MODULUS OF RINGS IN SPACE

KAZUO IKOMA*)

(Received January 10, 1963)

1. Let \mathbb{R}^n be a ring in the *n*-dimensional Euclidean space \mathbb{E}^n , which is defined as a bounded domain homeomorphic to the domain between two concentric spheres in \mathbb{E}^n . The complement of \mathbb{R}^n consists of two components C_1^n , C_2^n , where C_1^n is bounded and C_2^n is unbounded, and $B_1^n = C_1^n \cap \overline{\mathbb{R}^n}$ is called the inner boundary and $B_2^n = C_2^n \cap \overline{\mathbb{R}^n}$ the outer one of \mathbb{R}^n . By an arc γ we mean a subset in \mathbb{E}^n homeomorphic to the unit interval [0, 1]. Let $\{\gamma\}$ be the family of all rectifiable arcs in \mathbb{R}^n joining B_1^n , B_2^n , and let P be the family of all nonnegative lower semi-continuous functions $\rho(x)$ in \mathbb{R}^n .

Put

$$egin{aligned} L_{
ho}(\gamma) &= \inf_{\gamma \in \{\gamma\}} \int_{\gamma}
ho(x(s)) \ ds, \ V_{
ho}(R^n) &= \int \int \cdots \int_{R^n}
ho(x)^n \ d au_n, \end{aligned}$$

where x = x(s) $(0 \le s \le l)$ is the equation by arc-length s of γ , and $d\tau_n$ is the *n*-dimensional volume element, then by following Väisälä [4], the quantity

$$\frac{2\pi^{\frac{n}{2}}}{\Gamma\left(\frac{n}{2}\right)}\sup_{\rho\in\mathcal{P}}\frac{(L_{\rho}(\gamma))^{n}}{V_{\rho}(R^{n})}$$

is called the modulus of R^n , which is denoted by mod R^n .

Now, assume that C_1^n contains the origin x = 0, and perform the following transformation of coordinates :

$$\begin{aligned} x_1 &= r \, \cos \theta_1, \\ x_2 &= r \, \sin \theta_1 \, \cos \theta_2, \\ x_3 &= r \, \sin \theta_1 \, \sin \theta_2 \, \cos \theta_3, \\ & \dots \\ x_{n-1} &= r \, \sin \theta_1 \, \sin \theta_2 \, \sin \theta_3 \, \dots \, \sin \theta_{n-2} \, \cos \theta_{n-1}, \\ x_n &= r \sin \theta_1 \, \sin \theta_2 \, \sin \theta_3 \, \dots \, \sin \theta_{n-2} \, \sin \theta_{n-1}. \end{aligned}$$

^{*)} Dedicated to Professor Kunugui on his Sixtieth birthday.

We denote by $l_{\theta_1,\theta_2,\ldots,\theta_{n-1}}$ the intersection of the half straight line determined by a pair of $(\theta_1,\theta_2,\ldots,\theta_{n-1})$ with R^n , and by $l(\theta_1,\theta_2,\ldots,\theta_{n-1})$ its logarithmic length:

$$l(\theta_1, \theta_2, \ldots, \theta_{n-1}) = \int_{l_{\theta_1, \theta_2 \ldots \theta_{n-1}}} \frac{dr}{r}.$$

2. Using Hölder's inequality, we have

$$L_{\rho}(\gamma) \leq \int_{l_{\theta_{1}\theta_{2}\ldots\theta_{n-1}}} \rho \ dr \leq l(\theta_{1},\ldots,\theta_{n-1})^{\frac{n-1}{n}} \Big(\int_{l_{\theta_{1}\theta_{2}\ldots\theta_{n-1}}} \rho^{n} r^{n-1} dr \Big)^{\frac{1}{n}},$$

so that

$$\frac{(L_{\rho}(\boldsymbol{\gamma}))^n}{l(\theta_1,\ldots,\theta_{n-1})^{n-1}} \leq \int_{l_{\theta_1\theta_2\ldots\theta_{n-1}}} \rho^n r^{n-1} dr.$$

