t <L) s simple and of
class C' with respect to t.

By Lemma 4. 11, it is obvious that C is simple. So we prove that C is of
class C'. For each (0 <¢ < L), let J, denote a canonical R-isometry which
maps z, to the point ¢(¢). Put /(¢) = J;-l,. By Lemma 4. 10, {(z) is tangent to
C.
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Given any 6(0 < § <7/8), by Lemma 4. 9 there is ¢ > 0 such that
X[g @), U2),6,c] D I[g(t); cl. Moreover we can find 8 > 0 such that du(g(2),
gt + Ar)) < ¢ for all Atz satisfying [A¢]| <8 (0<t¢t+ Ai=<L). Now take
a canonical R-isometry J which maps ¢(z) to g(¢ + Af). Then, J-U(z) = I(t +
A¢), and by Lemma 4. 10,

X[g@ + Ab), I(t + A1), 0,c] D I[gz + At); cl.

Hence X[g(t + A), l(z + At),0,c] contains the minimizing geodesic [¢(¢), g(z
+ At)]l. So it follows that I(z) can not construct an angle greater than 26
with the developement of I(z + At) in Tx(g(¢)) along [¢(2), g(¢ + t)]. This
shows that /() (0 <t < L) is continuous.

Accordingly, for each ¢ we can plant the unit vector v(¢) generating I (¢)
at the point ¢(z), so that v(0) = v, and u(¢) is continuous over 0 < ¢ < L.
Take an angle 6(¢) between v(¢) and the geodesic circle with center x, passing
through ¢(#), which is continuous over 0 < ¢ < L and satisfies 37/8 < 6(2) <
5/8. This is possible, since

X[g(), L(2), 6, L1 D I[g(t); L]

for the same 6, as Lemma 4.9 and so X [¢(¢), (¢), 6o, L] contains the minimizing
geodesic [z, g (£)].

Now, cover Nx(xz,;L) by an admissible coordinate system (z*). Let (z°(¢))
denote g (¢). Let A t* denote the length of a minimizing geodesic [¢ (¢), g(z +
A t)] which has positive or negative sign according as Az >0 or < 0. Then
we have

da” _ 2+ A =2 _ g 2+ A —a"@) A
dt At At" At
- v®)
sin 6(z)

where (v (1)) denotes v (z). Hence we can see that C is of class C. So our
lemma holds good.

By Lemma 4.12, the arc C is also represented by the arc z(s) (0 <s <
L*; 2(0) = x,) of class C' where L* is the length of C and the parameter s
denotes arc-length. For each s let v(s) denote the tangent (unit) vector of the
arc x(s) at the point a(s). So, ®0) = v,. Now, if J; is a canonical R-isometry
which maps z, to z(s), then we have

LEMMA 4.13. J,v, = o(s).

Provided that J; is an R-map, suppose that J;- v, &= ©(s). Then, s==0 and
Jyv, must be — o(s). Hence J; carries the subarc z,z(s) of C to the subarc
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z(s)z, of C. The point z(s/2) € C becomes invariant by J,. Lemma 3.3 shows
that the S-orbit S (a(s/2)) becomes closed. This is obviously a contradiction. So
if J, is an R-map, our lemma is true. Next, we consider the case where J; is
not R-map. We can find a sequence {Ji} of R-maps, which has J; as its limit.
For sufficiently large A we have J, (z,) € C, and Ji(x,) = z (s) (A = 0). So by
using the above result, we can see that in this case, too, our lemma is true.

On the other hand, J;* also is a canonical R-isometry which maps x(s) to
xo by Lemma 4.2 and J;'v(s) = v,. By this and Lemma 4. 13, the arc C may
be extended for infinitely large (absolute) values of its parameter s (arc-length).
The curve x(s) (—oo< s <oo;2(0) = x,) thus obtained is called the cluster
curve passing through xz, Let CI(x,) denote the curve. Let v(s) denote the
tangent (unit) vector of the curve CI(x,): z(s). For each s, we plant at the
point a(s) an R-frame F(s) = (e,(s)) where e,(s) = ©(s), so that F(s) becomes
continuous with respect to s.

