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1. Introduction. In a 3-dimensional differentiable manifold over which
a direction field is given, we shall consider a necessary and sufficient condition
for the existence of a complete Riemannian metric which leaves the field to be
a parallel field. Our purpose is to find this condition from the global structure
of the manifold related with the integral curves of the field. We first treat of
the structure of a 3-dimensionaΓ complete Riemannian manifold over which a
parallel field of directions is given. The major part (§3 — 6) of this paper is devoted
to it and the main result will be seen in Theorems 1—5. From the last section
we may see that a part of our purpose is at ained. See Theorems 6—8.

We shall begin with some conventions to be used throughout this paper.
By differentiability we shall always understand that of class C°°. A neighborhood
is an open set homeomorphic to a Euclidean space. An isometry is an isometric
diffeomorphism. The product operation " x " sometimes expresses the operation
of metric product. Let E be the Euclidean 1-space with the coordinate system
\t\ — °o < t < ooj and dt denotes the infinitesimal distance. Let E' be the
part \t |0 ^ t < oo\ of E. For a constant L > 0, let [L] be the part {*|0 <; t
^ L] of E. Let us suppose that indices a, oί, λ, μ take the following ranges
of values:

a = 1, 2 a = 1, 2, 3 λ, μ = 1, 2, (to °o).

Take a Riemannian manifold X. For any x, y € X, let [x, y] denote a geodesic
arc from x to y. Given a constant c and a unit tangent vector v at x, g(x, v, c)
is defined to be the geodesic arc issuing from x whose length is \c\ and whose
initial vector is v or — v according as c > 0 or < 0. Let (x, v, c) denote its
terminal point. Take a point sequence \xχ] CZ X converging to a point x € X,
in which there exists a constant N > 0 such that x =j= x\ for all λ > N. Such
a point sequence is said to be essential. Moreover corresponding to each λ > N9

take a vector vλ, such that g(x, vx, ex) for suitable c\ > 0 becomes a minimizing
geodesic from x to xλ. If there is the vector v at x such that vλ -» v(\ -> oo\
the unit vector v and the vector space generated from v are called the tangential
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vector and the tangential straight line of {xλ\ respectively. If there are two

subsequences of the sequence \xλ\ with tangential vectors w, — w respectively

and there is no subsequence having other vector as tangential vector, the vector

space generated from w is also called the tangential straight line of \xχ\. In

the case dim X = 2, take an isometry J of X onto itself leaving a point x € X
fixed. J induces the congruent transformation in the Euclidean vector space at
x tangent to X. Under a suitable frame it is represented by

0\ /cos θ — sin θ\/I ϋ\ /cos υ — sin 0\

H) - 1/ Vsin0 COS0/

where 0 ^ θ <Ξ TΓ. According to these matrices, J is said to be a symmetry or

a rotation at .r. The 0 is called the rotation angle.

Here we shall show two lemmas, without proof. Let X, Y be 2-dimensional

connected complete differentiable Riemannian manifolds. First suppose that there

is given a sequence \Jχ\ of isometries of X onto Y. For a point α:0 € X, let
i^0 be a 2-frame at Λ:0 tangent to X. Put yx = Jλ(x0) and Gλ~Jλ FQ. If y\->y0

and Gλ -» G0(λ -* °o) where Go is a frame at yQ € Y, then we have

LEMMA I. I. There exists the isometry J of X onto Y such that J(x0)
= y0 and J-FQ = Go ([3], p. 404 [5], p. 93).

The isometry J is called the limit of \Jχ}.

Next, suppose in X that all of the rotations at x0 € X form 1-dimensional
torus group. We denote this transformation group by G. Then the following
lemma seems to be already known.

LEMMA 1.2. X is homeomorphic onto Euclidean or elliptic or spherical 2-
space, according as the cut-locus for xQ is empty or is composed of more than
one point or consists of one point alone1*. Moreover by changing on X its
Riemannian metric alone, it is possible to let X become Euclidean or elliptic
or spherical 2-space according to the respective case above, so that G is the
group of rotations there, too.

2. 5-manifold. Let V be an rc-dimensional connected Hausdorff differen-
tiable manifold over which a differentiable field of directions is given. So, to
each point x € V there is assigned the direction, i.e., the oriented straight line,
tangent to V at x where all of the directions form a differentiable field. This field is
called the S-field of V and such a manifold V an ^-dimensional S-manifold.
Through each point x € V there passes a maximal integral curve of the S-field.

1) Elliptic space and spherical space mean the ones which are Riemannian spaces with
constant positive curvature. For the definition of cut-loci, see [7], p. 702.
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Let S(x) denote it, and S(x) is called the S-σrbit passing through x € V. By
the orientations of the S-orbits we understand what are concordant with the
S-field.

In V suppose that there exists a connected open submanifold V° which
satisfies the following conditions:

1) V° is a union of S-orbits and dense in V
2) V° is a maximal subspace which becomes * a differentiate principal

bundle, where each fibre is an S-orbit and the standard fibre is 1-dimensional
connected Lie group.2)

Then V is said to be the almost principal S-bundle with kernel V°. In
this case if V = V°, V is simply said to be a principal S-bundle.

In two 5-manifolds Vl9 V2 of the same dimension, an S-diffeomorphism of
Vι into V2 is a diffeomorphism of Vx into V2 which carries S-orbits to S-orbits.

Let D be the part in the Euclidean 3-space defined by x2 + y2 < 1 and

0 <̂  z <Ξ I? where r, 3;, z denote usual orthogonal coordinates. Take a constant

0(0 < θ rg 7r) such that 7r/0 = rational number. In D, identify (x,y, l) with

(x cos 0 — 3/ sin θ, xsinθ + y cos 0, 0) for all x, y. The manifold thus obtained

is regarded as an S-manifold where each 5-orbit is locally defined by x = const.,

y = const. Such a 3-dimensional 5-manifold is called an C^manifold. Again in

D, identify (x,y, 1) with (x, — y,0) for all x, y. Then, just as defined above,

we obtain a 3-dimensional S-manifold. This is called a C2-manifold. In each of

them, the 5-orbit passing through (0, 0, 0) is called its central S-orbit.

3. i?5-manifold. Let M be an ^-dimensional connected complete diffe-

rentiable Riemannian manifold (n > l) over which a parallel field of directions

is given. M is also regarded as an 5-manifold whose *S-field is the parallel

field. Accordingly, we shall call the parallel field the S-field of M. Thus iS-orbit,

S(x) (x € M) etc. are defined under the same sense as § 2. Every <S-orbit is a
geodesic of M. Take the field of {n — l)-dimensional tangent vector subspaces
which is orthogonal to the S-field at each point of M. This field is called the
R-field of M. The i?-field becomes a parallel field over M and hence involutive
(as distribution). So, through any x € M there passes its maximal integral
manifold. We call this manifold with the Riemannian metric induced from M
an R-orbit of M. Let R(x) denote it. Such a manifold M is called an w-dimen-
sional RS-manifoldP In M, the following fact is well-known : At a point x € M

there exists an admissible coordinate system (xβ)(β= 1,2, , n) in which the

metric is expressed by the form completely decomposed as

2) By the word "maximal" it is meant that there are no subspaces, ZDVQ, =j=V°, which
have the same property. The differentiability of the principal bundle must be concordant
with that of V.

3) This paper is closely related with [2], but our ftS-manifolds are slightly distinct from
those of [2].
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ds2 =gbc(x\ ,xn-')dχhdχc + (dxnY

(b,c= 1,2, ,n- 1)

and the equation xn = const, expresses a part of an i?-orbit. Such a coordinate
system is called a reduced coordinate system. Moreover let us recall that each
i?-orbit is totally geodesic and complete as Riemannian manifold.

