MODULUS OF RINGS IN SPACE

Kazuo Ikoma*)

(Received January 10, 1963)

1. Let R^{n} be a ring in the n-dimensional Euclidean space E^{n}, which is defined as a bounded domain homeomorphic to the domain between two concentric spheres in E^{n}. The complement of R^{n} consists of two components C_{1}^{n}, C_{2}^{n}, where C_{1}^{n} is bounded and C_{2}^{n} is unbounded, and $B_{1}^{n}=C_{1}^{n} \cap \overline{R^{n}}$ is called the inner boundary and $B_{2}^{n}=C_{2}^{n} \cap \overline{R^{n}}$ the outer one of R^{n}. By an arc γ we mean a subset in E^{n} homeomorphic to the unit interval [0,1]. Let $\{\boldsymbol{\gamma}\}$ be the family of all rectifiable arcs in R^{n} joining B_{1}^{n}, B_{2}^{n}, and let P be the family of all nonnegative lower semi-continuous functions $\rho(x)$ in R^{n}.

Put

$$
\begin{aligned}
& L_{\rho}(\gamma)=\inf _{\gamma \in\{\gamma\}} \int_{\gamma} \rho(x(s)) d s, \\
& V_{\rho}\left(R^{n}\right)=\iint \cdots \int_{R^{n}} \rho(x)^{n} d \tau_{n},
\end{aligned}
$$

where $x=x(s)(0 \leqq s \leqq l)$ is the equation by arc-length s of γ, and $d \tau_{n}$ is the n-dimensional volume element, then by following Väisälä [4], the quantity

$$
\frac{2 \pi^{\frac{n}{2}}}{\Gamma\left(\frac{n}{2}\right)} \sup _{\rho \in P} \frac{\left(L_{\rho}(\gamma)\right)^{n}}{V_{\rho}\left(R^{n}\right)}
$$

is called the modulus of R^{n}, which is denoted by $\bmod R^{n}$.
Now, assume that C_{1}^{n} contains the origin $x=0$, and perform the following transformation of coordinates:

$$
\begin{aligned}
& x_{1}=r \cos \theta_{1}, \\
& x_{2}=r \sin \theta_{1} \cos \theta_{2}, \\
& x_{3}=r \sin \theta_{1} \sin \theta_{2} \cos \theta_{3}, \\
& \quad \ldots \cdots \cdots \cdots \cdots \cdots \\
& x_{n-1}=r \sin \theta_{1} \sin \theta_{2} \sin \theta_{3} \ldots \sin \theta_{n-2} \cos \theta_{n-1}, \\
& x_{n}=r \sin \theta_{1} \sin \theta_{2} \sin \theta_{3} \ldots \sin \theta_{n-2} \sin \theta_{n-1} .
\end{aligned}
$$

[^0]We denote by $l_{\theta_{i} \theta_{2} \ldots \theta_{n-1}}$ the intersection of the half straight line determined by a pair of $\left(\theta_{1}, \theta_{2}, \ldots, \theta_{n-1}\right)$ with R^{n}, and by $l\left(\theta_{1}, \theta_{2}, \ldots, \theta_{n-1}\right)$ its logarithmic length :

$$
l\left(\theta_{1}, \theta_{2}, \ldots, \theta_{n-1}\right)=\int_{l_{\theta_{1} \theta_{2} \ldots \theta_{n-1}}} \frac{d r}{r}
$$

2. Using Hölder's inequality, we have

$$
L_{\rho}(\gamma) \leqq \int_{l_{\theta_{1} \theta_{2} \ldots \theta_{n-1}}} \rho d r \leqq l\left(\theta_{1}, \ldots, \theta_{n-1}\right)^{\frac{n-1}{n}}\left(\int_{l_{\theta_{1} \theta_{2} \ldots, \theta_{n-1}}} \rho^{n} r^{n-1} d r\right)^{\frac{1}{n}}
$$

so that

$$
\frac{\left(L_{\rho}(\gamma)\right)^{n}}{l\left(\theta_{1}, \cdots, \theta_{n-1}\right)^{n-1}} \leqq \int_{l_{\theta_{1}, \theta_{2} \ldots \theta_{n-1}}} \rho^{n} r^{n-1} d r .
$$