LEMMA 4.14. 1) For any s, s (—oo< s',s’ <o) there exists a canonical
R-isometry J which maps (x(s"), F(s")) to (x(s”), F(s")); 2) J maps the curve
Cl(xo) to itself.

To prove 1), put ' = 2(s"), F' = F(s"). By Lemma 4.3, there are base-
essential («, F”) -sequences converging to (z, F). Among them, there is a one
which is represented by {(z(s1), F(s1))} where sy — s (A = o). For fixed A, put
Asy = s, — 5. Let J, denote the R-map with respect to S[z’, z (s1)]. So, Ji-(z',
F)=(z(s" + As)), F(s"+ As)). Then, for any integer m, (Ji)" is also the
R-map which maps (£, F) to (x(s' + m Asy), F(s"+ m As)). This implies
the existence of an (x', F')-sequence converging to (x (s”), F(s")). Le., 1) holds
good. 2) follows from Lemma 4. 10.

LEMMA 4.15. The cluster curve x(s) (—oo< s <) is a simple differ-
entiable curve with constant curvature in R(= R(x,)).

Let (z*(s), F*(s)) be the developement of (a(s), F(s)) on T=x(z,) along
the subarc of the curve z(s) from s = 0 to s. For any s, s~ (—o0<s', s <o),
take the congruent transformation J* in Tw(x,) which maps (z*(s"), F*(s"))
to (z*(s”"), F*(s")). By Lemma 4.14, J* leaves the continuous field {(z* (s),
F*(s))} —co< s <oo} of frames fixed. This shows that the curve z*(s)(— oo
< s <o) is a circle or a straight line. Accordingly the curve z(s)(—co< s <
o0) is differentiable and has constant curvature. That it is simple is obvious
from Lemmas 4. 12 and 4. 14.

LEMMA 4.16. 1) Cl(z,) = Cl(y) for any y € Cl (x,); 2) There exists a
constant L > 0 such that the set {x|d«Cl(z,), z) <L} N I(x,) coincides with
Cl (xo) as subset; 3) I(x,) consists of some cluster curves,
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1) follows Lemma 4.2 and the fact that the cluster curve passing through
y is only one. As the constant L in 2), take L in Lemma 4.11. Then 2) is
verified by Lemma 4. 14. 3) is now evident.

Take a constant ¢. Let us put y(s) = (z(s), es(s), c), using the cluster curve
x(s) (—eo< s <o), and further y, = y(0). The curve y(s) (—oo< s <o) is
differentiable. We represent its arc-length from s = 0 to s by f(s) so that f(s)
=0 or <0 according as s > 0 or < 0, and so f(0) = 0.

LEMMA 4. 17. f(s) = ks where k is a positive constant.

By Lemma 4.14, df/ds = const. (=k). Here £ =0. If 2= 0, we have
y(s) =y, for all s. So, any R-map which carries CI(x,) onto itself leaves the
point y, fixed. This shows that the S-orbit S(y,) is closed by Lemma 3.3. Le.,
we obtain a contradiction. Accordingly, £ > 0 and so our lemma is true.

LEMMA 4.18. 1) The curve 3(s) (—oo< s <{o0) is the clusier curve
Cil(yo); 2) If Cl(x,) and Cl(y,) are not the same curve, they have no common
point; 3) In R(= R (x,)), all the geodesics orthogonal to Cl(x,) are also ortho-
gonal to Cl(y,) and are simply;4) Any two of them have no common point.

For all s, y(s) € I(y,). So 1) follows from Lemma 4.16. The other asser-
tions 2)—4) are also evident.

LEMMA 4.19. In R, any of cluster curves is an orthogonal trajectory of
the system of all geodesics orthogonal to a cluster curve, say Cl(x,).

Let a be a cluster curve in R. For a point y, € a, take x, € Cl(x,) such
that da(yo, 1) = dx(ys,Cl(x,)). This is possible by Lemma 4.16, and it is per-
mitted to assume z; = x(s,) for a suitable s,. Put d = dx(y,, x;). Then y, =
(x(s)), ex(s)), &d) for € = + 1 or — 1 and a is represented by (x(s), ex(s), &)
(—oo< s <o0). So Lemma 4. 18 proves our lemma.

Take an S-orbit S, of M. Let S§ be the closure of S, as a subset of M.