Multiply both sides by $(\sin \theta_1)^{n-2} (\sin \theta_2)^{n-3} \cdots (\sin \theta_{n-2})$ and integrate them with respect to $\theta_1, \theta_2, \cdots, \theta_{n-2}, \theta_{n-1}$, then we have

$$(L_{\rho}(\gamma))^{n} \int_{0}^{2\pi} \int_{0}^{\pi} \cdots \int_{0}^{\pi} \frac{(\sin \theta_{1})^{n-2} (\sin \theta_{2})^{n-3} \cdots (\sin \theta_{n-2})}{l(\theta_{1}, \dots, \theta_{n-1})^{n-1}} d\theta_{1} \cdots d\theta_{n-2} d\theta_{n-1}$$

$$\leq \int_{0}^{2\pi} \int_{0}^{\pi} \cdots \int_{0}^{\pi} \int_{l_{\theta_{1}\theta_{2}...\theta_{n-1}}} \rho^{n} r^{n-1} (\sin \theta_{1})^{n-2} (\sin \theta_{2})^{n-3} \cdots \cdots (\sin \theta_{n-2}) dr d\theta_{1} \cdots d\theta_{n-2} d\theta_{n-1},$$

so that

$$\sup_{\rho \in P} \frac{(L_{\rho}(\gamma))^n}{V_{\rho}(R^n)} \leq 1 \Big/ \int_0^{2\pi} \int_0^{\pi} \cdots \int_0^{\pi} \frac{(\sin \theta_1)^{n-2} (\sin \theta_2)^{n-3} \cdots (\sin \theta_{n-2})}{l(\theta_1, \cdots, \theta_{n-1})^{n-1}} \, d\theta_1 \cdots d\theta_{n-2} \, d\theta_{n-1}.$$

Hence we have the following space form of Akaza-Kuroda's inequality [1] of plane rings.

THEOREM 1. The modulus of R^n satisfies the inequality

$$\text{mod } R^n \leq \frac{2\pi^{\frac{1}{2}}}{\Gamma\left(\frac{n}{2}\right) \int_0^{2\pi} \int_0^{\pi} \cdots \int_0^{\pi} \frac{(\sin \theta_1)^{n-2} (\sin \theta_2)^{n-3} \cdots (\sin \theta_{n-2})}{l(\theta_1, \dots, \theta_{n-1})^{n-1}} d\theta_1 \cdots d\theta_{n-2} d\theta_{n-1}} \cdot$$

3. Further, as also remarked in [1], using Schwarz's inequality, we have

K. IKOMA

$$\left(\frac{2\pi^{\frac{n}{2}}}{\Gamma\left(\frac{n}{2}\right)}\right)^{2} = \left(\int_{0}^{2\pi} \int_{0}^{\pi} \cdots \int_{0}^{\pi} (\sin \theta_{1})^{n-2} (\sin \theta_{2})^{n-3} \cdots (\sin \theta_{n-2}) d\theta_{1} \cdots d\theta_{n-2} d\theta_{n-1}\right)^{2}$$

$$\leq \int_{0}^{2\pi} \int_{0}^{\pi} \cdots \int_{0}^{\pi} \frac{(\sin \theta_{1})^{n-2} (\sin \theta_{2})^{n-3} \cdots (\sin \theta_{n-2})}{l(\theta_{1}, \dots, \theta_{n-1})^{n-1}} d\theta_{1} \cdots d\theta_{n-2} d\theta_{n-1}$$

$$\times \int_{0}^{2\pi} \int_{0}^{\pi} \cdots \int_{0}^{\pi} (\sin \theta_{1})^{n-2} (\sin \theta_{2})^{n-3} \cdots (\sin \theta_{n-2}) l(\theta_{1}, \dots, \theta_{n-1})^{n-1} d\theta_{1} \cdots d\theta_{n-2} d\theta_{n-1}.$$

Hence we have the following space form of Rengel's inequality.