Multiply both sides by $\left(\sin \theta_{1}\right)^{n-2}\left(\sin \theta_{2}\right)^{n-3} \cdots\left(\sin \theta_{n-2}\right)$ and integrate them with respect to $\theta_{1}, \theta_{2}, \ldots, \theta_{n-2}, \theta_{n-1}$, then we have

$$
\begin{gathered}
\left(L_{\rho}(\gamma)\right)^{n} \int_{0}^{2 \pi} \int_{0}^{\pi} \cdots \int_{0}^{\pi} \frac{\left(\sin \theta_{1}\right)^{n-2}\left(\sin \theta_{2}\right)^{n-3} \cdots\left(\sin \theta_{n-2}\right)}{l\left(\theta_{1}, \cdots, \theta_{n-1}\right)^{n-1}} d \theta_{1} \cdots d \theta_{n-2} d \theta_{n-1} \\
\leqq \int_{0}^{2 \pi} \int_{0}^{\pi} \cdots \int_{0}^{\pi} \int_{l \theta_{1} \theta_{2} \ldots \theta_{n-1}} \rho^{n} r^{n-1}\left(\sin \theta_{1}\right)^{n-2}\left(\sin \theta_{2}\right)^{n-3} \cdots \\
\cdots\left(\sin \theta_{n-2}\right) d r d \theta_{1} \cdots d \theta_{n-2} d \theta_{n-1}
\end{gathered}
$$

so that

$$
\begin{aligned}
& \sup _{\rho \in P} \frac{\left(L_{\rho}(\gamma)\right)^{n}}{V_{\rho}\left(R^{n}\right)} \leqq \\
& \quad 1 / \int_{0}^{2 \pi} \int_{0}^{\pi} \cdots \int_{0}^{\pi} \frac{\left(\sin \theta_{1}\right)^{n-2}\left(\sin \theta_{2}\right)^{n-3} \cdots\left(\sin \theta_{n-2}\right)}{l\left(\theta_{1}, \cdots, \theta_{n-1}\right)^{n-1}} d \theta_{1} \cdots d \theta_{n-2} d \theta_{n-1} .
\end{aligned}
$$

Hence we have the following space form of Akaza-Kuroda's inequality [1] of plane rings.

THEOREM 1. The modulus of R^{n} satisfies the inequality
$\bmod R^{n} \leqq \frac{2 \pi^{\frac{n}{2}}}{\Gamma\left(\frac{n}{2}\right) \int_{0}^{2 \pi} \int_{0}^{\pi} \cdots \int_{0}^{\pi} \frac{\left(\sin \theta_{1}\right)^{n-2}\left(\sin \theta_{2}\right)^{n-3} \cdots\left(\sin \theta_{n-2}\right)}{l\left(\theta_{1}, \cdots, \theta_{n-1}\right)^{n-1}} d \theta_{1} \cdots d \theta_{n-2} d \theta_{n-1}}$.
3. Further, as also remarked in [1], using Schwarz's inequality, we have

$$
\begin{aligned}
& \left(\frac{2 \pi^{\frac{n}{2}}}{\Gamma\left(\frac{n}{2}\right)}\right)^{2}=\left(\int_{0}^{2 \pi} \int_{0}^{\pi} \cdots \int_{0}^{\pi}\left(\sin \theta_{1}\right)^{n-2}\left(\sin \theta_{2}\right)^{n-3} \cdots\left(\sin \theta_{n-2}\right) d \theta_{1} \cdots d \theta_{n-2} d \theta_{n-1}\right)^{2} \\
& \leqq \int_{0}^{2 \pi} \int_{0}^{\pi} \cdots \int_{0}^{\pi} \frac{\left(\sin \theta_{1}\right)^{n-2}\left(\sin \theta_{2}\right)^{n-3} \cdots\left(\sin \theta_{n-2}\right)}{l\left(\theta_{1}, \cdots, \theta_{n-1}\right)^{n-1}} d \theta_{1} \cdots d \theta_{n-2} d \theta_{n-1} \\
& \times \int_{0}^{2 \pi} \int_{0}^{\pi} \cdots \int_{0}^{\pi}\left(\sin \theta_{1}\right)^{n-2}\left(\sin \theta_{2}\right)^{n-3} \cdots\left(\sin \theta_{n-2}\right) l\left(\theta_{1}, \cdots, \theta_{n-1}\right)^{n-1} d \theta_{1} \cdots d \theta_{n-2} d \theta_{n-1} .
\end{aligned}
$$

Hence we have the following space form of Rengel's inequality.
Corollary 1.

