ON NORMAL ALMOST CONTACT STRUCTURES WITH A REGULARITY

Akihiko Morimoto

(Received November 5, 1963)

Introduction. This paper is a continuation of the previous paper [4] in which we have proved, among others, that the bundle space of a principal circle bundle over a complex manifold, which has a connection satisfying certain conditions, admits a normal almost contact structure (cf. Theorem 6 [4]). In this paper we first consider the converse of the above theorem, and we shall call such a bundle, for the sake of simplicity, a contact bundle over a complex manifold (§1. Theorem 1).

In §2 we consider the period function of a regular closed vector field (Def. 3) and we prove Theorem 4 which says that the period function of a regular closed analytic vector field X on a complex manifold M is the real part of a holomorphic function on M if $J X$ is also a closed vector field on M, J being the complex structure tensor of M. Using this theorem we shall prove that if the vector field ξ of a normal almost contact structure (ϕ, ξ, η) is a regular closed vector field, the period function of ξ is necessarily constant. From this we shall see that there is no other example of normal almost contact structures than the examples constructed in Theorem 6 [4], at least, when the vector field ξ is a closed vector field.

In $\S 3$ we consider the family of contact bundles over a complex manifold M_{0} and we shall finally show that two contact bundles are isomorphic if and only if there exists a diffeomorphism f_{0} of M_{0} onto itself such that $f_{0}^{*} \bar{\Omega}=\Omega$, where Ω and $\bar{\Omega}$ are associated 2 -forms on M_{0} to each contact bundle, when M_{0} is simply connected (cf. Def. 1).

1. Contact bundles over complex manifolds. Let $M\left(M_{0}, S^{1}, \pi\right)$ be a principal circle bundle over a (always C^{∞}-) differentiable manifold M_{0}, S^{1} being the 1 -dimensional torus and π being the projection of M onto M_{0}. Let $\Sigma=(\phi$, ξ, η) be a normal almost contact structure (cf. Def. 2 [4]) on M. The Lie algebra r of S^{1} being identified with the real number field R, we shall now suppose that η is a connection form on M and that ξ is a vertical fundamental vector field A^{*} corresponding to the unit vector A of r . As in [4] we shall denote by $\mathfrak{B}(M)$ the Lie algebra of vector fields on M.

In the sequel we shall often denote the differential of a differentiable map f by the same letter f. We shall now prove the following theorem ${ }^{1)}$ which

[^0]may be considered as a converse to Theorem 6 [4].
THEOREM 1. Notations and assumptions being as above, we can find an unique complex structure J on M_{0} such that $\phi\left(X^{*}\right)=(J X)^{*}$ for $X \in \mathfrak{B}\left(M_{0}\right)$, where X^{*} denotes the lift of X with respect to the connection η. Moreover, the 2 -form Ω on M_{0} such that $d \eta=\pi^{*} \Omega$ satisfies the following condition
$$
\Omega(J X, J Y)=\Omega(X, Y)
$$
for $X, Y \in \mathfrak{B}\left(M_{0}\right)$, i.e. Ω is a 2-form of type (1.1) with respect to J.
Proof. Take a tangent vector X of M_{0} at $p_{0} \in M_{0}$. Define
\[

$$
\begin{equation*}
J X=\pi \phi X_{p}^{*}, \tag{1.1}
\end{equation*}
$$

\]

where $p \in M, \pi(p)=p_{0}$, and X_{p}^{*} is the lift of X at p with respect to the connection η. By (1.1), J is well defined. In fact, take $p^{\prime} \in M$ such that $\pi\left(p^{\prime}\right)$ $=p_{0}$. Then $p^{\prime}=R_{a} \cdot p$ for some element $a \in S^{1}, R_{a}$ being the right translation corresponding to a. Then $X_{p^{\prime}}^{*}=R_{a} X_{p}^{*}$. It must be shown that $\pi \phi X_{p^{\prime}}^{*}=\pi \phi X_{p}^{*}$. For this, it is sufficient to prove that $\phi \circ R_{a}=R_{a} \circ \phi$. Since ξ generates a one parameter group of right translations of M, it is now sufficient to prove that the Lie derivative of ϕ with respect to ξ vanishes identically, i.e.