COROLLARY 1.

$$\operatorname{mod} R^{n} \leq \frac{\Gamma\left(\frac{n}{2}\right)}{2\pi^{\frac{n}{2}}} \int_{0}^{2\pi} \int_{0}^{\pi} \cdots \int_{0}^{\pi} (\sin\theta_{1})^{n-2} (\sin\theta_{2})^{n-3} \cdots \\ \cdot \cdot \cdot (\sin\theta_{n-2}) \times l(\theta_{1}, \dots, \theta_{n-1})^{n-1} d\theta_{1} \cdots d\theta_{n-2} d\theta_{n-1}.$$

4. Next, assume in particular that the inner boundary is the unit sphere |x| = 1 and that the outer is starlike with respect to x = 0, in other words, each half-line starting from x = 0 has a single point common with the outer boundary.

Denote by $r = f(\theta_1, \dots, \theta_{n-1})$ the value of r at such a single common point, then

$$l(\theta_1,\ldots,\theta_{n-1})=\int_{l_{\theta_1\ldots,\theta_{n-1}}}\frac{dr}{r}=\int_1^{f(\theta_1,\ldots,\theta_{n-1})}\frac{dr}{r}=\log f(\theta_1,\ldots,\theta_{n-1}).$$

Using Hölder's inequality, we have

$$\frac{2\pi^{\frac{n}{2}}}{\Gamma\left(\frac{n}{2}\right)} = \left(\int_{0}^{2\pi} \int_{0}^{\pi} \cdots \int_{0}^{\pi} \frac{(\sin\theta_{1})^{n-2}(\sin\theta_{2})^{n-3}\cdots(\sin\theta_{n-2})}{(\log f(\theta_{1},\cdots,\theta_{n-1}))^{n-1}} d\theta_{1}\cdots d\theta_{n-2} d\theta_{n-1}\right)^{\frac{1}{n}} \\ \times \left(\int_{0}^{2\pi} \int_{0}^{\pi} \cdots \int^{\pi} (\log f(\theta_{1},\cdots,\theta_{n-1})) (\sin\theta_{1})^{n-2} (\sin\theta_{2})^{n-3}\cdots \right) \\ \cdots (\sin\theta_{n-2}) d\theta_{1}\cdots d\theta_{n-2} d\theta_{n-1}\right)^{\frac{n-1}{n}}.$$

Hence we have

$$2\pi^{\frac{n}{2}} / \Gamma\left(\frac{n}{2}\right) \int_0^{2\pi} \int_0^{\pi} \cdots \int_0^{\pi} \frac{(\sin\theta_1)^{n-2} (\sin\theta_2)^{n-3} \cdots (\sin\theta_{n-2})}{(\log f(\theta_1, \cdots, \theta_{n-1}))^{n-1}} d\theta_1 \cdots d\theta_{n-2} d\theta_{n-1}$$

222

$$\leq \left(\frac{\Gamma\left(\frac{n}{2}\right)}{2\pi^{\frac{n}{2}}} \int_{0}^{2\pi} \int_{0}^{\pi} \cdots \int_{0}^{\pi} \left(\log f(\theta_{1}, \dots, \theta_{n-1})\right) (\sin \theta_{1})^{n-2} (\sin \theta_{2})^{n-3} \cdots \right) \\ \cdots (\sin \theta_{n-2}) d\theta_{1} \cdots d\theta_{n-2} d\theta_{n-1} \right)^{n-1} \\ = \left(\frac{\Gamma\left(\frac{n}{2}\right)}{2\pi^{\frac{n}{2}}} \int \int \cdots \int_{S^{n-1}} \log f(\theta_{1}, \dots, \theta_{n-1}) d\sigma_{n-1} \right)^{n-1},$$

where S^{n-1} denotes the unit sphere $|x| = \sqrt{x_1^2 + \cdots + x_n^2} = 1$ and $d\sigma_{n-1}$ means the surface element on S^{n} .⁻¹ Since $-\log f$ is a convex function of f, we can see

$$\frac{\Gamma\left(\frac{n}{2}\right)}{2\pi^{\frac{n}{2}}} \int \int \cdots \int_{S^{n-1}} \log f(\theta_1, \dots, \theta_{n-1}) \ d\sigma_{n-1}$$
$$\leq \log\left(\frac{\Gamma\left(\frac{n}{2}\right)}{2\pi^{\frac{n}{2}}} \int \int \cdots \int_{S^{n-1}} f(\theta_1, \dots, \theta_{n-1}) \ d\sigma_{n-1}\right).$$