LEMMA 4.20. 1) For any x, € S¢ the cluster curve Cl(z,) and the
S-orbit S(x,) are contained in Si; 2) Sy forms a 2-dimensional differentiable
submanifold; 3) Under the Riemannian metric induced from M naturally, St
is regarded as an RS-torus, whose R-and S-orbits are cluster curves and S-
orbits of M respectively.

1) follows from Lemmas 3.3 and 4.2. To prove 2) and 3), take a neighbor-
hood U of xz, with cubical reduced coordinate system (z*) where z, = (0,0,0).
We denote the connected subarc of Cl(x,) passing through x, and contained in
U by z°(s) (a < s <b; 2°(0) = 0), where a,b are constants and the parameter
s denotes arc-length. Then, z°(s) = 0 for all s. Let W denote the part of U



38 S.KASHIWABARA

defined by
(x'(s), 2%(s), %) (@< s<b;—c< 2*<¢)

where 2¢ is the breadth of the coordinate system (z%). Then, W C S¢ and an
arc (z'(s), z%(s),z*)(a < s <b) for fixed z* becomes a subarc of a cluster
curve and the parameter s denotes its arc-length. Now, let us treat W as a
coordinate neighborhood with the coordinate system (s,z*) and together with
such coordinate neighborhoods, consider S§. Then, 2) is easily shown. Moreover
under the Riemannian metric induced from M naturally, we can see that S¢
becomes a Euclidean 2-space form. Here an S-orbit of M contained in S5
forms a subset d=nse in S¢. Since it is a simple non-closed geodesic, the underlying
manifold of S§ must be 2-dimensional torus. Thus we can see that 3) is also true.

By Lemma 4.20, we have an RS-torus as the closure of an S-orbit of M.
Such an RS-torus is simply called an S-closure of M. In an S-closure Sf,
take a normal vector v, of Sy at x, € S§, that is a unit vector orthogonal
to Sy. This is tangent to R(x,) and orthogonal to Cl(x,). Let x, be any point
of S§. Let a(®)(0<t=<1) be a curve in Sy from z, = a(0) to x, = a(1). For
each t, take the normal vector v(t) of S§ at the point a(z), so that v(0) = v,
and it becomes continuous over 0 <¢=<<1. If S* is an S-closure, then we
have

LEMMA 4. 21. 1) There exists a constant ¢ such that (x., v,,c) € S*; 2)
There exists a neighborhood U in S§ of z, such that, if {uw(z)|x € U} is
the continuous field of normal wvectors over U where u(x,) = vo, then (x,
w(x), c) € S* for all x € U and the map

f:U— S* defined by f(x) = (x, u(x), c)

becomes an into-diffeomorphism which carries the parts in U of R- and S-orbits
of St on R-and S-orbits of S* respectively ; 3) (a(t), v(t),c) € S* for 0 <t < 1.

By Lemma 3.2, we can take a point y € S* 1 R(x,). The cluster curve
Cl(y) is an orthogonal trajectory of the system of all geodesics orthogonal to
Cl(z,) by Lemma 4.19. So 1) is obvious. On the other hand, 2) is verified by
using Lemmas 3.1 and 4.18, and 3) follows from 2).

Under the same notations let ¥ be the set of all s > 0, such that at
least one of two points (x,, = v,, s) belongs to Si. If ¥ =0, we put p(SF) =
g.Lb. W If ¥ =0, we put p(S5) =o0. So, 0 < p(S%) <oo. Next suppose that
S5 == S*. Let © be the set of all s >0 such that at least one of two points
(0, = o, 5) belongs to S*. By Lemma 4. 21, Q2 = 0. We put p(S§, S*) = g.1.b.
0. So 0 < p(S5, S¥)<co. By Lemma 4. 21, p(S¥) and p(S§, S*) are independent
of z,.
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LEMMA 4.22. 1) p(S5) > 0. 2) If p(S?) <oo, at least one of two points
(2o, == vo, P(SF)) belongs to S§. 3) p(S3, S*) > 0. 4) At least one of two points
(x0s *v0, P(SF, S*)) belongs to S*.

These are easily verified by using Lemmas 4. 16 and 4. 21.