From now on let d{x) denote the unit tangent vector at x € M which ex-
presses the direction through x in the -S-field. For any points x, y of an R-oήήt,
let dR(x, y) denote the length of a minimizing geodesic in the i?-orbit from x to
y. Take any x0 € M. Let I(x0) denote the set R(x0) Π S(xQ). Let TR(x0) denote
the Euclidean (n — l)-space tangent to R(x0) at x0. An R-neighborhood of x0

is a neighborhood in i?(xo) K> for a constant c > 0, a part {x|x € i?Gr0),
dR(x0, x) < c\ can be covered by a normal coordinate system in R(x0) with
center α o, it is called a normal R-neighborhood of Λ:0 and is denoted by NR(XQ c).
Then, the constant c is said to be a normal R-radius at :r0. Take an i?-orbit
R of M. That M is of one of the following types I—III means that for suitable
L, J, there is an isometry of M onto the corresponding Riemannian manifold
which maps each i?-orbit onto t = const, (t € E or [X]).

T ^ ^ / : The Riemannian manifold R X E.
Type II: The Riemannian manifold constructed from R X [L] by identi-

fying Or, L) with (x, 0) for all x € R.
Provided that there exists a non-trivial isometry J of R onto itself, we define
Type III: The Riemannian manifold constructed from R X [L] by iden-

tifying Or, L) with (J"Gr), 0) for all x € R.
Again take any x0 € M. we shall express S(x0) by x(s) (— °° < 5 < oo)

where :r0 = #(0) and s denotes arc-length. If S(x0) is closed, it represents S(x0)
many times. Let u0 be a unit vector at xQ tangent to R(x0) and let c be a
constant. Now displace u0 parallelly along the curve x(s). Corresponding to each
s} we get the vector u(s) at x(s) tangent to R(x(s)). Hence g(x(s), u(s\ c) c
R(x(s)). Put z0 = (x0, u0, c).

LEMMA 3.1. The curve (x(s),u(s\c) (— °o < s < oo) represents S(z0)
and the parameter s plays the role of the arc-length in S(z0), too ([2], p. 333).

For an i?-orbit R and an S-orbit S, we have

LEMMA 3. 2. The set R Π S is non-empty and at most countable ([2],
p. 333).

For any x0 € M and a constant £, we have

LEMMA 3.3. The set \(x,d(x), c)\x € i?0ro)} forms R(y0) where y0 =
(xo, d(x0), c), and the map
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/ : R(x0) -* R(yo) defined by f(x) = (x, d(x), c)

is an onίo-isometry ([2], p. 334).

Such a map is called the R-map with respet to a geodesic arc g(x0, d(x0), c).
If the topology of an i?-orbit coincides with the relative one induced from

M, then this holds also good for other R- orbit and we have

LEMMA 3. 4. M is of one of types 7--777 ([2], p. 335).

Next, take two RS-manifolds Ml9 M2 of the same dimension. An S-difίeo-
morphism of Mx onto M2 which carries i?-orbits to i?-orbits, is called an RS-
dijfeornorphism. A 2-dimensional RS-maxήίolά is called an RS-torus if its un-
derlying manifold is a torus. This is a Euclidean space form.4) Let X be an
RS-torus whose /S-orbits are all non-closed, and let Sz be any one of its A -̂orbits.
When we regard the Euclidean space form X X E as an i^-manifold where
each *S-orbit is defined by (Sz9 i) for fixed t € E9 such a 3-dimensional RS-
manifold is called an Ax-manifold. Let J be an isometry of Xonto itself which
is an i?S-diffeomorphism preserving the orientations of the *S-orbits. In Xx[L],
identify (x, L) with (J(x), 0) for all x € X. When we regard the Euclidean
space form thus obtained as an i?5-manifold where each *S-orbit is defined by
(Sz, t) for fixed t € [L], such a 3-dimensional i?5-manifold is called an A2-
manifold. Let Jλ be an involutive isometry of X onto itself, having no fixed
point, which is an i?όf-diffeomorphism.5) Let Xi be the Euclidean space form
obtained by identifying x € X with Jx(x) for all x € X. Xx is regarded as an
RS-torus whose *S-orbits are those induced from the iS-orbits of X by the iden-
tification. Its 5-orbits are all non-closed.fi) Let Sχx be any one of them. In
X x E\ identify (x, 0) with (Jx(x)9 0) for all x € X. When we regard the
Euclidean space form thus obtained as an ΛS-manifold whose iS-orbits are
defined by (SXι, 0), (SXi t) for fixed t (4= 0) € E', such a 3-dimensional RS-
manifold is called an A3-manifold. Furthermore take an involutive isometry J2

of X onto itself, having the same property as JXP By the same manner as
the construction of Xx, we obtain the RS-torus X2 if we use J2 instead of Jx.
Let Sχt ba any one of its £-orbits. In X x [IJ], identify (x, 0) with (Jχ(x), 0)
and (xy L) with (J2(x), L) for all x € X. When we regard the Euclidean space
form thus obtained as an RS-manifold whose 5-orbits are defined by (SXl, 0),
(Sz2, L), (Sz, t) for fixed I (4= 0, L) € [L], such a 3-dimensional i?£-manifold is
called an A4-manifold. Let Y be Euclidean, elliptic, or spherical 2-space. Take

4) Space form always means connected complete Riemannian manifold of constant cur-
vature.

5) That the map Jλ is involutive means that Jι(J1(x))=x for all xξX. We can see that
Jx preserves the orientations of the ΛS-orbits.

6) Note that X is a double covering manifold of Xλ.
7) Jx and J2 may be the same one. Such a note will be omitted hereafter.
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a rotation J of Y at a point x0 € Y, whose rotation angle θ satisfies π/θ =
irrational number. In Y X [L], identify (x, L) with (J(x), 0) for all .z € Y.
When we regard the Riemannian manifold thus obtained as an i?5-manifold
where each i?-orbit is defined by ί = const, (t € [X]), such a 3-dimensional
RS-manifold is called a β f or a B2- or a Bs-manifold according as Y is Euclidean
or elliptic or spherical. Finally, suppose that Y is spherical. Let Lo be the half
of the length of closed geodesic on Y. Let u be any tangent unit vector at x0.
In Y X [L], identify ((#<>, w, 5), L) with (Gr0, J w, Lo — s), 0) for all u and
5 (0 :g s <̂  Lo). When we regard the Riemannian manifold thus obtained as an
i?5-manifold where each i?-orbit is defined by t = const, (t € [X]), such a 3-
dimensional .ftS-manifold is called a B4-manifold.

4. 3-dimensional i^S'-manifold whose iS-orbits are all non-closed. Let
M be such an ΛiS-manifold throughout this section.

HYPOTHESIS I. There is a point z0 € M which is not a limit point of
I(z0) relative to R(z0).

Then we have

LEMMA 4. 1. Any point x € M is not a limit point of I(x) relative to
R{x) and M becomes a fibre bundle where each fibre is an S-orbit ([2], p. 342).

THEOREM 1. In a 3-dimensional RS-manifold M, suppose that all the
S-orbits are non-closed and that M satisfies Hypothesis I. Then, M is reduced
to a principal S-bundle and the R-field defines a connection^ Furthermore M
is S-diffeomorphic onto an RS-manifold of type I.

As M becomes a fibre bundle by Lemma 4. 1, we denote its base space by
B. Let 7r: M-+B bs the projection. Over B, a complete differentiate Rieman-
nian metric is naturally induced from M by iτ. So we treat B as the Riemannian
manifold. For any b0 € B there is a neighborhood U of bQ and a coordinate
function

φ : U X E -> M where φ(b, E) = m--\b) for each b € U.

Hence, for the same U we can find an into-isometry

ψ: U x E->M where ψ(b, E) = ir~\b) for each b € U,

so that ψ(U, 0) is an i^-neighbDrhood and the orientation of E corresponds to
that of each 5-orbit by ψ. By Lemma 3. 3 we can take such ψ as coordinate
function. Under such coordinate functions the former part of our theorem is
easily verified. Here the principal /S-bundle M has a differentiable cross-section,
its fibre being solid. So the latter part is also true.