Using again Hölder's inequality, we get

$$\begin{split} \iint \cdots \int_{S^{n-1}} f(\theta_1, \dots, \theta_{n-1}) \, d\sigma_{n-1} \\ & \leq \left(\int_0^{2\pi} \int_0^{\pi} \cdots \int_0^{\pi} \left(f(\theta_1, \dots, \theta_{n-1}) \right)^n \left(\sin \theta_1 \right)^{n-2} \left(\sin \theta_2 \right)^{n-3} \cdots \right. \\ & \cdots \left(\sin \theta_{n-2} \right) \, d\theta_1 \cdots \, d\theta_{n-2} \, d\theta_{n-1} \right)^{\frac{1}{n}} \\ & \times \left(\int_0^{2\pi} \int_0^{\pi} \cdots \int_0^{\pi} \left(\sin \theta_1 \right)^{n-2} (\sin \theta_2)^{n-3} \cdots \left(\sin \theta_{n-2} \right) \, d\theta_1 \cdots \, d\theta_{n-2} \, d\theta_{n-1} \right)^{\frac{n-1}{n}} \\ & = \left(\frac{2\pi^{\frac{n}{2}}}{\Gamma\left(\frac{n}{2}\right)} \right)^{\frac{n-1}{n}} \left(\int_0^{2\pi} \int_0^{\pi} \cdots \int_0^{\pi} \left(f(\theta_1, \dots, \theta_{n-1})^n \left(\sin \theta_1 \right)^{n-2} \left(\sin \theta_2 \right)^{n-3} \cdots \right) \\ & \cdots \left(\sin \theta_{n-2} \right) \, d\theta_1 \cdots \, d\theta_{n-2} \, d\theta_{n-1} \right)^{\frac{1}{n}}, \end{split}$$

so that

Ŕ. IKOMA

$$\frac{\Gamma\left(\frac{n}{2}\right)}{2\pi^{\frac{n}{2}}} \iint \cdots \int_{S^{n-1}} f(\theta_1, \dots, \theta_{n-1}) \, d\sigma_{n-1}$$

$$\leq \left(\frac{\Gamma\left(\frac{n}{2}\right)}{2\pi^{\frac{n}{2}}} \int_0^{2\pi} \int_0^{\pi} \cdots \int_0^{\pi} (f(\theta_1, \dots, \theta_{n-1}))^n (\sin \theta_1)^{n-2} (\sin \theta_2)^{n-3} \cdots (\sin \theta_{n-2}) \, d\theta_1 \cdots d\theta_{n-2} \, d\theta_{n-1}\right)^{\frac{1}{n}}$$

Combining in turn the above relations, we have finally

$$2\pi^{\frac{n}{2}} \left/ \Gamma\left(\frac{n}{2}\right) \int_{0}^{2\pi} \int_{0}^{\pi} \cdots \int_{0}^{\pi} \frac{(\sin \theta_{1})^{n-2}(\sin \theta_{2})^{n-3} \cdots (\sin \theta_{n-2})}{(\log f(\theta_{1}, \dots, \theta_{n-1}))^{n-1}} d\theta_{1} \cdots d\theta_{n-2} d\theta_{n-1} \right)$$

$$\leq \left[\log \left\{ \frac{\Gamma\left(\frac{n}{2}\right)}{2\pi^{\frac{n}{2}}} \int_{0}^{2\pi} \int_{0}^{\pi} \cdots \int_{0}^{\pi} (f(\theta_{1}, \dots, \theta_{n-1}))^{n} (\sin \theta_{1})^{n-2} (\sin \theta_{2})^{n-3} \cdots (\sin \theta_{n-2}) d\theta_{1} \cdots d\theta_{n-2} d\theta_{n-1} \right\}^{\frac{1}{n}} \right]^{n-1}$$