THEOREM 2. In a 3-dimensional RS-manifold M, suppose that all the
S-orbits are non-closed and that M satisfies Hypotheses II and II,. Then M
is RS-diffeomorphic onto an A -manifold (i = 1,2,3, or 4).

To prove this, we shall classify M, with regard to the S-closures, into
the following four cases:

1) The case where all the S-closures admit continuous field of normal
vectors (over them). Take an S-closure S*. Let {v(x)|x € S*} be a continuous
field of normal vectors. For any z, € S* and L > 0, put y, = (o, v (z0), L).
Let St be the S-closure passing through y,. The map

(4. 5) f:8% = St defined by flx) = (z, v(x), L)

is onto by Lemma 4.21. We prove that f is one-to-one. Suppose that flx;)
= flx,) for z;, s € S*(x, = x,). Then, if we consider the field {v(z)|z € S*}
restricted to a curve in S* from x, to x,, we can easily see that S¥ does not
admit continuous field of normal vectors. This is contrary to our case. So, f
must be one-to-one. Furthermore from Lemma 4.21, it follows that £ is an
RS-diffeomorphism. Accordingly if p(S*) =co, M is diffeomorphic onto an A,-
manifold. If p(S*) < oo, we have (x,, ¥(x,), Ep(S*)) € S* for E=+ 1 or — 1
by Lemma 4.22. The map f of (4.5) for L = &p (S*) becomes an isometry of
S* onto itself. This is verified by Lemmas 3.1 and 4.17. So, M is then RS-
diffeomorphic onto an A,-manifold.

2) The case where an S-closure S* only does not admit continuous field
of normal vectors. Put L = p(S¥). Of course 0 < L <eo. Let v(x) denote a
normal vector of S* at x € S¥. For each ¢(0 < ¢ < L), we denote by S¥ the
S-closure passing through a point (zo, v (x), ¢) where 2, € S*. In our case,
the vector v(x) is continuously displaced to — v(x) along a suitable curve in
S*, preserving to be normal vector. This and Lemma 4.21 show that S¥ con-
sists of (z, = v(x),c) for all x € S*. Here if (z, v(x),c) = (x, — v(z), ¢) for
x € S*, we obtain the contradiction that S¢ does not admit continuous field of
normal vectors. This is verified by using the above fact that v(x) is continu-
ously displaced to — v(x), So, (z, v(x), ¢) *+ (z, — v(x), c¢) for all x € S*. Next
if (21, v(x)), €) = (2, vxs), €) for zy, 2, € S¥(x, 5= x,), it follows that S¥ does
not admit continuous field of normal vectors, too. So, (xi,v(x)),c)== (z,,
wxy), ¢) for any x,, s € S*(x, == x,). These show that S§ becomes a double
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covering manifold (topologically) of S* whose covering map pis Kz.) = =z,

where £ € S* and x, = (z, v (x),c) for €=+ 1, — 1. By Lemma 4.21, the
map p carries R-and S-orbits of Sf to the same ones of S* respectively. So,

the map f of S¥ onto itself defined by

Az, o(x), ¢) = (x, — v(x), c) for all x € S*

becomes an involutive RS-diffeomorphism having no fixed point. From Lemmas
3.1 and 4.17, it follows that f is an isometry. In S¥ identify (x, v(x), ¢) with
(z, — v(x),c) for all x € S*. The manifold thus obtained is regarded as the
RS-torus whose S-orbits are induced from those of M. This RS-torus becomes
RS-diffeomorphic onto S* by the natural correspondence. Furthermore it is
evident that S¥ is naturally RS-diffeomorphic onto S& (0 < ¢’ < L).

Suppose that L <oco. By Lemma 4.22 we have x3 = (x,, v(x,), L) € S*.
So there exists a normal vector v(xg) of S* such that (ay, v(ay), L) = x,. As
(o) is continuously displaced to w(x,) along a suitable curve in S* preserving
to be normal vector, the S-closure passing through the point (zo, v(x,), L/2)
does not admit continuous field of normal vectors. This contradicts with our
case. Therefore, L = co. Hence it is proved that M is RS-diffeomorphic onto
an A;-manifold.