8) For the definition of connections, see [l],p.431.
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HYPOTHESIS II. Every point z € M is a limit point of I(z) relative to

This is assumed for M from here to the last of this section. For a subset
W of an iί-orbit, let W denote its closure relative to the i?-orbit. If a sequence

is composed of points of the same i?-orbit (or frames tangent to the same i?-orbit),

its convergency is always treated relative to the i?-orbit. An R-isometry is an

isometry of an Λ-orbit R onto an i£-orbit R . If it is the limit of a sequence

of i?-maps of R onto R', it is said to be canonical. So all of i?-maps are

canonical i?-isometries.9) For two points x, y on an S-orbit of M, let S[x,y~\

denote the subarc of the <S-orbit from x to y. An i?-frame F at x € M is an
orthonormal 2-frame at x tangent to R(x) and usually is denoted by (x, F).

Take a point x0 € M. An (xo)-sequence is a point sequence which is a subset
of I(x0). For an (x0)-sequence \xx\ and an i?-frame Fo at xθ9 if an jR-frame

Fλ at X\ is the image of Fo by the i?-map with respect to the geodesic arc

S[x0, Xx], then the sequence {(xλ, Fλ)} is called an (xQ, F0)-sequence and \xχ\

is called its base sequence. If \xλ\ is essential, the sequence \(xχ, Fλ)} is said

to be base-essential.10) That a normal i?-radius c at x0 is small means that

there is a normal Λ-radius at xQ greater than c. Give a straight line I passing

through Xo and tangent to R(x0), an angle 0(0 < θ <̂  τr/8), and a small normal

i?-radius c at x0. Let X[Λ:0, /, θ, c] denote the part of R(x0) which consists of

all x € NE^XO c) such that an angle between / and [x0, x] cz NR(x0 c) is not

greater than θ. This closed region is called an X-region at xo It consists of

two sectors having x0 alone as common, each of which is called its A-region.

Let I[x0 c] denote I(xQ) Π NR(x0 c).

Take an i?-orbit R of M and a point x0 € R. Let Fo be an i?-frame at

x0. If 3>0 ^ I(xo), then we have

LEMMA 4. 2. 1) I(x0) = I(3/0) 2) There exists a canonical R-isometry

J of R onto itself which maps x0 to y0, and the inverse map J~ι also is a

canonical R-isometry.

If y0 € I(xQ\ it is evident.

First we prove 1). Let \xχ\ be an (.^-sequence converging to y0. Take

any y € I(yo). Let J be the i?-map with respect to S[_yQ,y']. Put xx — 'J(xλ).

Then \xχ\ is an 0ro)-sequence converging toy. Hence y^I{xQ). So, I(y0)CZl(χ0).

Next take any x € I(x0) and let Jx be the i?-map with respect to S[xλ, x\ Put

yx = Jx(yo). Then {yλ\ becomes a (y0)-sequence and dR(y0, xx) = ^(3/λ, x). So,

9) For, an R-map is considered as the limit of the sequence whose terms are all the same
JR-map.

10) Then this frame sequence need not converge, though {xx} must converge.



ON THE PARALLELISABILITY UNDER RIEMANNIAN METRICS 31

yx -> x (λ -> 00). Hence, x € I(y0) and 7(^0) C I(y0). Consequently l) is proved.
To prove 2), take an (x0, F0)-sequence \(xλ, Fλ)} converging to an i?-frame

at y0. This R-ίrame we denote by (JΌ, F ) . Let J λ be the R-map with respect

to S[xo,xλ]. Then Jχ-(x0, Fo) = (xλ, Fλ). By Lemma 1. 1, the limit J of {Jχ\

does exist and J (x0, Fo) = (j/0, F ) . Obviously J is a canonical .R-isometry which

is desired. And J1 also is a canonical i?-isometry, being the limit of {Jx'1].

LEMMA 4. 3. There exists a base-essential (x0, F^-sequence converging to

(*o, FO).

If we choose a suitable frame F at ΛΓ0, we can find a base-essential (x0, Fo)~

sequence {(xx, Fλ)} converging to (x0, F). Let J\ be the i?-map with respect to

S[xλ, xχ+ι~]. Put (yλ, Gx) = Jχ'(x0, Fo). Then, {(yx, Gλ)\ becomes a base-essential

(xo> ί1

0)-sequence converging to (x0, Fo), since S(x0) is non-closed.

If there is an (x0, i7Ό)-sequence converging to (x0, Fo) whose base sequence

has tangential vector v0, then we have

LEMMA 4. 4. There exists an (x0, F0)~sequence converging to (x0, Fo) whose

base sequence has — v0 as its tangential vector.

Let {(^λ, Fλ)\ be an (x0, F0)-sequence converging to (x0, Fo) whose base

sequence has tangential vector v0. Let Jx be the i?-map with respect to S\_xχ, Xo'].

Put (yx, Gλ) = Jχ-(xo, Fo). Then the sequence {(yx, Gχ)\ becomes a base-essential

Oro, ί1

0)-sequence converging to (x0, Fo). We shall prove that the base sequence

\yx\ has — v0 as its tangential vector. Let gx be a minimizing geodesic from

x0 to xx. Put hx = Jχ-gχ. Let (xl, Ft) and (3;*, G*) be the developements in

TR(xo) of (xx, Fλ) and (yλ, Gλ) along gx and hi1 respectively. Let J* be the

congruent transformation in TR(x0) which carries (xt, Fx) to (x0, Fo). Then,

Jχ'(xo,Fo) =(3/*, G*). Now, for sufficiently large λ, denote the points x% y* by

Xo + dx0, Xo + 8x0 and the frames Fo, G* by (ea), (ea + δ^α) respectively. Put

dxo = ωaea. Then, — Bx0 = ωa(ea + Bea) Neglecting its higher order, we have

δ^o = ~ coaea> This implies that \yχ\ has — v0 as its tangential vector. So our

lemma is true.

If there is an (^0)"sequence converging to x0 which has tangential vector

v0, then we have

LEMMA 4.5. There exists an (xo)-sequence converging to x0 which has

— VQ as its tangential vector.

For a suitable i?-frame F at x0, there exists an (xθ9 F0)-sequence {(xx, Fλ)\

converging to (xQ, F) whose base sequence has v0 as its tangential vector. If

Fo = F, our lemma follows from Lemma 4. 4. So suppose that F o =j= F. Let J λ μ

be the i?-map with respect to S[xχ, x^. By Lemma 1. 1, for fixed λ there is

the limit Jλ of [JχΛμ~ 1,2, j . This is a canonical i?-isometry such that
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M*χ, Fλ) = (JΓO, F). Put 0yλ> Gλ) = Λ U , F) . Then, (yλ. G λ ) - > U , F ) (λ-> « ) ,

and by the same way as in the proof of Lemma 4.4, it is shown that the

sequence \yλ\ has — v0 as its tangential vector. Moreover, when λ is again

fixed, for any S > 0 we can find Nλ > 0 such that

dR{xμ, χo) < S/2, dR(Jλμ(x0), ΛOo)) < 5/2 for all μ > iVλ.

Here dR{Jλμ{xμ), Jλμ(x0)) <S/2. So we have dR{Jλμ{xμ), yx) < £. As Jλμ(xμ) € J(JJ0)
for all μ, we can find an (^o)-sequence converging to yλ. From these facts our

lemma is verified.

If there is an essential Gro)-sequence converging to x0 which has not

tangential straight line, then we have

LEMMA 4. 6. I(x0) is dense in R.

By Lemma 4. 5, we can find O0>sequences Z4(£ = 1, 2, 3, 4) converging to

Xo and having tangential vectors vl9 v2, — vu — v2 respectively such that

0 < Viv2 < 7r, where vxv2 denotes the angle between vί9 v2. Now suppose that

I(xo) is not dense in R. Take y0 € i? — ϊζrϊi). There is α;' € /(x0) such that

, I(XQ)). Put c = ίί«Cyo, x\ Then c > 0 and

(4. 1) \y\y e R, dR(y0,y) < c\ Π /(ΛΓ0) - 0.

On the other hand, by Lemma 4.2 we can find a canonical i?-isometry J

which maps x0 to x. So there is a sequence \Jχ\ of i?-maps which has J as

its limit. As JxZt C /(#<)), we have JZt d /(ΛΓ0). The sequences J Zi converge

to x and have tangential vectors J vu J-v2, — (J ^i), — (Jmv2) respectively.