$$= \left[\log \left(\frac{1}{n} \int_{0}^{2\pi} \int_{0}^{\pi} \cdots \int_{0}^{\pi} (f(\theta_{1}, \dots, \theta_{n-1}))^{n} (\sin \theta_{1})^{n-2} (\sin \theta_{2})^{n-3} \cdots (\sin \theta_{n-2}) d\theta_{1} \cdots d\theta_{n-2} d\theta_{n-1} \right]^{\frac{1}{n}} \right]^{n-1}$$

$$\cdots (\sin \theta_{n-2}) d\theta_{1} \cdots d\theta_{n-2} d\theta_{n-1} \left/ \frac{\pi^{\frac{n}{2}}}{\Gamma\left(\frac{n}{2}+1\right)} \right)^{\frac{1}{n}} \right]^{n-1}.$$

Here, the denominator and the numerator inside the above parenthesis denote the volumes V_1 , V_2 bounded by the inner boundary and the outer respectively.

We have assumed that the inner boundary of R^n is the unit sphere, but it may be taken without loss of generality that the inner boundary of R^n is a sphere |x| = a (const. $\neq 0$), since the similarity transformation $x_j' = \frac{1}{a} x_j$ (j $= 1, 2, \ldots, n$) preserves the modulus of R^n and the ratio V_2/V_1 . Hence we enunciate

COROLLARY 2.*) Let the inner boundary of \mathbb{R}^n be a sphere with the origin as its center, and let the outer be starlike with respect to the origin, then it holds

224

^{*)} F. W. Gehring [2] defined the modulus of ring \mathbb{R}^n amounting to n-1st root of the one by our definition and proved the above Corollary 2 for n=3 by means of point symmetrization.

$$\mod R^n \leq \left(\log \sqrt[n]{\frac{V_2}{V_1}}\right)^{n-1}.$$

We shall state in the final section 6 that through this Corollary 2, a geometric meaning can be given to the last Theorem 5 in Ozawa-Kuroda [3].

5. Now, we first introduce, for completeness' sake a necessary notion analogously to the 2-dimensional case in [3].

Let E be a totally disconnected and compact set in the (n + 1)-dimensional Euclidean space E^{n+1} , and let D be the domain with E as its complement in E^{n+1} .

A set $\{R_m^{n+1(j)}\}$ $(j = 1, 2, ..., \nu(m) < \infty; m = 1, 2, ...)$ of rings $R_m^{n+1(j)}$ will be referred a system inducing an exhaustion of D if it satisfies the following conditions:

- (i) the closure $\overline{R_m^{n+1(j)}}$ of $R_m^{n+1(j)}$ is connected in D,
- (ii) the boundary component of $R_m^{n+1(j)}$ consists of the inner boundary sphere $C_{m,1}^{n(j)}$ and the outer one $C_{m,2}^{n(j)}$, these being *n*-dimensional spheres,
- (iii) the complement of $\overline{R}_m^{n+1(j)}$ consists of two domains, of which the one $F_m^{n+1(j)}$ is unbounded and the other $G_m^{n+1(j)}$ has at least one point common with E,
- (iv) any point of E is contained in a certain $G_m^{n+1(i)}$,
- (v) $R_m^{n+1(k)}$ lies in $F_m^{n+1(j)}$ if $k \neq j$,
- (vi) each $R_{m+1}^{n+1(k)}$ is contained in a certain $G_m^{n+1(j)}$,
- (vii) $\{D_m^{n+1}\}_{m=1}^{\infty}$ is an exhaustion of D, where

$$D_m^{n+1} = \bigcap_{j=1}^{\nu(m)} \left(F_m^{n+1(j)} \bigcup R_m^{n+1(j)} \right).$$