$$
\begin{equation*}
[\xi, \phi Y]=\phi[\xi, Y] \tag{1.2}
\end{equation*}
$$

for all $Y \in \mathfrak{R}(M)$. However, (1.2) was proved as (2.13) in [4]. Hence by (1.1), J is well defined. First, we prove that $J^{2}=-1,1$ being the identity map. In fact, for $X \in T_{p_{0}}\left(M_{0}\right), J^{2}(X)=\pi \phi(J X)_{p}^{*}=\pi \phi\left(\left(\pi \phi X_{p}^{*}\right)_{p}^{*}\right)=\pi \phi\left(\phi X_{p}^{*}\right)=-\pi X_{p}^{*}=-$ X, where we have used the fact that ϕX_{p}^{*} is horizontal in the third equality. Hence J is an almost complex structure on M_{0}. To prove that J is integrable, we first remark that

$$
(J X)^{*}=\phi\left(X^{*}\right)
$$

for $X \in \mathfrak{X}\left(M_{0}\right)$. Next we shall prove that

$$
J[X, Y]=[J X, Y]+[X, J Y]+J[J X, J Y]
$$

for $X, Y \in \mathfrak{B}\left(M_{0}\right)$. For this purpose, X^{*} being the lift of X with respect to η, we calculate the lift $(J[X, Y])^{*}$ of $J[X, Y]$, using (2.3) [4], as follows:

$$
\begin{gathered}
(J[X, Y])^{*}=\phi[X, Y]^{*}=\phi\left(h\left[X^{*}, Y^{*}\right]\right)=\phi\left[X^{*}, Y^{*}\right] \\
=\left[\phi X^{*}, Y^{*}\right]+\left[X^{*}, \phi Y^{*}\right]+\phi\left[\phi X^{*}, \phi Y^{*}\right]-\left\{\phi X^{*} \cdot \eta\left(Y^{*}\right)-\phi Y^{*} \cdot \eta\left(X^{*}\right)\right\} \xi \\
=\left[(J X)^{*}, Y^{*}\right]+\left[X^{*},(J Y)^{*}\right]+\phi\left[(J X)^{*},(J Y)^{*}\right] \\
=\eta\left(\left[(J X)^{*}, Y^{*}\right]\right) \xi+[J X, Y]^{*}+\eta\left(\left[X^{*},(J Y)^{*}\right]\right) \xi+[X, J Y]^{*} \\
+\phi\left([J X, J Y]^{*}\right) \\
=[J X, Y]^{*}+[X, J Y]^{*}+(J[J X, J Y])^{*}+\left\{\eta\left(\left[(J X)^{*}, Y^{*}\right]\right)\right. \\
\left.+\eta\left(\left[X^{*},(J Y)^{*}\right]\right)\right\} \xi .
\end{gathered}
$$

It is now sufficient to prove that

$$
\eta\left(\left[\phi X^{*}, Y^{*}\right]\right)+\eta\left(\left[X^{*}, \phi Y^{*}\right]\right)=0
$$

for $X, Y \in \mathfrak{Z}\left(M_{0}\right)$. By (2.7) [4] we see

$$
\begin{aligned}
\eta\left(\left[\phi X^{*}, Y^{*}\right]\right) & =\phi X^{*} \cdot \eta\left(Y^{*}\right)-Y^{*} \cdot \eta\left(\phi X^{*}\right)+\eta\left(\left[\phi^{2} X^{*}, \phi Y^{*}\right]\right) \\
& =\eta\left(\left[-X^{*}+\eta\left(X^{*}\right) \xi, \phi Y^{*}\right]\right)=-\eta\left(\left[X^{*}, \phi Y^{*}\right]\right) .
\end{aligned}
$$

Hence we have proved that J is integrable.
Now it is well known that there exists (uniquely) a 2 -form Ω on M_{0} such that $d_{\eta}=\pi^{*} \Omega$. For this Ω we calculate as follows:

$$
\begin{aligned}
\Omega(J X, J Y) & =\Omega\left(\pi \phi X^{*}, \pi \phi Y^{*}\right)=\left(\pi^{*} \Omega\right)\left(\phi X^{*}, \phi Y^{*}\right) \\
& =d \eta\left(\phi X^{*}, \phi Y^{*}\right)=-\frac{1}{2} \eta\left(\left[\phi X^{*}, \phi Y^{*}\right]\right)=-\frac{1}{2} \eta\left(\left[X^{*}, Y^{*}\right]\right) \\
& =d \eta\left(X^{*}, Y^{*}\right)=\pi^{*} \Omega\left(X^{*}, Y^{*}\right)=\Omega(X, Y),
\end{aligned}
$$

where we have used (2.7) [4] in the fifth equality. The uniqueness of J is clear from $\phi\left(X^{*}\right)=(J X)^{*}$. Thus Theorem 1 is proved.