Here (J ViX«7 v2) = τ>iϋ2- These properties of the sequences J Zf are contrary

to (4.1). So, I(xo) must be dense in R.

Take Xι, y0 € 7Gr0). Let J, 'J be the i?-maps with respect to AS[>O, Λil

S[xo,yo] respectively. Put yλ = 'J(xι).

LEMMA 4.7. 'J J=J 'J, and dR(x0, xθ = dilyo,yi), d^Xo^o) — d^x^yi).

We can find constants a, b such that S[x0, Xι~\ = s(xo, ^(^o), ^) and AS[aro,̂ o]

= g(xo,d(xQ),b). Then ' J J is the i?-map with respect to g(x0, d(x0), a + b).

Similarly, J 'J is the i?-map with respect to g(x0, d(x0), b + a). So J J = J J.

On the other hand, we have

Ί(χ0) = yo, 7 U 0 = ^ , J(x0) = xu J(yo) = 'J J-'J'Kyo) = 3Ί

From this, the latter part of our lemma follows.

Under Hypothesis II, let us assume

HYPOTHESIS Π lβ For a point z0 € M, all the essential (z0)-sequences

converging to z0 have the same tangential straight line.
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LEMMA 4. 8. For every x € M, all the essential (x)-sequences converging
to x have the same tangential straight line.

To prove this, suppose that for a point x0 € R(z0) there exists an essential
Gro)-sequence converging to x0 which has not tangential straight line. Then,
I(xo) = R(z0) by Lemma 4. 6 and so I(z0) = R(z0) by Lemma 4. 2. This con-
tradicts with Hypothesis Πj. So, for every x € R(z0), all the essential (x)-
sequences converging to x have the same tangential straight line. Therefore,
by Lemma 3. 3 our lemma is easily verified.

Take an 7?-orbit R of M and a point x0 € R. Let l0 be the tangential
straight line of all the essential (x0)-sequences converging to x0. Take a constant
θ0 such that 0 < θ0 <L 7r/8. The following lemma is now evident:

LEMMA 4. 9. At Xo there is a small normal R-radius c0 such that

X[xo> h, 0o, c] 13 I[x01 c] for 0 < c <̂  Co.

Now we take any y € I(x0). As there is by Lemma 4. 2 a canonical R-
isometry J which maps x0 to y, c0 is also regarded as a small normal 7?-radius
at y. Put / = J /o Then, for the same β0, c, we have

LEMMA 4.10. 1) J'I[xo c] = I[y c] 2) X[y, Z, θ0, c] 3 I[y c].

Since J is the limit of a sequence of i?-maps, we denote the sequence by
\Jx\. Put xx =Jλ(x0). Then, x\ € I(x0), and xλ->y(\-> oo). Furthermore

c] = /Uo) Π iV^ λ *) = /(^) Π N£xλ c).

Hence J 7[x0 c] = 7(3;) Π N^y c) = 7[^ c].

I.e., 1) holds good. Next, by Lemma 4.9,

By 1), X[y,/, ί0, c] 3 I[y c\

So, 2) also holds good.

Let Δ be a Δ-region of the X-region X[x0, lθ9 θ0, c]. Let v0 be the unit
vector at x0 tangent to Δ and generating l0. Put h[x0 c] = Δ fl I[x0 ', c].

LEMMA 4. 11. There exists a constant L(0 < L ^ c0) such that the map

(4. 2) / : 7ΔDr0 L] -> [L] defined by f(x) = J β U 0 , x)

where x € 7Δ[x0 L\ becomes onto and one-to-one. The inverse map f'1 is
continuous as a map of [L~] into R{ = i?(^0))

First suppose that for any L (0 < L <; ̂ 0) the map / of (4. 2) is not one-
to-one (into). Then we can find two essential sequences \yλ], {zλ} converging to
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x0 such that

yλ, zλ € IA[x0 co/\], d^xo,yx) = di£xo,zχ), yx=¥ zλ.

By Lemma 4. 9, they have the same tangential vector v0. Hence, there is an
integer k > 0 such that in a geodesic triangle xoykzk constructed from minimi-
zing geodesies,

(4. 3) 7r/4 < the angle xoykzk < 37r/4,

the length of the side \_yk9 zk~\ < c0.

On the other hand, if J is a canonical i?-isometry which maps x0 to yk9 then

X[yk, JΊo, θ0, Co] => I[yk co~].

by Lemma 4.10. So, x0, zk € X[yk, JΊ0, θθ9 c0]. However, 0 < θ0 ^ 7r/8. This
is contrary to (4. 3). Accordingly we can find a constant L(0 < L ^c0) such
that the map / of (4. 2) becomes one-to-one (into).

Next suppose that for our L the map f is not onto. Since I±[x01 L] is
closed in R, we can find y0 € IA[x0 L], a, 6 (0 <j a < a + £ < L) such that

(4. 4) /(j/o) = Λ, /Δ[ΛΓO L] Π (iV«(a:o a + 5) - iV^o α)) = 0.

If we take a canonical i?-isometry Jo which maps x0 to yθ9 then

«/o /o, *o, Co] => ί[yo, Co].

So from Lemmas 4.5 and 4.8 each Δ-region of X[y0, JoΊo, θ0, c0] contains an
essential (^-sequence converging to y0. Here, any (j/0)-sequence is a subset of
I(x0) and X[y0, Jo'h, #o> cQ] contains the minimizing geodesic [^0,̂ 0]- This is
contrary to (4. 4), since 0 < θ0 <̂  7r/8. Accordingly the map / must be onto.
So the former part of our lemma has been proved.

To prove the latter part, suppose that for the same L, the inverse map
Z " 1 : [L] -> R is not continuous at to(θ <:t0^ L). Put y0 = f'KtQ\ We can
choose a sequence \tχ}9 0 < tλ < L, converging to ί0 such that the sequence
\yλ\, yx =f~Ktχ), converges to a point y( 4= 3̂ 0). So, dd^x^y) = ί0 and y €
IA[x0 L]. Hence /(3/0) = Ay) = ίo- As this contradicts with the fact that / is
one-to-one, the map f~λ must be continuous. This completes the proof of our
lemma.

LEMMA 4.12. The arc C: ^ s f 1 ^ ) (0 < t ^ L) is simple and of
class C1 with respect to t.

By Lemma 4. 11, it is obvious that C is simple. So we prove that C is of
class C1. For each t(0 <i t <; L), let Jt denote a canonical i?-isometry which
maps x0 to the point g(t). Put /(ί) = JtlQ. By Lemma 4. 10, l(t) is tangent to
C.
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Given any 0(0 < θ <; τr/8), by Lemma 4. 9 there is c > 0 such that
χ[ff(t)yKt)>θ>c] => I[ff(t); c]. Moreover we can find δ > 0 such that d^g(t),
g(t + at)) < c for all At satisfying | Δ t \ < S (0 ̂  t + A i < L). Now take
a canonical i?-isometry J which maps g(t) to g(t + Δ^). Then, JΊ{t) = Z(ί +
Δ ί), and by Lemma 4.10,

X[g(t + At), lit + At), θ, c] Z) /[fl</ + Δ0; d.

Hence X [g(t + At), lit \ A t), θ, c] contains the minimizing geodesic [g(t), g(t
+ Δ £)]. So it follows that / (t) can not construct an angle greater than 2Θ
with the developement of l(t + At) in TR(g(t)) along [g(t\ g(t + *)]. This
shows that l(t) (0 ̂ t <^ L) is continuous.

Accordingly, for each t we can plant the unit vector v (t) generating / (t)
a.t the point g(t), so that v (0) = v0 and v(f) is continuous over 0 <J ί ίg L.
Take an angle #(/) between t (ί) and the geodesic circle with center x0 passing
through g(t), which is continuous over 0 ^ t <Ξ L and satisfies 3 7r/8 ^ 0(ί) ^
5τr/8. This is possible, since

Xl<&),l(t),θo,L\ZD I{g(ί);L\

for the same θ0 as Lemma 4.9 and so X[g(t), l(t), θθ9 L] contains the minimizing
geodesic [_xQ,g{f)\

Now, cover N^x0 L) by an admissible coordinate system (χa). Let (x\t))
denote g (t). Let Δ t* denote the length of a minimizing geodesic [g (t), g(t +
Δ i)\ which has positive or negative sign according as Δ t > 0 or < 0. Then
we have

dxa _ l i m x\t + At)- x\t) - l i m *(t + Δ Q - x\t) At*
dt At At* At

__ v\t)
sin θ(t)

where (va (t)) denotes v if). Hence we can see that C is of class C1. So our
lemma holds good.