6. In particular, assume that E lies on a hyperplane H^n of E^{n+1} and the boundary spheres of $R_m^{n+1(j)}$ are symmetric with respect to H^n , then the intersection of H^n and $R_m^{n+1(j)}$ is the ring $R_m^{n(j)}$ bounded by two (n-1)-dimensional spheres. We denote by $r_{m,1}^{(j)}$, $V_{m,1}^{(j)}$ ($r_{m,2}^{(j)}$, $V_{m,2}^{(j)}$) the radius and the volume of the ball bounded by the inner (outer) boundary sphere of $R_m^{n(j)}$ respectively. Then, there holds by Corollary 2,

$$\mod R_m^{n(j)} \leq \left(\log \sqrt[n]{\frac{V_{m,2}^{(j)}}{V_{m,1}^{(j)}}}\right)^{n-1}.$$

Now, put mod $R_m^{n(j)} = (\log \mu_m^{(j)})^{n-1}$ and $\min_{1 \le j \le \nu(m)} \mu_m^{(j)} = \mu_m$, then it becomes:

$$\mu_{m} \leq \sqrt[n]{\frac{\overline{V_{m,2}^{(j)}}}{V_{m,1}^{(j)}}}.$$

Since $V_{m,1}^{(j)} = \pi^{\frac{n}{2}} (r_{m,1}^{(j)})^n / \Gamma(\frac{n}{2}+1)$, this inequality is written as

$$\delta^n(\mu_m)^n \, (r_{m,1}^{(j)})^n \leq V_{m,2}^{(j)},$$

where $\delta^n = \pi^{\frac{n}{2}} / \Gamma\left(\frac{n}{2} + 1\right)$.

Hereafter, proceed similarly to Ozawa-Kuroda [3] using Hölder's inequality, the symmetry of $R_m^{n+1(j)}$ with respect to H^n and the above Corollary 2, then we obtain finally for $0 < \alpha \leq n$,

$$\delta^{\alpha} \sum_{j=1}^{\nu(m)} (r_{m,1}^{(j)})^{\alpha} \leq \frac{(\nu(m))^{1-\frac{\alpha}{n}}}{\prod_{h=1}^{m} (\mu_h)^{\alpha}} \Big(\sum_{l=1}^{\nu(1)} V_{1,2}^{(l)} \Big)^{\frac{\alpha}{n}}.$$

Consequently we have

THEOREM 2. Let E be a compact set on a hyperplane H^n in E^{n+1} , and let D be the domain with E as its complement. If there exists a system $\{R_m^{n+1(j)}\}$ $(j = 1, 2, ..., \nu(m); m = 1, 2, ...)$ inducing an exhaustion of D such that each $R_m^{n+1(j)}$ is symmetric with respect to H^n and the condition

$$\limsup_{m\to\infty} \left(\alpha \sum_{h=1}^m \log \mu_h - \left(1 - \frac{\alpha}{n} \right) \log \nu(m) \right) = + \infty$$

is valid for any α ($0 < \alpha \leq n$), where $\mu_m = \min_{1 \leq j \leq \nu(m)} \mu_m^{(j)}$, and $(\log \mu_m^{(j)})^{n-1}$ denotes the modulus of the ring $R_m^{n(j)}$ being the intersection of H^n and $R_m^{n+1(j)}$, then the α -dimensional measure of E is equal to zero.

REFERENCES

- [1] T.AKAZA and T.KURODA, Module of annulus, Nagoya Math. Journ., 18(1961), 37-41.
- [2] F. W. GEHRING, Symmetrization of rings in space, Trans. Amer. Math. Soc., 101 (1961), 499-519.
- [3] M. OZAWA and T. KURODA, On Pfluger's sufficient condition for a set to be of class N_z., Kôdai Math. Sem. Rep., 13(1961),113-117.
- [4] J. Väisälä, On quasiconformal mappings in space, Ann. Acad. Sci. Fenn. A. I., 298(1961), 1-36.

DEPARTMENT OF MATHEMATICS, YAMAGATA UNIVERSITY.

226