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1. Let R" be a ring in the n-dimensional Euclidean space E®", which is
defined as a bounded domain homeomorphic to the domain between two con-
centric spheres in E". The complement of R" consists of two components C7,

» where C? is bounded and C? is unbounded, and B} = C? N R” is called the
inner boundary and B} = C; N R" the outer one of R". By an arc v we mean
a subset in E™ homeomorphic to the unit interval [0,1]. Let {y} be the family

of all rectifiable arcs in R” joining B}, By, and let P be the family of all non-
negative lower semi-continuous functions p(x) in R™.

Put
Ly(v) = inf f p(z(s)) ds,
ye{v} v

V{R") = f f oo | ey dn,

where x = z(s) (0 = s =) is the equation by arc-length s of v, and dr, is the
n-dimensional volume element, then by following Viisdld [ 4], the quantity

ot (L))"
. (g\ E VR
2

is called the modulus of R", which is denoted by mod R™
Now, assume that C? contains the origin x = 0, and perform the following
transformation of coordinates :
x, =171 cosb,
x, = 1 sinf, cos 6,
x; = r sin 6, sin 6, cos 6,
Xnoy =1 sinf, sinb, sinb;...sinf,_, cosb,_,,

x, =7rsinf, sinf, sinf, ...sinf,_, sinb,_,.

*) Dedicated to Professor Kunugui on his Sixtieth birthday.
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We denote by Iy, .6, the intersection of the half straight line determined by

a pair of (¢,,6,,...,6,.,) with R*, and by [(6,,6,,.-.,6,_,) its logarithmic
length :

d
l(el, 027 MY an—l) = [ l-

0,05, 00—y |

2. Using Holder’s inequality, we have

n

Lp(v)éj; p dr=10,- - .,6’n_1)";1<f

0,8s...6n—1 6,0,...00—1

1
prrtdr ) ",

so that
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prridr.

$9,65...00—4

Multiply both sides by (sin #,)"~*(sin ¢,)""*. .. (sin 6,_,) and integrate them
with respect to 6,,6,, ..., 0,_,, 8,-,, then we have

2 T L4 . 01 n—-2 . 0 'n—3. .. . -
@y [ [ oo [ SROIEEROIE ) gy, . g, , as,.,

2 T 7
= f f cen f f P ™ (sin 6,)* "2 (sin Gy)" 2 . .«
0 0 0 l

0162, .07—1

eeo(sinb,_,) drdf,...d6,_,db,_,,

so that

(Lo(m)"

SUp yr 7 pav

peP Vp(Rn) =

n—2) dal .o dan—Z dan—l.

1 / " f " (sin 6,)" *(sin 6,)""% . . . (sin 6
j; 0 0 l<61’ ) 07&—1)71-—1

Hence we have the following space form of Akaza-Kuroda’s inequality [1] of
plane rings.

THEOREM 1. The modulus of R" satisfies the inequality
2
mod R" =

2\t " (sin 6,)" 2 (sin 6,)"2 . . «(sin 6,_,)
(= 1 2 =2 d6,. . . db,_,db,_,’
( 2 )./; ./; 0 l(gb ] 61L—1)n_l ! ? '

3. Further, as also remarked in [ 1], using Schwarz’s inequality, we have
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n
T 2

(2

> ( f f .‘( (sin 6,)"%(sin 6,)" 3+ « «(sin ,_o)dby+ « « dBr_, d0n—1>2

o 3 (sin 01)"‘2 (sm 02)71——3 o (Sinﬂn_g)
< . o o o o o
- f f f 16y, -« 6p )" db,. . .db, ,db,_,

bz 4 k4 k4
X f f f (sin 6,)"~2(sin 6,)"%. + «(Sin O )(Brye + ) B B, + + + ABy_y Ay
0 0 0

Hence we have the following space form of Rengel’s inequality.

COROLLARY 1.

mod R* = ( >f f ~f”(sin(71)"_2 (sinfy)" "% . .«

e (Slnan—Z) X l(al’ M) 071—1)”_1 d01 A dﬂn—‘z dan—b

4. Next, assume in particular that the inner boundary is the unit sphere
|z| =1 and that the outer is starlike with respect to £ = 0, in other words,
each half-line starting from x = 0 has a single point common with the outer

boundary.
Denote by r=f (6,, - - -, 6,-,) the value of » at such a single common

point, then

d f(fy,..., €n—y) d
6 onbi)= [ A | A —tog S0+ 00
1

7 A

Using Hélder’s inequality, we have

o(2)”

1

T 7 z . n—9/. n—3 . _1
f f o (sin8,)" ¥(sin 6,)"* . . . (sin ,,_,) do, ...do,_, dﬁn—1>n

K

(log f(By,+«+,6,_,))* !