By Lemma 4.12, the arc C is also represented by the arc x(s) (0 < s ^
L*; x(0) = Xo) of class C1 where L̂ " is the length of C and the parameter s
denotes arc-length. For each s let v(s) denote the tangent (unit) vector of the
arc x(s) at the point x(s). So, t^O) = v0. Now, if Js is a canonical i?-isometry
which maps x0 to ^(5), then we have

LEMMA 4. 13. Js'Vo = τ<5).

Provided that Js is an i?-map, suppose that Js- v0 =4= ^K )̂. Then, 5 =4= 0 and
Js v0 must be — tK )̂. Hence Js carries the subarc x^x (s) of C to the subarc
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x (s) xQ of C. The point x(s/2) € C becomes invariant by Js. Lemma 3.3 shows

that the S-orbit S (x(s/2)) becomes closed. This is obviously a contradiction. So

if Js is an i?-map, our lemma is true. Next, we consider the case where Js is

not i?-map. We can find a sequence \Jλ\ of i?-maps, which has Js as its limit.

For sufficiently large λ we have Jx (xo) ^ C7 and Jχ(x0) -* x (s) (λ -> °°). So by

using the above result, we can see that in this case, too, our lemma is true.

On the other hand, JΓ1 also is a canonical i?-isometry which maps x(s) to

xQ by Lemma 4. 2 and JiJ-v(s) = vQ. By this and Lemma 4. 13, the arc C may

be extended for infinitely large (absolute) values of its parameter s (arc-length).

The curve x(s) (— oo< s <°°;x(θ) = x0) thus obtained is called the cluster

curve passing through x0. Let Cl (x0) denote the curve. Let v (s) denote the

tangent (unit) vector of the curve Cl (x0) : x(s). For each s, we plant at the

point x(s) an i?-frame F(s) = (ea(s)) where ex(s) = v(s), so that F(s) becomes

continuous with respect to s.

LEMMA 4. 14. 1) For any s\ s" (— °o < s', s" < °o) there exists a canonical

R'isometry J which maps (x(s')9 F(s)) to (x(s"), F(s")) 2) J maps the curve

Cl(x0) to itself.

To prove 1), put x = x(s'\ F' = F{s). By Lemma 4. 3, there are base-

essential (x, F') -sequences converging to (x'9 F). Among them, there is a one

which is represented by {(x(s\), F(sλ))} where Sx -> s' (λ -> «>). For fixed λ, put

Δ̂ λ = sλ — s\ Let Jx denote the i?-map with respect to S[x\ x (sλ)]. So, Jv(x9

F') = {x{s + Δ sx), F(s + Asλ)). Then, for any integer m, (Jλ)
m is also the

i?-map which maps (x, F*) to (x (s + m Δ Sx), F(s' + m Δsλ)). This implies

the existence of an (x\ F')-sequence converging to (x (s"), F(s")). I.e., 1) holds

good. 2) follows from Lemma 4. 10.

LEMMA 4. 15. The cluster curve x(s) (— °o< 5 <°o) zs α simple differ-

entiable curve with constant curvature in R(= R(x0)).

Let (x*(s), F*(s)) be the developement of (Λ<5), F(5)) on TR(xQ) along

the subarc of the curve x(s) from 5 = 0 to s. For any s', s" ( — °°<s\ 5"<°o),

take the congruent transformation J* in TR(XQ) which maps (x*(s')y F*(s))

to (x*(s"\ F*(s")). By Lemma 4.14, J^ leaves the continuous field {(x* (s),

F*(s))\ — oo< 5 <cx)} of frames fixed. This shows that the curve x*(s)(— °°

< 5 <oo) is a circle or a straight line. Accordingly the curve x(s)(— oo< 5 <

00) is differentiate and has constant curvature. That it is simple is obvious

from Lemmas 4. 12 and 4. 14.

LEMMA 4. 16. 1) Cl(x0) = Cl(y) for any y € Cl (x0); 2) There exists a

constant L > 0 such that the set \x \ ddlCl (x0), x) <L\ Π I(xo) coincides with

Cl (x0) as subset; 3) I(x0) consists of some cluster cμrves.
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1) follows Lemma 4 2 and the fact that the cluster curve passing through

y is only one. As the constant L in 2), take L in Lemma 4.11. Then 2) is

verified by Lemma 4. 14. 3) is now evident.

Take a constant c. Let us put y(s) = (x(s), e2(s), c), using the cluster curve

x(s)(— 00< s <oo), and further yQ = j/(0). The curve y(s) (—oo< 5 <oo) is

differentiable. We represent its arc-length from s = 0 to s by f(s) so that /(s)

> 0 or ^ 0 according as s > 0 or < 0, and so /(0) = 0.

LEMMA 4. 17. /(s) = >fo where k is a positive constant.

By Lemma 4. 14, d//ds = const, (ΞΞ £). Here k >̂ 0. If £ = 0, we have

jK5) = y<> for all 5. So, any i?-map which carries Cl{x0) onto itself leaves the

point yG fixed. This shows that the 5-orbit S(y0) is closed by Lemma 3. 3. I.e.,

we obtain a contradiction. Accordingly, k > 0 and so our lemma is true.

LEMMA 4.18. 1) The curve y(s) (— o o < $ < o o ) is the cluster curve

Cl(y0); 2) If Cl(x0) and Cl(y0) are not the same curve, they have no common

point, 3) In R(= R(x0)), all the geodesies orthogonal to Cl(x0) are also ortho-

gonal to Cl(yo) and are simply; 4) Any two of them have no common point.

For all s, y(s) € /(j>o) So 1) follows from Lemma 4.16. The other asser-
tions 2)—4) are also evident.

LEMMA 4.19. In R, any of cluster curves is an orthogonal trajectory of
the system of all geodesies orthogonal to a cluster curve, say Cl(x0).

Let a be a cluster curve in R. For a point 3/0 ^ OL, take xx € Cl(x0) such
that dR(y0, xx) = dR{yQ,Cl(x0)). This is possible by Lemma 4.16, and it is per-
mitted to assume xx = x(si) for a suitable Si Put d = dn(yo,Xi) Then y0 =
(x(Si), £2(si), £d) for £ = -f 1 or — 1 and OL is represented by (x(s), e2(s), Sd)
(— 00 < s < 00). So Lemma 4. 18 proves our lemma.

Take an S-orbit -SO of M. Let S* be the closure of So as a subset of M.

LEMMA 4. 20. 1) For any x0 € 5* the cluster curve Cl (x0) and the
S-orbit S(x0) are contained in S*; 2) S* forms a 2 dimensional differentiable
submanifold; 3) Under the Riemannian metric induced from M naturally, S*
is regarded as an RS-torus, whose R-and S orbits are cluster curves and S-
orbits of M respectively.

l) follows from Lemmas 3.3 and 4.2. To prove 2) and 3), take a neighbor-
hood U of Xo with cubical reduced coordinate system (xa) where x0 = (0,0,0).
We denote the connected subarc of Cl(x0) passing through x0 and contained in
U by x%s) (a < s <b; x%0) = 0), where a, b are constants and the parameter
s denotes arc-length. Then, x3(s) = 0 for all s. Let W denote the part of U
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defined by

(x\s\ x\s), x3) (a<s<b;- c < x3 < c)

where 2c is the breadth of the coordinate system (xa). Then, W a S* and an
arc (x\s), x\s), x3) (a < s < b) for fixed xz becomes a subarc of a cluster
curve and the parameter s denotes its arc-length. Now, let us treat W as a
coordinate neighborhood with the coordinate system (s ,x3) and together with
such coordinate neighborhoods, consider St. Then, 2) is easily shown. Moreover
under the Riemannian metric induced from M naturally, we can see that S$
becomes a Euclidean 2-space form. Here an *ί?-orbit of M contained in S*
forms a subset dense in S$. Since it is a simple non-closed geodesic, the underlying
manifold of S* must be 2-dimensional torus. Thus we can see that 3) is also true.