$$
\bmod R^{n} \leqq \frac{\Gamma\left(\frac{n}{2}\right)}{2 \pi^{\frac{n}{2}}} \int_{0}^{2 \pi} \int_{0}^{\pi} \cdots \int_{0}^{\pi}\left(\sin \theta_{1}\right)^{n-2}\left(\sin \theta_{2}\right)^{n-3} \cdots
$$

$$
\cdots\left(\sin \theta_{n-2}\right) \times l\left(\theta_{1}, \cdots, \theta_{n-1}\right)^{n-1} d \theta_{1} \cdots d \theta_{n-2} d \theta_{n-1} .
$$

4. Next, assume in particular that the inner boundary is the unit sphere $|x|=1$ and that the outer is starlike with respect to $x=0$, in other words, each half-line starting from $x=0$ has a single point common with the outer boundary.

Denote by $r=f\left(\theta_{1}, \cdots, \theta_{n-1}\right)$ the value of r at such a single common point, then

$$
l\left(\theta_{1}, \ldots, \theta_{n-1}\right)=\int_{l_{\theta_{1}, \ldots \theta_{n-1}}} \frac{d r}{r}=\int_{1}^{f\left(\theta_{1}, \ldots, \theta_{n-1}\right)} \frac{d r}{r}=\log f\left(\theta_{1}, \ldots, \theta_{n-1}\right) .
$$

Using Hölder's inequality, we have

$$
\begin{gathered}
\frac{2 \pi^{\frac{n}{2}}}{\Gamma\left(\frac{n}{2}\right)}=\left(\int_{0}^{2 \pi} \int_{0}^{\pi} \cdots \int_{0}^{\pi} \frac{\left(\sin \theta_{1}\right)^{n-2}\left(\sin \theta_{2}\right)^{n-3} \cdots\left(\sin \theta_{n-2}\right)}{\left(\log f\left(\theta_{1}, \cdots, \theta_{n-1}\right)\right)^{n-1}} d \theta_{1} \cdots d \theta_{n-2} d \theta_{n-1}\right)^{\frac{1}{n}} \\
\times\left(\int_{0}^{2 \pi} \int_{0}^{\pi} \cdots \int^{\pi}\left(\log f\left(\theta_{1}, \cdots, \theta_{n-1}\right)\right)\left(\sin \theta_{1}\right)^{n-2}\left(\sin \theta_{2}\right)^{n-3} \cdots\right. \\
\left.\cdots\left(\sin \theta_{n-2}\right) d \theta_{1} \ldots d \theta_{n-2} d \theta_{n-1}\right)^{\frac{n-1}{n}} .
\end{gathered}
$$

Hence we have

$$
2 \pi^{\frac{n}{2}} / \Gamma\left(\frac{n}{2}\right) \int_{0}^{2 \pi} \int_{0}^{\pi} \cdots \int_{0}^{\pi} \frac{\left(\sin \theta_{1}\right)^{n-2}\left(\sin \theta_{2}\right)^{n-3} \cdots\left(\sin \theta_{n-2}\right)}{\left(\log f\left(\theta_{1}, \cdots, \theta_{n-1}\right)\right)^{n-1}} d \theta_{1} \cdots d \theta_{n-2} d \theta_{n-1}
$$

$$
\begin{aligned}
& \leqq\left(\frac{\Gamma\left(\frac{n}{2}\right)}{2 \pi^{\frac{n}{2}}} \int_{0}^{2 \pi} \int_{0}^{\pi} \cdots \int_{0}^{\pi}\left(\log f\left(\theta_{1}, \cdots, \theta_{n-1}\right)\right)\left(\sin \theta_{1}\right)^{n-2}\left(\sin \theta_{2}\right)^{n-3} \cdots\right. \\
& \left.\cdots\left(\sin \theta_{n-2}\right) d \theta_{1} \cdots d \theta_{n-2} d \theta_{n-1}\right)^{n-1} \\
& =\left(\frac{\Gamma\left(\frac{n}{2}\right)}{2 \pi^{\frac{n}{2}}} \iint \cdots \int_{S^{n-1}} \log f\left(\theta_{1}, \cdots, \theta_{n-1}\right) d \sigma_{n-1}\right)^{n-1}
\end{aligned}
$$

where S^{n-1} denotes the unit sphere $|x|=\sqrt{x_{1}^{2}+\ldots+x_{n}^{2}}=1$ and $d \sigma_{n-1}$ means the surface element on $S^{n} .{ }^{-1}$ Since $-\log f$ is a convex function of f, we can see