IR

X (10-2"-/:‘, . .fr (log £(6,, - - -, 6._,)) (sin 6,)"(sin 6,)"% . . .

n-1
. (Sin 6,_,) db, - « - dby_, dba_, ) "

Hence we have

n 2 T k4 . .
- n (sin #,)" 2 (sin 6,)*% . . .(sin 6,_,)
2t (D) [ 2 e e s
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1

IA

1 T
i>f f f (log f(6h, + + «, 0n=y)) (sin 6;)*7* (sin G,)" % . .

oo (sinb,_p) db, ... db,_,db,_,

r(%)

= 272 ff f log f(6y,««+,6u-y) dony |,

where S denotes the unit sphere |xz| = A/2? + ... + 22 =1 and do,_, means
the surface element on S™.~! Since — log f is a convex function of f, we can
see

n
1%) f f cen f log f(6y,+ + + 6ny) dous
27?2 s

r(%)

- ff SO0, do

Using again Hélder’s inequality, we get

ff .. sn_.f(a"""g"“) Ao

= ( ff . [ (B~ o, 60}y (sin B, (sin B « - -

II/\

1

.o (sinbuy)db, ... db,, da,H)T

n-1

f f " (sin 6,7 (sin 6" - - - (sin B_o)ddB « + - BBy, ) "

)
= o

o=

(2N e s o

r(%)

NN

1

e (Sin ) Oy + « - dBry dBs_s )7 ,

so that
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1
n

LI (Sil’l 071—2) dﬁl oo db.n_g dgn_l

Combining in turn the above relations, we have finally
o /P ( g) T [ Gin6) (s 6) 7 - (sinbos)
5 fo ﬁ - )

(log f(by, + « «, b))
- { T (% )

= L log —z—f:fo e fo (F(By, - « -, Bu_y))" (sin 6,)"? (sin

1
n _ n-1

oo (sinb,_p)dbye o« dbp_y db,_, % ]

_;\/;2”]: - j:’ By, + ~ -, 0u_r))" (sin 6,)72 (sin 6% . . .

coodby_ydb,,

N

= [ log( ,tj;zz_/;z‘ : 'j;z(f(au e oo yBn )" (sin 6,72 (sin )" 2. .« .

e (Sin Ons) db, « « - dbr_rdb,_, —n”’g—
F(g + 1

>>n -

Here, the denominator and the numerator inside the above parenthesis
denote the volumes V,, V, bounded by the inner boundary and the outer

respectively.
We have assumed that the inner boundary of R" is the unit

sphere, but it

may be taken without loss of generality that the inner boundary of R" is a

sphere |x| = a (const. # 0), since the similarity transformation x; = s (J

=1,2,...,n) preserves the modulus of R" and the ratio V,/V ..
Hence we enunciate

COROLLARY 2% Let the inner boundary of R™ be a sphere with the
origin as its center, and let the outer be starlike with respect to the origin,

then it holds

*) F.W.Gehring [2] defined the modulus of ring R» amounting to z—1st root of the one by
our definition and proved the above Corollary 2 for =3 by means of point symmetrization.
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mod R" = (log (/ gf )n_l

We shall state in the final section 6 that through this Corollary 2, a
geometric meaning can be given to the last Theorem 5 in Ozawa-Kuroda [ 3].

5. Now, we first introduce, for completeness’ sake a mnecessary notion
analogously to the 2-dimensional case in [ 3].

Let E be a totally disconnected and compact set in the (z + 1)-dimensional
Euclidean space E"*!, and let D be the domain with E as its complement in
En+1'

A set {RV'Y (7=1,2,..., v(m)<<oo; m=1,2,...) of rings R1 will
be referred a system inducing an exhaustion of D if it satisfies the following
conditions :

(i) the closure Ri'Y of R;'? is connected in D,
(ii) the boundary component of R7;"'” consists of the inner boundary
sphere C29) and the outer one C;{}, these being n-dimensional spheres,

(iii) the complement of Ry"'? consists of two domains, of which the one
Fz19 is unbounded and the other Gj''Y has at least one point common
with E,

(iv) any point of E is contained in a certain GjH?,

(v) Ry lies in Fpt'9 if k37,

(vi) each RLA® is contained in a certain Gp*'@,

(vii) {D&*'};_, is an exhaustion of D, where

v(m)

Drt = m ( Fr1o) U R+10) >

Jj=1

6. In particular, assume that E lies on a hyperplane H* of E**' and the
boundary spheres of R;'”’ are symmetric with respect to H”, then the inter-
section of H" and R;;"'? is the ring R} bounded by two (7 — 1)-dimensional
spheres. We denote by ., V.2, (r?,, V2,) the radius and the volume of the

ball bounded by the inner (outer) boundary sphere of R:? respectively. Then,
there holds by Corollary 2,

mod R¥ = ( log \/sz; )

Now, put mod R;? = (log u?)*" and min p¥ = u,, then it becomes :

1=sj<sv(m)

(J)
A
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Since V@, = w2 (r@)YT (—721— + 1), this inequality is written as
(pn)* 2" = VD,
where &" =7r—2_/1"<% + 1).

Hereafter, proceed similarly to Ozawa-Kuroda [ 3 ] using Hélder’s inequality,
the symmetry of RL'? with respect to H" and the above Corollary 2, then we
obtain finally for 0 < a = n,

o

b3 G = 00 (B v

m

Jj=1 H (Mn)a =1
h=1

Consequently we have

THEOREM 2. Let E be a compact set on a hyperplane H" in E"', and
let D be the domain with E as its complement. If there exists a system
(R (j=1,2,.0.,9(m); m=1,2,...) inducing an exhaustion of D such
that each R is symmertic with respect to H" and the condition

li%ﬁfup(délogyh—<l—%)log v(m)): + oo

is valid for any a (0 < a = n), where p, = min u$, and (log p3)"~' denotes

1=j<v(m)
the modulus of the ring R being the intersection of H" and Ry, then
the a-dimensional measure of E is equal to zero.
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