By Lemma 4. 20, we have an i?5-torus as the closure of an *S-orbit of M.
Such an i?5-torus is simply called an S-closure of M. In an ^-closure S*,
take a normal vector v0 of S* at x0 € S*, that is a unit vector orthogonal
to S*. This is tangent to R(x0) and orthogonal to Cl(x0). Let xλ be any point
of St. Let a(f) (0 ^ t ^ 1) be a curve in S* from x0 = < 0 ) to xx = Λ(1). For
each t, take the normal vector v(t) of 5* at the point oi{t\ so that v(0) = v0

and it becomes continuous over 0 ^ t ^ 1. If S* is an 5-closure, then we
have

LEMMA 4. 21. 1) There exists a constant c such that (x0, vθ9 c) € S*; 2)
There exists a neighborhood U in S$ of x0 such that, if \u(x)\x € U\ is
the continuous field of normal vectors over U where u(x0) = v0, then (x,
u(x), c) € S* for all x € U and the map

f:U-+S* defined by f(x) = (x, u{x\ c)

becomes an into diffeomorphism which carries the parts in U of R- and S-orbits
of 5? on R-and S-orbits of S* respectively 3) (μ(t), v(t\ c) € S* for 0 <; t ^ 1.

By Lemma 3. 2, we can take a point y € S* Π R(xo) The cluster curve
Cl(y) is an orthogonal trajectory of the system of all geodesies orthogonal to
Cl(x0) by Lemma 4.19. So 1) is obvious. On the other hand, 2) is verified by
using Lemmas 3.1 and 4 .18, and 3) follows from 2).

Under the same notations let Ψ be the set of all 5 > 0, such that at
least one of two points (x0, ± v0, s) belongs to S*. If Ψ 4= 0, we put p(S*) =
g. 1. b. Ψ. If Ψ = 0, we put p(S%) =oo. So, 0 ^ p(St) ^oo. Next suppose that
So H* S*. Let O be the set of all s > 0 such that at least one of two points
Oo, ± vo, s) belongs to S*. By Lemma 4. 21, Ω 4 s 0. We put ρ(Sξ, S*) = g.l.b.
ί2. So 0.£p(So,S*)<°om By Lemma 4. 21, ρ(SS) and ρ(S$,S*) are independent
of #o.
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LEMMA 4.22. 1) p(SS) > 0. 2) If p (5?) < 00, at least one of two points
Oo, ± vo, p(S$)) belongs to S%. 3) ρ(Sξy S*) > 0. 4) At least one of two points
Gro, ±fo, P(S$>S*)) belongs to S*<

These are easily verified by using Lemmas 4. 16 and 4. 21.

THEOREM 2. In a 3-dimensional RS-manifold M, suppose that all the
S-orbits are non-closed and that M satisfies Hypotheses II and II\. Then M
is RS'diffeomorphic onto an At manifold (i = 1, 2, 3, or 4).

To prove this, we shall classify M, with regard to the 5-closures, into
the following four cases:

1) The case where all the S-closures admit continuous field of normal
vectors (over them). Take an S-closure S*. Let \v(x)\x € S*\ be a continuous
field of normal vectors. For any x0 ^ S* and L > 0, put y0 = (x0, v (x0), L).
Let S* be the 5-closure passing through y0. The map

(4. 5) / : S* -> St defined by fix) = (x, v(x), L)

is onto by Lemma 4. 21. We prove that / is one-to-one. Suppose that f{xι)
= f{x2) for Xi, x2 € S%ri 4=^2). Then, if we consider the field \v(x)\x € S*}
restricted to a curve in S* from xx to x2, we can easily see that S* does not
admit continuous field of normal vectors. This is contrary to our case. So, /
must be one-to-one. Furthermore from Lemma 4. 21, it follows that f is an
i?5-diffeomorphism. Accordingly if p(S*) =oo? M is diffeomorphic onto an Aλ-
manifold. If ρ(S*) < 00, w e have (x0, v(x0), £ρ (S*)) € S* for 6 = + 1 or - 1
by Lemma 4. 22. The map / of (4.5) for L = 8p (£*) becomes an isometry of
S* onto itself. This is verified by Lemmas 3.1 and 4.17. So, M is then RS-
diffeomorphic onto an A2-manifold.

2) The case where an 5-closure *Ŝ  only does not admit continuous field
of normal vectors. Put L = p(S*). Of course 0 < L <[oo. Let v(x) denote a
normal vector of S* at x € 5*. For each c (0 < c < L), we denote by 5? the
S-closure passing through a point Cr0, v (x0), c) where x0 € S*. In our case,
the vector v(x) is continuously displaced to — v(x) along a suitable curve in
S*, preserving to be normal vector. This and Lemma 4. 21 show that Sc con-
sists of Or, ± t>Cr), ί:) for all x € 5*. Here if (x, v{x\ c) = (x, — v(x\ c) for
x € S*9 we obtain the contradiction that Sc does not admit continuous field of
normal vectors. This is verified by using the above fact that v(x) is continu-
ously displaced to — v(x), So, (x, v(x), c) =}= (x, — v(x), c) for all x € S*. Next
if (xι, v(xι), c) = (x2,v(x2),c) for xux2 € ^ ( ^ i =f= X2), it follows that Sc does
not admit continuous field of normal vectors, too. So, (xl9 v (x\), c) =f= fej

), Γ) for any xux2 € 5 ^ ! 4= ̂ 2). These show that *S? becomes a double
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covering manifold (topologically) of S* whose covering map p is p(xe) = x,
where x € S* and xB = (x, Sv (x), c) for S = + 1, — 1. By Lemma 4. 21, the
map p carries R- and S-orbits of S* to the same ones of S* respectively. So,
the map / of Sί onto itself defined by

f(x, v(x), c) — (x, — v(x), c) for all x € 5*

becomes an involutive i?5-diffeomorphism having no fixed point. From Lemmas
3.1 and 4. 17, it follows that / is an isometry. In Sc identify {x, v(x\ c) with
Or, — v(x), c) for all x € S*. The manifold thus obtained is regarded as the
i?5-torus whose 5-orbits are induced from those of M. This ΛS-torus becomes
i?5-diffeomorphic onto S* by the natural correspondence. Furthermore it is
evident that S* is naturally i?5-diffeomorphic onto S% (0 < c < L).

Suppose that L <oo. By Lemma 4. 22 we have x'o = (xθ9 v{xQ), L) € S*.
So there exists a normal vector v(x'o) of S* such that (.Zo, ̂ (Λ:O)J ̂ ) = ^o As
t;(j;o) is continuously displaced to Ϊ (^O) along a suitable curve in S* preserving
to be normal vector, the 5-closure passing through the point (xθ9 v(x0), L/2)
does not admit continuous field of normal vectors. This contradicts with our
case. Therefore, L = oo. Hence it is proved that M is i?S-diffeomorphic onto
an ii3-manifold.

3) The case where two 5-closures S*, S* only do not admit continuous
field of normal vectors. Put L = />(£*, Sf) and take x0 € So. Let v0 be a normal
vector of 5* at ΛT0. By Lemmas 4. 21 and 4. 22, two points (J: 0, ± v0, L) belong
to iSf. For each c (0 < c<L), let *5? be the *S-closure passing through a point
(.To, v(x0), c). Just as 2), 5? becomes a double covering manifold (topologically)
of So and further of Sf. Thus it is proved that M is i?iS-diffeomorphic onto
an i44-manifold.

4) The case where three (or more) ^-closures do not admit continuous
field of normal vectors. Let Sξ, Sf, 5* be such ones. We have p(S*) == 2ρ(S*,Sf).
Similarly, μ(SS) = 2/9(5?, SS). So, K5?,5*) = p(S*0, SJ). Hence, 5* - 5*. As this
is a contradiction, our case does not occur. This completes the proof of our
theorem.