$$
\begin{aligned}
& \frac{\Gamma\left(\frac{n}{2}\right)}{2 \pi^{\frac{n}{2}}} \iint \cdots \int_{S^{n-1}} \log f\left(\theta_{1}, \cdots, \theta_{n-1}\right) d \sigma_{n-1} \\
& \quad \leqq \log \left(\frac{\Gamma\left(\frac{n}{2}\right)}{2 \pi^{\frac{n}{2}}} \iint \cdots \int_{S^{n-1}} f\left(\theta_{1}, \cdots, \theta_{n-1}\right) d \sigma_{n-1}\right)
\end{aligned}
$$

Using again Hölder's inequality, we get

$$
\begin{gathered}
\iint \cdots \int_{S^{n-1}} f\left(\theta_{1}, \cdots, \theta_{n-1}\right) d \sigma_{n-1} \\
\leqq\left(\int_{0}^{2 \pi} \int_{0}^{\pi} \cdots \int_{0}^{\pi}\left(f\left(\theta_{1}, \cdots, \theta_{n-1}\right)\right)^{n}\left(\sin \theta_{1}\right)^{n-2}\left(\sin \theta_{2}\right)^{n-3} \cdots\right. \\
\left.\cdots\left(\sin \theta_{n-2}\right) d \theta_{1} \cdots d \theta_{n-2} d \theta_{n-1}\right)^{\frac{1}{n}} \\
\times\left(\int_{0}^{2 \pi} \int_{0}^{\pi} \cdots \int_{0}^{\pi}\left(\sin \theta_{1}\right)^{n-2}\left(\sin \theta_{2}\right)^{n-3} \cdots\left(\sin \theta_{n-2}\right) d \theta_{1} \cdots d \theta_{n-2} d \theta_{n-1}\right)^{\frac{n-1}{n}} \\
=\left(\frac{2 \pi^{\frac{n}{2}}}{\Gamma\left(\frac{n}{2}\right)}\right)^{\frac{n-1}{n}}\left(\int _ { 0 } ^ { 2 \pi } \int _ { 0 } ^ { \pi } \cdots \int _ { 0 } ^ { \pi } \left(f\left(\theta_{1}, \cdots, \theta_{n-1}\right)^{n}\left(\sin \theta_{1}\right)^{n-2}\left(\sin \theta_{2}\right)^{n-3} \cdots\right.\right. \\
\left.\cdots\left(\sin \theta_{n-2}\right) d \theta_{1} \cdots d \theta_{n-2} d \theta_{n-1}\right)^{\frac{1}{n}},
\end{gathered}
$$

so that

$$
\begin{gathered}
\frac{\Gamma\left(\frac{n}{2}\right)}{2 \pi^{\frac{n}{2}}} \iint \cdots \int_{S^{n-1}} f\left(\theta_{1}, \ldots, \theta_{n-1}\right) d \sigma_{n-1} \\
\leqq\left(\frac{\Gamma\left(\frac{n}{2}\right)}{2 \pi^{\frac{n}{2}}} \int_{0}^{2 \pi} \int_{0}^{\pi} \cdots \int_{0}^{\pi}\left(f\left(\theta_{1}, \ldots, \theta_{n-1}\right)\right)^{n}\left(\sin \theta_{1}\right)^{n-2}\left(\sin \theta_{2}\right)^{n-3} \cdots\right. \\
\left.\cdots\left(\sin \theta_{n-2}\right) d \theta_{1} \ldots d \theta_{n-2} d \theta_{n-1}\right)^{\frac{1}{n}}
\end{gathered}
$$