3) The case where two S-closures S§, S¥ only do not admit continuous
field of normal vectors. Put L = p(S§, S¥) and take x, € S;. Let v, be a normal
vector of S§ at x,. By Lemmas 4. 21 and 4.22, two points (x,, == v,, L) belong
to Sf. For each ¢ (0 < ¢<L), let Sf be the S-closure passing through a point
(o, (o), €). Just as 2), S¥ becomes a double covering manifold (topologically)
of S¢ and further of Sf. Thus it is proved that M is RS-diffeomorphic onto
an A, manifold.

4) The case where three (or more) S-closures do not admit continuous
field of normal vectors. Let S, ST, Sf be such ones. We have p(S§) = 2p(Ss, ST).
Similarly, p(S5) = 2 p(Ss, S3). So, p(Ss, S¥) = p(S§, S%). Hence, St = Si. As this
is a contradiction, our case does not occur. This completes the proof of our
theorem.

In the next place, under Hypothesis II we assume

HYPOTHESIS II,. For every point = of M there is an essential (z)-sequence
converging to z which has not tangential straight line.

Then, by Lemma 4.6 any S-orbit is dense in M as its subset.

THEOREM 3. In a 3-dimensional RS-manifold M, suppose that all the
S-orbits are non-closed and that M satisfies Hypotheses II and II,. Then all
the R-orbits, and so M too, are Euclidean space form.
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‘Let R be any R-orbit of M. Take z, € R. We have I(z,) = R. For any
z € I(x,), since the R-map with respect to S[x,, 2] is an isometry, the curva-
ture of R at x, is equal to that of R at x. So the curvature of R is constant
from its continuity.

Let F, be an R-frame at x,, By Lemma 4.3 there is a base-essential
(xo, Fo)-sequence converging to (x,, Fy). Now take an element (z,, F,) of the
sequence which is sufficiently near to (x,, F,). Let J be the R-map such that
J(xo, Fo) = (x1, F\). Put x, = J(x,), x; = Jx,). Denote the minimizing geo-
desic joining z, to &, by [z, 2,]. Moreover put [x,,x,] = J-[2, z,] and [xs, x3]
= J'[x,, x;). In the product curve [xo, x,]- [x), xs] - [xs, 23], the angle xoz\x»
is equal to the angle x,x,x; together with their orientations, (x;, F;) being
sufficiently near to (x,, F,). Let g¢,, g» denote the geodesics passing through z,,
x, and bisecting the angles xox,x,, x,x,2; respectively. Then J-g, = ¢s.

First, consider the case where R is an elliptic space form. Then ¢, ¢-
intersect each other. We have J(z) = z for the intersecting point z.So, S(z)
is closed. This is obviously a contradiction. Secondly consider the case where R

is a hyperbolic space form. We can find 2, € g, which is sufficiently near to
x; such that

(4- 6) dR(zo, J(zo)) = dR<xl9 -’L'z)-

Of course J(2,) € ¢,. Let us take an (x,)-sequence {21} converging to z,. By
Lemma 4.7, dr(z:, J(22)) = dilzy, x,). So, dr(ze, J(20)) = di(x;, x;). This is
contrary to (4. 6). Accordingly R must be a Euclidean space form. Hence our
theorem holds good.

REMARK. Let us give a model of the RS-manifold in Theorem 3. In a
2-dimensional torus group G there exists a element ¢ € G such that the
subgroup generated from ¢ forms a subset dense in G™. We consider G as
Euclidean space form, naturally. Let J bz the isometry of G onto itself which
is the parallel translation carrying the zero element of G to ¢g. In G x [L],
identify (x, L) with (J(x), 0) for all £ € G. The Euclidean space form thus
obtained is regarded as the RS-manifold where each R-orbit is defined by ¢ =

const. (¢ € [L]). Then the S-orbits are all non-closed and this RS-manifold
satisfies Hypotheses II and II,.

5. 3-dimensional RS-manifold among whose S-orbits there are both
of closed one and non-closed one. In such an manifold M, let M° be the
subspace which is the union of all of non-closed S-orbits.

LEMMA 5.1. M° is a connected open submanifold of M whose closure is

11) We owe this fact to K.Masuda. It is easily proved by using Theorem 33 in [4],
p.136.
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M, and the maximal subset of M in which each point x is a limit point of
I(z) relative to R(x) ([2], p. 344).