In the next place, under Hypothesis II we assume

HYPOTHESIS II2. For every point z of M there is an essential (z)-sequence
converging to z which has not tangential straight line.

Then, by Lemma 4. 6 any *S-orbit is dense in M as its subset.

THEOREM 3. In a 3-dimensional RS-manifold M, suppose that all the
S'orbits are non-closed and that M satisfies Hypotheses II and II2. Then all
the R-orbits, and so M too, are Euclidean space form.
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Let R be any i?-orbit of M. Take xQ € R. We have I(x0) = i? For any
x € I(x0), since the i?-map with respect to S [xθ9 x~] is an isometry, the curva-

ture of R at x0 is equal to that of R at x. So the curvature of R is constant

from its continuity.

Let Fo be an i?-frame at x0. By Lemma 4. 3 there is a base-essential

(xOy F0)"Sequence converging to (x0, Fo). Now take an element (xu ί\) of the

sequence which is sufficiently near to (x0, Fo). Let J be the i?-map such that

J'(x0, Fo) = (xι, Fλ). Put x2 — J(xi), X3 = J(x2)> Denote the minimizing geo-

desic joining x0 to χγ by [x0, xx\ Moreover put [xi,x2~] — J'ίxo, xΛ and [x2, X3]

= J'[xι, x2\ In the product curve [xo, Xil [xi,x2] - [x2, X3], the angle x^xxx2

is equal to the angle x1x2xs together with their orientations, (xuFι) being

sufficiently near to (x0, Fo). Let gι,g2 denote the geodesies passing through xu

x2 and bisecting the angles x0XιX2, XιX2x3 respectively. Then J-gι = g2.

First, consider the case where R is an elliptic space form. Then gι, g2

intersect each other. We have J(z) = z for the intersecting point z. So, S(z)

is closed. This is obviously a contradiction. Secondly consider the case where R

is a hyperbolic space form. We can find z0 € gι which is sufficiently near to

Xι such that

(4. 6) dR(z0, J(z0)) = dR(xu x2).

Of course J(zQ) € g2. Let us take an (x0)-sequence \zχ] converging to z0. By

Lemma 4. 7, dR(zλ, J(zλ)) = dR(xu x2). So, dR(z0, J(zQ)) — dR{xu x2). This is

contrary to (4. β). Accordingly R must be a Euclidean space form. Hence our

theorem holds good.

REMARK. Let us give a model of the JRS-manifold in Theorem 3. In a

2-dimensional torus group G there exists a element g € G such that the
subgroup generated from g forms a subset dense in G π ) . We consider G as

Euclidean space form, naturally. Let J ba the isometry of G onto itself which

is the parallel translation carrying the zero element of G to g. In G x [L],

identify Or, L) with (J(x), 0) for all x € G. The Euclidean space form thus
obtained is regarded as the i?5-manifold where each i?-orbit is defined by t =
const, (t € [L]). Then the iS-orbits are all non-closed and this i?5-manifold
satisfies Hypotheses II and II2.

5. 3-dimensional i?S-manifold among whose S-orbits there are both

of closed one and non-closed one. In such an manifold M, let M° be the

subspace which is the union of all of non-closed S-orbits.

LEMMA 5. 1. M° is a connected open submanifold of M whose closure is

11) We owe this fact to K. Masuda. It is easily proved by using Theorem 33 in [4],
p. 136.
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M, and the maximal subset of M in which each point x is a limit point of

I{x) relative to R(x) ([2], p. 344).

Take xo € M - M\ and put R = R(x0) and R° = R Π M°. R° is open

and dense in R. Let L be the length of the closed geodesic S(x0). Let J be

the i?-map with respect to g(x0, d(x0), L). Then, J leaves x0 fixed and we have

LEMMA 5. 2. J is a rotation of R at x0 and its rotation angle θ satisfies

τr/θ = irrational number. Hence all of the rotations of R at x0 form \-di-

mensional torus group.

For a normal i?-radius c at x0, we have NR(x0; c) Π R° 4= 0. Take a point

x € NR(XO; C) Π R°. Now, if J is a symmetry, then S(x) becomes closed. How-

ever, S(x) is not closed. So, J must be a rotation of R at xθ9 and its rotation

angle θ must satisfy w/θ = irrational number. Hence, the latter part of our

lemma follows from Lemma 1.1.

If R — R° consists of x0 alone, then we have

LEMMA 5. 3. R is homeomorphic onto Euclidean or elliptic 2-space.

By Lemmas 1.2 and 5. 2, R becomes homeomorphic onto Euclidean, elliptic

or spherical 2-space. However, R can not become homeomorphic onto spheri-

cal 2-space. For, if R is homeomorphic onto it, the cut-locus for x0 consists of

a point alone. Denote the point by xx. Then, J o + ^ i and J(xι) = X\. Hence

S(xι) becomes closed and so xx € R — R°. This contradicts with the assumption.
Accordingly our lemma is true.

If R — R° contains another point xu then we have

LEMMA 5.4. R — R° consists of the two points x0, Xι only and R is

homeomorphic onto spherical 2-space.

First note that, at xu too, we may take up such a rotation of R as J at

x0 and the same property as Lemma 5. 2 holds good.

1) The case where Xγ € I(xo) Let g0 be a minimizing geodesic from x0

to Xi. Denote the unit vector at x0 tangent to g0 by u0 and the length of g0

by Lo( > 0). So, Xi = (x0, u0, Lo). We displace u0 parallelly along g(x0, d(x0),

L) (= S(x0)). For each s(0<:S <LL) let u(s) be the vector at the point (x0,

d(x0), s) obtained by this displacement. By Lemma 3. 1, we have

o, d(xo\ s), u(s), Lo) € S(x0) for all s (0 fg s ^ L)

and J(xi) = Xι. Hence for any integer m, Jm(xi) = X\ and J™-g0 is a minimi-

zing geodesic from x0 to xx. Any two of the geodesies Jm-go have x0, xγ only as

common points. By Lemma 5.2, R must be homeomorphic onto spherical

2-space. And then it is easy to see that I(x0) consists of x0, xγ only.
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2) The case where xx ζj~ I(xo)- NOW suppose that JOrOΦ Xi By Lemma
3. 1, J(xι) € I{xι\ and J(xλ) € R — R°. Just as in l), I(xι) consists of two
points xγ and J(xι) only. Hence <P(xι) = xλ and <Pm(xι) = xλ for any integer
m. On the other hand, the rotation angle of J2 is 2Θ or 27r — 2Θ according as
θ < 7r/2 or > 7r/2, and ir/2θ = irrational number by Lemma 5. 2. Hence, X\
is invariant by all the rotations at x0- This contradicts with J(xι) 4 s #1. So,
JOci) = #! and fΓ'ixi) = xλ. Accordingly, as in 1), R must be homeomorphic
onto spherical 2-space.

Moreover from l) and 2), it follows directly that R — R° consists of xQyxx

only. Therefore our lemma holds good.

THEOREM 4. In a 3-dimensional RS-manifold M, suppose that among
the S-orbits there are both of closed one and non-closed one. Then M is RS-
diffeomcrphic onto a Bcmanifold (i = 1, 2, 3, or 4).

To prove this, we shall use the previous notations. By Lemma 5. 4, S(x0)
Π R consists of at most two points. So the topology of R coincides with the
relative one induced from M. This is seen by using Lemma 3. 3. Accordingly
by Lemma 3. 4, M is of type III. If R - R° consists of a point alone, M is
i?5-diffeomorphic onto a Bx~ or a -B2~manifold by Lemmas 1. 2 and 5. 3. If
R — R° consists of two points, M is iϊS'-difϊeomorphic onto a Bz- or β4-mani-
fold by Lemmas 1. 2 and 5. 4. This completes the proof of our theorem.

6. 3-dimensional i?5-πιaiιifold whose £-orbits are all closed. In such
an i?S-manifold M, take any x0 € M. Let L be the length of the closed
5-orbit S(x0).