Combining in turn the above relations, we have finally

$$
\begin{gathered}
2 \pi^{\frac{n}{2}} / \Gamma\left(\frac{n}{2}\right) \int_{0}^{2 \pi} \int_{0}^{\pi} \cdots \int_{0}^{\pi} \frac{\left(\sin \theta_{1}\right)^{n-2}\left(\sin \theta_{2}\right)^{n-3} \cdots\left(\sin \theta_{n-2}\right)}{\left(\log f\left(\theta_{1}, \cdots, \theta_{n-1}\right)\right)^{n-1}} d \theta_{1} \cdots d \theta_{n-2} d \theta_{n-1} \\
\leqq\left[\operatorname { l o g } \left\{\frac{\Gamma\left(\frac{n}{2}\right)}{2 \pi^{\frac{n}{2}}} \int_{0}^{2 \pi} \int_{0}^{\pi} \cdots \int_{0}^{\pi}\left(f\left(\theta_{1}, \ldots, \theta_{n-1}\right)\right)^{n}\left(\sin \theta_{1}\right)^{n-2}\left(\sin \theta_{2}\right)^{n-3} \cdots\right.\right. \\
\left.\left.\cdots\left(\sin \theta_{n-2}\right) d \theta_{1} \cdots d \theta_{n-2} d \theta_{n-1}\right\}^{\frac{1}{n}}\right]^{n-1} \\
=\left[\operatorname { l o g } \left(\begin{array}{l}
1 \\
n
\end{array} \int_{0}^{2 \pi} \int_{0}^{\pi} \cdots \int_{0}^{\pi}\left(f\left(\theta_{1}, \ldots, \theta_{n-1}\right)\right)^{n}\left(\sin \theta_{1}\right)^{n-2}\left(\sin \theta_{2}\right)^{n-3} \cdots\right.\right. \\
\left.\left.\cdots\left(\sin \theta_{n-2}\right) d \theta_{1} \cdots d \theta_{n-2} d \theta_{n-1} / \frac{\pi^{\frac{n}{2}}}{\Gamma\left(\frac{n}{2}+1\right)^{\frac{1}{2}}}\right)^{\frac{1}{n}}\right]^{n-1} .
\end{gathered}
$$

Here, the denominator and the numerator inside the above parenthesis denote the volumes V_{1}, V_{2} bounded by the inner boundary and the outer respectively.

We have assumed that the inner boundary of R^{n} is the unit sphere, but it may be taken without loss of generality that the inner boundary of R^{n} is a sphere $|x|=a($ const. $\neq 0)$, since the similarity transformation $x_{j}^{\prime}=\frac{1}{a} x_{j} \quad(j$ $=1,2, \ldots, n$) preserves the modulus of R^{n} and the ratio V_{2} / V_{1}.

Hence we enunciate

Corollary 2.*) Let the inner boundary of R^{n} be a sphere with the origin as its center, and let the outer be starlike with respect to the origin, then it holds
*) F. W. Gehring [2] defined the modulus of ring R^{n} amounting to $n-1$ st root of the one by our definition and proved the above Corollary 2 for $n=3$ by means of point symmetrization.

$$
\bmod R^{n} \leqq\left(\log \sqrt[n]{\frac{V_{2}}{V_{1}}}\right)^{n-1}
$$

We shall state in the final section 6 that through this Corollary 2, a geometric meaning can be given to the last Theorem 5 in Ozawa-Kuroda [3].
5. Now, we first introduce, for completeness' sake a necessary notion analogously to the 2 -dimensional case in [3].

Let E be a totally disconnected and compact set in the ($n+1$)-dimensional Euclidean space E^{n+1}, and let D be the domain with E as its complement in E^{n+1}.

A set $\left\{R_{m}^{n+1(j)}\right\}(j=1,2, \ldots, \nu(m)<\infty ; m=1,2, \ldots)$ of rings $R_{m}^{n+1(j)}$ will be referred a system inducing an exhaustion of D if it satisfies the following conditions:
(i) the closure $\overline{R_{m}^{n+1())}}$ of $R_{m}^{n+1(j)}$ is connected in D,
(ii) the boundary component of $R_{m}^{n+1(i)}$ consists of the inner boundary sphere $C_{m, 1}^{n(j)}$ and the outer one $C_{m, 2}^{n(i)}$, these being n-dimensional spheres,
(iii) the complement of $\bar{R}_{m}^{n+1(j)}$ consists of two domains, of which the one $F_{m}^{n+1(j)}$ is unbounded and the other $G_{m}^{n+1(j)}$ has at least one point common with E,
(iv) any point of E is contained in a certain $G_{m}^{n+1(i)}$,
(v) $R_{m}^{n+1(k)}$ lies in $F_{m}^{n+1(j)}$ if $k \neq j$,
(vi) each $R_{m+1}^{n+1(k)}$ is contained in a certain $G_{m}^{n+1(j)}$,
(vii) $\left\{D_{m}^{n+1}\right\}_{m=1}^{\infty}$ is an exhaustion of D, where

$$
D_{m}^{n+1}=\bigcap_{j=1}^{\nu(m)}\left(F_{m}^{n+1(j)} \bigcup R_{m}^{n+1(j)}\right)
$$