Take 2o € M — M°, and put R = R(x,) and R®= R 1 M’. R°® is open
and dense in R. Let L be the length of the closed geodesic S(x,). Let J be
the R-map with respect to g(zo, d(x,), L). Then, J leaves z, fixed and we have

LEMMA 5.2. J is a rotation of R at x, and its rotation angle 6 satisfies
w/0 = irrational number. Hence all of the rotations of R at z, form 1-di-
mensional torus group.

For a normal R-radius ¢ at x,, we have Nx(x,;c) N R°==0. Take a point
x € Ni(zo;¢) N R°. Now, if J is a symmetry, then S(x) becomes closed. How-
ever, S(x) is not closed. So, J must be a rotation of R at x,, and its rotation
angle 6 must satisfy #r/6 = irrational number. Hence, the latter part of our
lemma follows from Lemma 1. 1.

If R — R° consists of x, alone, then we have
LEMMA 5.3. R is homeomorphic onto Euclidean or elliptic 2-space.

By Lemmas 1.2 and 5.2, R becomes homeomorphic onto Euclidean, elliptic
or spherical 2-space. However, R can not become homeomorphic -onto spheri-
cal 2-space. For, if R is homeomorphic onto it, the cut-locus for x, consists of
a point alone. Denote the point by z;. Then, z, 4=, and J(x,) = x,. Hence
S(x,) becomes closed and so «; € R — R°. This contradicts with the assumption.
Accordingly our lemma is true.

If R — R° contains another point x;, then we have

LEMMA 5.4. R — R°® consists of the two points xo, x, only and R is
homeomorphic onto spherical 2-space.

First note that, at x;, too, we may take up such a rotation of R as J at
z, and the same property as Lemma 5.2 holds good.

1) The case where x, € I(x,). Let ¢, be a minimizing geodesic from x,
to x;. Denote the unit vector at x, tangent to g, by #, and the length of g,
by Lo > 0). So, z, = (x, %o, L;). We displace u, parallelly along g¢(x,, d(x,),
L) (= S(x,)). For each s (0 < s <L) let u(s) be the vector at the point (x,,
d(x,), s) obtained by this displacement. By Lemma 3.1, we have

(o, d(xy), 5), u(s), Ly) € S(x,) for all s(0<s=<0L)

and J(z,) = x,. Hence for any integer m, J"(z;) = z, and J":g, is a minimi-
zing geodesic from z, to x,. Any two of the geodesics J"-g, have x,, z; only as
common points. By Lemma 5.2, R must be homeomorphic onto spherical
2-space. And then it is easy to see that I(x,) consists of z,, z, only.
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2) The case where z, €& I(z,). Now suppose that J(z,) == z,. By Lemma
3.1, J(z,) € Ix,), and J(x;) € R — R°. Just as in 1), I(x,) consists of two
points x; and J(x,) only. Hence J*(x,) = z; and J*"(x,) = x, for any integer
m. On the other hand, the rotation angle of J? is 26 or 2a — 26 according as
0 <m/2 or > /2, and m/26 = irrational number by Lemma 5.2. Hence, x,
is invariant by all the rotations at x,. This contradicts with J(x;)= x;. So,
Jz,) = x, and J"(x,) = z,. Accordingly, as in 1), R must be homeomorphic
onto spherical 2-space.

Moreover from 1) and 2), it follows directly that R — R° consists of x,, x,
only. Therefore our lemma holds good.

THEOREM 4. In a 3-dimensional RS-manifold M, suppose that among
the S-orbits there are both of closed one and non-closed one. Then M is RS-
diffeomcrphic onto a B;-manifold (i = 1, 2,3, or 4).

To prove this, we shall use the previous notations. By Lemma 5.4, S(x,)
1 R consists of at most two points. So the topology of R coincides with the
relative one induced from M. This is seen by using Lemma 3.3. Accordingly
by Lemma 3.4, M is of type IIl. If R — R° consists of a point alone, M is
RS-diffeomorphic onto a B;- or a B,-manifold by Lemmas 1.2 and 5.3. If
R — R°® consists of two points, M is RS-diffeomorphic onto a B;- or B,-mani-
fold by Lemmas 1.2 and 5.4. This completes the proof of our theorem.