LEMMA 6.1. 1) There is an R-neighborhood UR oj x0 such that the map

f:URx [L] -* M defined by f(x, t) = (x, d(x\ t)

where x € UR and t € [L], is an into-isometry provided that UR is doubly
treated in M as the images by f at t = 0, L ([2], p. 343). 2) Among the
S-orbits of M, there are S-orbits with the longest length ([2], p, 346).

Here, the map which assigns to each x € UR the point f(x, L) becomes
an isometry of UR onto itself. So, the map / induces the congruent transfor-
mation f* on TR(X0). Relative to a suitable frame at x0, f* is a symmetry or a
rotation whose rotation angle θ satisfies π/θ = rational number. We describe as
the main part of M the subspace of M which consists of all the 5-orbits with
the longest length.

LEMMA 6. 2. The main part of M is a connected open submanifold dense
in M and a maximal subspace which becomes a fibre bundle where each fibre
is an S-orbit ([2], p. 346).
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THEOREM 5. In a 3-dimensional RS-manίfold M, suppose that all the

S-orbits are closed. Then the main part M° of M is reduced to the principal

S-bundle whose standard fibre is the additive group of mod Lo (Lo denotes

the length of an S-orbit of M°) and the R-field defines a connection in M°. If

M — M° 4 s 0, then for an S-orbit S d M — M° there exists an S-dijfeomor-

phism of a Ci-manifold (i = 1, or 2) into M which carries its central S-orbit

to S.

The former part is verified from Lemmas 3. 3 and 6. 2, by regarding the

orientations of tha S-orbits. The latter part follows from Lemmas 6. 1 and 6.2.

7. Necessary and sufficient condition. In an S-manifold V, a n. a. s. c.

means a necessary and sufficient condition that V admits a complete differenti-

able Riemannian metric leaving its *S-field to be a parallel field.

THEOREM 6. In a 3-dimensional S-manifold V, suppose that all the S-

orbits are non-closed and that a certain S-orbit is not dense in M as subset.

Then a n. a. s. c. is that V be S-dijfeomorphic onto an RS-manifold of type I

or an Acmanifold (i — 1, 2, 3, or 4).

THEOREM 7. In a 3-dimensional S-manifold V, suppose that among the

S-orbits there are both of closed one and non-closed one. Then a n, a. s. c. is

that V be S-dijfeomorphic onto a Bfmanifold (i = 1, 2, 3, or 4).

Theorems 6 and 7 follow from Theorems 1, 2 and 4.

THEOREM 8. In a 3-dimensional S-manifold V, suppose that all the

S-orbits are closed and that V is compact. Then a n. a. s. c. is that

1) V be an almost principal S-bundle,

2) V admit an involutive differentiable field of tangent vector 2-subs paces

transversal to the S-orbits which defines in the kernel V° a connection,

3) if V - V° 4= 0, for an S-orbit S a V - V° there exist an S-diffeo-

morphism of a Ci-manifold (z = 1 or 2) into V which carries its central S-orbit

to S.

The necessity of Theorem 8 is evident by Theorem 5. So we shall here

prove the sufficiency. To do this, we call the field in 2) as the Q-field. Through

each x € V, there passes a maximal integral manifold of the Q-field. Let Q(x)

denote it. Q(x) is called a Q-orbit of V. The quotient space of V, which is
considered as the set of all the S-orbits, is denoted by B. Let ir be the natural
map of V onto B. Since V is compact and connected, so is B. At each x G V,

there is an admissible coordinate system (xa) such that the system of equations
χa = const, defines a subarc of an S-orbit and the equation x* = const, defines

a neighborhood of a Q-orbit. We can prove 7r Q = B for any Q-orbit Q.
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Since the standard fibre G of V° is a 1-dimensional torus group, G is regarded

as the additive group of mod L for a suitable L > 0. So, each element of G

will be represented by <z(0 <Ξ <z < £). Using this representation, we give G the

metric under which the distance from 0 to a is a or L — a according as a 5^

L/2 or > Z//2. For any g € G, let i?σ denote the right translation of V° by (7.

A) The case where V = V°. Then B becomes a compact differentiate

manifold. Give B a differentiable Riemannian metric. Now, at each b0 € B we
can find an admissible coordinate neighborhood Ux of ά0 and a coordinate fun-

ction

(φ1|6(gr) = <h(δ, flf) € TΓ- 1 ^) /or α« b € Ux, g € G)

where φ{ is a diffeomorphism. Take other pair (U2, Φ2), U2 3 b0, which has

the same property as (Uu φi). For x,y € T Γ " 1 ^ ) we put

Then, g2 = gu(b0) + g\ and A2 = Λi(&o) + Ai where gu(b0) = ΦllQ φi,&0 ^ G.

Hence, g2 — h2 = gι — hi. This implies that if on the /5-orbit 7r~\bo) we

induce the metric from G by φi,60, it is independent of coordinate functions.

Let us give such a metric (arc-length) to every 5-orbit. On the other hand,

each Q-orbit Q becomes a covering manifold of JB whose covering map is

TΓ/Q The map is locally a diffeomorphism, since 7r is differentiable. We shall

indues on Q the Riemannian metric from B by τr/Q. Thus all the Q-orbits

become differetiable Riemannian manifolds. Take two Q-orbits Ql9 Q2, then there

is g 6 G such that Rg-Qi = Q2> This right translation Rg is regarded as an

isometry and the arc-lengths from Qι to Q2 along the 5-orbits (under theii

orientations) are equal to one another. Accordingly, we can give V the differen-

tiable Riemannian metric

(6. 1) ds2 = ds\ + dsi

where dsu ds2 denote the metrics of Q- and jS-orbits respectively. This metric

is complete, V being compact. It is now obvious that the metric is a required

one.

B) The case where V 4= V°. Put Bo = ir-V\ From 3) and the compact-

ness of V, it follows that the subset B — B° consists of a finite number of

points and a finite number of simple closed curv3S. Denote them by

bj(j = 1,2, Jo) and & ( * = 1,2, , k0)

respectively. Indeed, all the curves βk form the boundary of B. For each j,

there exists an S-diffeomorphism f5 of a Crmanifold Vi into V which carries

its central S-orbit to 7r~ι(bj). Here, Vj will be considered as a manifold with
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the Euclidean metric which is naturally induced by its construction in § 2.

Put Wj = 7Γ'fό Vj. We can see that a Euclidean metric is induced from V'5
on Wj — bj by the map π-fj. In Euclidean 3-space, take the cylinder

Z)(δ0) ΞΞ {(χ9y, z)\x2 + y2 = 1, 0 ^ z ^ S\ f or δ0 > 0

where ^,3;, 2; are usual orthogonal coordinates. Let C* be the boundary curve

in ZXδ0) defined by z = 0. Then there are neighborhoods Uj of ^ and homeo-

morphisms hk of Z)(δo) into B, which satisfy the following conditions :

a) Uj C Wj where U} is the closure in B of U3;

b) Λ, C^ = A; _ _

c) The compact subsets Uu...,Uk9Hu..., Hko(Hk = hk-D(S0)) do not in-

tersect with one another.

Here if we choose a suitable δi(0 < δi < δ0), we can find an open set12) of

B containing

w = ( ΰ i - bx) u... u 0 4 - th) u HΊ u... u H ;

(HK = hk'D(Si), using Â  above)

and having a Euclidean metric, which leaves all βk to be closed geodesies and

which on each U} — b} coincides with that of Wj — bj induced from Vj. Let us

give B, except the subset \bs\j = 1, 2, , j 0 j , a differentiate Riemannian metric

which on W coincides with the Euclidean metric above. This is possible by

theorems (pp. 25, 55) in [6]. Hence B° becomes a differentiate Riemannian

manifold. So by the same manner as A) wa can introduce onto V° the differen-

tiable Riemannian metric which takes the same form as (6. 1). By regarding

3) of our theorem, this metric on V° will be concordantly extended over V.

The metric thus extended becomes a complete differentiable Riemannian metric,

since V is compact, and a metric which is required over V,

12) This need not be connected.
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