6. In particular, assume that E lies on a hyperplane H^{n} of E^{n+1} and the boundary spheres of $R_{m}^{n+1(j)}$ are symmetric with respect to H^{n}, then the intersection of H^{n} and $R_{m}^{n+1(j)}$ is the ring $R_{m}^{n(j)}$ bounded by two ($n-1$)-dimensional spheres. We denote by $r_{m, 1}^{(j)}, V_{m, 1}^{(j)}\left(r_{m, 2}^{(j)}, V_{m, 2}^{(j)}\right)$ the radius and the volume of the ball bounded by the inner (outer) boundary sphere of $R_{m}^{n(j)}$ respectively. Then, there holds by Corollary 2,

$$
\bmod R_{m}^{n(j)} \leqq\left(\log \sqrt[n]{\frac{\overline{V_{m, 2}^{(())}}}{V_{m, 1}^{(j)}}}\right)^{n-1}
$$

Now, put $\bmod R_{m}^{n(j)}=\left(\log \mu_{m}^{(j)}\right)^{n-1}$ and $\min _{1 \leq j \leq \nu(m)} \mu_{m}^{(j)}=\mu_{m}$, then it becomes :

$$
\mu_{m} \leqq \sqrt[n]{\frac{V_{m, 2}^{(j)}}{V_{m, 1}^{(j)}}}
$$

Since $V_{m, 1}^{(j)}=\pi^{\frac{n}{2}}\left(r_{m, 1}^{(j)}\right)^{n} / \Gamma\left(\frac{n}{2}+1\right)$, this inequality is written as

$$
\delta^{n}\left(\mu_{m}\right)^{n}\left(r_{m, 1}^{(j)}\right)^{n} \leqq V_{m, 2}^{(j)}
$$

where $\delta^{n}=\pi^{\frac{n}{2}} / \Gamma\left(\frac{n}{2}+1\right)$.
Hereafter, proceed similarly to Ozawa-Kuroda [3] using Hölder's inequality, the symmetry of $R_{m}^{n+1(j)}$ with respect to H^{n} and the above Corollary 2, then we obtain finally for $0<\alpha \leqq n$,

$$
\delta^{\alpha} \sum_{j=1}^{v(m)}\left(r_{m, 1}^{(j)}\right)^{\alpha} \leqq \frac{(\nu(m))^{1-\frac{\alpha}{n}}}{\prod_{n=1}^{m}\left(\mu_{h}\right)^{\alpha}}\left(\sum_{l=1}^{v(1)} V_{1,2}^{(l)}\right)^{\frac{\alpha}{n}} .
$$

Consequently we have
Theorem 2. Let E be a compact set on a hyperplane H^{n} in E^{n+1}, and let D be the domain with E as its complement. If there exists a system $\left\{R_{m}^{n+1(j)}\right\}(j=1,2, \cdots, \nu(m) ; m=1,2, \ldots)$ inducing an exhaustion of D such that each $R_{m}^{n+1(j)}$ is symmertic with respect to H^{n} and the condition

$$
\lim _{m \rightarrow \infty} \sup \left(\alpha \sum_{h=1}^{m} \log \mu_{h}-\left(1-\frac{\alpha}{n}\right) \log \nu(m)\right)=+\infty
$$

is valid for any $\alpha(0<\alpha \leqq n)$, where $\mu_{m}=\min _{1 \leq j \leq \nu(m)} \mu_{m}^{(j)}$, and $\left(\log \mu_{m}^{(j)}\right)^{n-1}$ denotes the modulus of the ring $R_{m}^{n(j)}$ being the intersection of H^{n} and $R_{m}^{n+1(j)}$, then the α-dimensional measure of E is equal to zero.

References

[1] T. Akaza and T. Kuroda, Module of annulus, Nagoya Math. Journ., 18(1961), 37-41.
[2] F.W. Gehring, Symmetrization of rings in space, Trans. Amer. Math. Soc., 101 (1961), 499-519.
[3] M. Ozawa and T. Kuroda, On Pfluger's sufficient condition for a set to be of class N_{\nsim}, Kôdai Math. Sem. Rep., 13(1961), 113-117.
[4] J. Väisälä, On quasiconformal mappings in space, Ann. Acad. Sci. Fenn. A. I., 298(1961), 1-36.

Department of Mathematics, Yamagata University.

[^0]: *) Dedicated to Professor Kunugui on his Sixtieth birthday.