6. 3-dimensional RS-manifold whose S-orbits are all closed. In such

an RS-manifold M, take any oo € M. Let L be the length of the closed
S-orbit S(x,).

LEMMA 6.1. 1) There is an R-neighborhood Uy of x, such that the map
f:Ur X [L]> M defined by flzx,t) = (z, d(x), t)

where x € Ug and t € [L], is an into-isometry provided that Uz is doubly

treated in M as the images by f at t =0, L ((2], p. 343). 2) Among the
S-orbits of M, there are S-orbits with the longest length ([2], p, 346).

Here, the map which assigns to each x € Uz the point flz, L) becomes
an isometry of Ur onto itself. So, the map f induces the congruent transfor-
mation f* on T&(x,). Relative to a suitable frame at x,, f* is a symmetry or a
rotation whose rotation angle # satisfies 7/6 = rational number. We describe as
the main part of M the subspace of M which consists of all the S-orbits with
the longest length.

LEMMA 6.2. The main part of M is a connected open submanifold dense
in M and a maximal subspace which becomes a fibre bundle where each fibre
is an S-orbit ([2], p. 346).



44 S.KASHIWABARA

THEOREM 5. In a 3-dimensional RS-manifold M, suppose that all the
S-orbits are closed. Then the main part M° of M is reduced to the principal
S-bundle whose standard fibre is the additive group of mod L, (L, denotes
the length of an S-orbit of M®) and the R-field defines a connection in M°. If
M — M°==0, then for an S-orbit S C M — M° there exists an S-diffeomor-
phism of a Cy-manifold (i = 1, or 2) into M which carries its central S-orbit
to S.

The former part is verified from Lemmas 3.3 and 6.2, by regarding the
orientations of tha S-orbits. The latter part follows from Lemmas 6.1 and 6.2.

7. Necessary and sufficient condition. In an S-manifold V, a 7n.a.s.c.
means a necessary and sufficient condition that V admits a complete differenti-
able Riemannian metric leaving its S-field to be a parallel field.

THEOREM 6. In a 3-dimensional S-manifold V, suppose that all the S-
orbits are non-closed and that a certain S-orbit is not dense in M as subset.
Then a n.a.s.c. is that V be S-diffeomorphic onto an RS-manifold of type I
or an Armanifold (i = 1, 2,3, 0r 4).

THEOREM 7. In a 3-dimensional S-manifold V, suppose that among the
S-orbits there are both of closed one and non-closed one. Then a n, a.s.c. is
that V' be S-diffeomorphic onto a Bi-manifold (i =1,2,3,0r 4).

Theorems 6 and 7 follow from Theorems 1,2 and 4.

THEOREM 8. In a 3-dimensional S-manifold V, suppose that all the
S-orbits are closed and that V is compact. Then a n.a.s.c. is that

1) V be an almost principal S-bundle,

2) V admit an involutive differentiable field of tangent vector 2-subspaces
transversal to the S-orbits which defines in the kernel V° a connection,

3) if V_-V°=0, for an S-orbit STV — V° there exist an S-diffeo-
morphism of a Ci-manifold(i =1 or 2) intoV which carries its centiral S-orbit
to S.

The necessity of Theorem 8 is evident by Theorem 5. So we shall here
prove the sufficiency. To do this, we call the field in 2) as the Q-field. Through
each x € V, there passes a maximal integral manifold of the Q-field. Let Q(x)
denote it. Q(x) is called a Q-orbit of V. The quotient space of V, which is
considered as the set of all the S-orbits, is denoted by B. Let 7 be the natural
map of V onto B. Since V is compact and connected, so is B. At each =z € V,
there is an admissible coordinate system (z*) such that the system of equations
z* = const. defines a subarc of an S-orbit and the equation z* = const. defines
a neighborhood of a Q-orbit. We can prove Q= B for any Q-orbit Q.



ON THE PARALLELISABILITY UNDER RIEMANNIAN METRICS 45

Since the standard fibre G of V° is a 1-dimensional torus group, G is regarded
as the additive group of mod L for a suitable L > 0. So, each element of G
will be represented by a(0 < a < L). Using this representation, we give G the
metric under which the distance from 0 to @ is @ or L — a according as a <
L/2 or = L/2. For any g € G, let R, denote the right iranslation of V° by g.

A) The case where V =V’ Then B bzcomes a compact differentiable
manifold. Give B a differentiable Riemannian metric. Now, at each b, € B we
can find an admissible coordinate neighborhood U, of &, and a coordinate fun-
ction

¢, : U, X G—>7 ' (U))
(Pu(g) =d(b,9) € w7 (b) for all b€ U, g € G)

where ¢, is a diffeomorphism. Take other pair (U, ¢,), U, D b,, which has
the same property as (U, ¢,). For x,y € = *(b,) we put

a1 = ¢1_,11;0(.23), hy = ¢1_,l1>o(y)’ g: = ¢2_,ll>o(x): hy = ¢2_,llio(y) »

Then, g, = ¢s:(by) + g1 and hy = 95:(bo) + Ay where ¢::(bo) = dit, - P13, € G.
Hence, ¢; — hy = ¢; — hi,. This implies that if on the S-orbit 7= '(b,) we
induce the metric from G by ¢,, it is independent of coordinate functions.
Let us give such a metric (arc-length) to every S-orbit. On the other hand,
each Q-orbit Q becomes a covering manifold of B whose covering map is
7/Q. The map is locally a diffeomorphism, since = is differentiable. We shall
inducz on Q the Riemannian metric from B by #/Q. Thus all the Q-orbits
become differetiable Riemannian manifolds. Take two Q-orbits Q,, Q,, then there
is ¢ € G such that R,;Q, = Q,. This right translation R, is regarded as an
isometry and the arc-lengths from @, to Q. along the S-orbits (under their
orientations) are equal to one another. Accordingly, we can give V the differen-
tiable Riemannian metric

6. 1) ds’ = ds + ds

where ds;, ds, denote the metrics of Q- and S-orbits respectively. This metric
is complete, V' bzing compact. It is now obvious that the metric is a required
one.

B) The case where V == V°. Put B, = - V°. From 3) and the compact-
ness of V, it follows that the subset B — B" consists of a finite number of
points and a finite numbar of simple closed curvzs. Denote them by

bj (.7 = 1a2, """ ,jo) and Bk (k = 1’ 2; """ ) ko)

respectivély. Indeed, all the curves 8, form the boundary of B. For each j,
there exists an S-diffeomorphism f; of a C,-manifold V; into V which carries
its central S-orbit to #~'(b;). Here, V; will bz considered as a manifold with
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the Euclidean metric which is naturally induced by its construction in § 2.
Put W, =af,-V,. We can see that a Euclidean metric is induced from V;
on W; — b; by the map =-f;. In Euclidean 3-space, take the cylinder

D) = {(x,y,2)|z +9y*=1,0=<2=<8} for & > 0

where x,y, 2 are usual orthogonal coordinates. Let C* be the boundary curve
in D(8,) defined by =z = 0. Then there are neighborhoods U; of &; and homeo-
morphisms A, of D(8,) into B, which satisfy the following conditions :

a) U; © W, where Uj is the closure in B of Uj

b) heC* = B

¢) The compact subsets U,,..., Uy, Hy,..., He(H, = h*D(8,)) do not in-
tersect with one another.

Here if we choose a suitable 8,(0 < 8, < §,), we can find an open set' of
B containing

W=U,—-b)U...UU,—4,)UH U...U Hi,
(Hi = hyDX(8,), using h, above)
and having a Euclidean metric, which leaves all 8, to be closed geodesics and

which on each U; — &; coincides with that of W,—b; induced from V. Let us
give B, except the subset {b;|j = 1,2,-:-, jo}, a differentiable Riemannian metric
which on W coincides with the Euclidean metric above. This is possible by
theorems (pp. 25, 55) in [6]. Hence B° becomes a differentiable Riemannian
manifold. So by the same manner as A) w2 can introduce onto V° the differen-
tiable Riemannian metric which takes the same form as (6.1). By regarding
3) of our theorem, this metric on V° will be concordantly extended over V.
The metric thus extended becomes a complete differentiable Riemannian metric,
since V is compact, and a metric which is required over V.

12) This need not be connected.
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