Definition 1. Let $M\left(M_{0}, S^{1}, \pi\right)$ be a principal circle bundle, and $\Sigma=(\phi$, ξ, η) be a normal almost contact structure on M satisfying the conditions of Theorem 1. For the sake of simplicity we shall call such a bundle $M\left(M_{0}, S^{1}, \pi\right)$ with Σ a contact bundle over a complex manifold M_{0}. The 2 -form Ω on M_{0} in Theorem 1 will be called the associated 2-form to the contact bundle (or associtead 2 -form to η).

Theorem 2. Let $M\left(M_{0}, S^{1}, \pi\right)$ and $\bar{M}\left(\bar{M}_{0}, S^{1}, \bar{\pi}\right)$ be contact bundles with Σ and $\bar{\Sigma}$. Let f be an isomorphism of Σ to $\bar{\Sigma}$ (cf. Def. 4 [4]). Then there exists a holomorphic homeomorphism f_{0} of M_{0} onto \bar{M}_{0} such that $\bar{\pi} \circ f=f_{0} \circ \pi$ and $f_{0}^{*} \bar{\Omega}=\Omega$, where Ω and $\bar{\Omega}$ denote the associated 2 -form to the contact bundles M and \bar{M} respectively.

Proof. Since f is an isomorphism of Σ to $\bar{\Sigma}, f(\xi)=\bar{\xi}$. Hence f is a fibre preserving map of M onto \bar{M}. Therefore f induces a diffeomorphism f_{0} of M_{0} onto \bar{M}_{0} such that $\bar{\pi} \circ f=f_{0} \circ \pi$. To prove that f is holomorphic, it is sufficient to prove that

$$
\bar{J} f_{0} X=f_{0} J X
$$

for all $X \in \mathfrak{B}\left(M_{0}\right), J$ and \bar{J} being the complex structures of M_{0} and \bar{M}_{0} respectively. Now

$$
\begin{equation*}
f_{0} J X=f_{0} \pi \phi X^{*}=\bar{\pi} f \phi X^{*}=\bar{\pi} \bar{\phi} f X^{*} . \tag{1.3}
\end{equation*}
$$

We shall next prove that

$$
\begin{equation*}
f X^{*}=\left(f_{0} X\right)^{*} \tag{1.4}
\end{equation*}
$$

In fact, $\bar{\eta}\left(f X^{*}\right)=\left(f^{*} \bar{\eta}\right) X^{*}=\eta\left(X^{*}\right)=0$, whence $f X^{*}$ is horizontal. On the other hand $\bar{\pi}\left(f X^{*}\right)=f_{0} \pi X^{*}=f_{0} X$, which proves (1.4). Inserting (1.4) into (1.3), we have

$$
f_{0} J X=\bar{\pi} \bar{\phi}\left(f_{0} X\right)^{*}=\bar{J} f_{0} X
$$

Thus Theorem 2 is proved.

2. Period functions of regular closed vector fields.

Definition 2. Let M be a differentiable manifold and let X be a vector field on M such that $X_{p} \neq 0$ for any $p \in M$. Then clearly X defines a 1 dimensional (involutive) distribution on M i.e. X defines a 1 -dimensional vector subspace of the tangent space of M at each point of M. Let C_{p} be the maximal integral curve of this distribution through the point $p . X$ is called regular if for each point $p_{0} \in M$ there exists a coordinates system $\left\{x_{1}, x_{2}, \cdots, x_{n}\right\}$ on a neighborhood $U\left(p_{0}\right)$ of p_{0} such that

$$
\begin{array}{rl}
x_{i}\left(p_{0}\right)=0 & i=1,2, \cdots, n \tag{i}\\
C_{p} \cap U\left(p_{0}\right)= & \left\{q \in U\left(p_{0}\right) \mid x_{i}(q)=x_{i}(p) i=2,3, \cdots, n\right\}
\end{array}
$$

for all point $p \in U\left(p_{0}\right)$.
Definition 3. Let X be a regular vector field on M. We shall call X a (regular) closed vector field on M, if for each $p \in M, C_{p}$ is a closed curve. When X is a closed vector field, $\varphi_{t}=\exp t X$ denoting the 1-parameter group of transformations on M generated by X, we define a function $\lambda_{X}(p)$ on M as follows:

$$
\lambda_{x}(p)=\inf \left\{t \mid t>0, \phi_{t}(p)=p\right\} .
$$

We shall call $\lambda_{x}(p)$ the period function of X. We shall denote frequently $t \cdot p=(\exp t X) \cdot p$ for $-\infty<t<\infty, p \in M$, whenever there is no confusion.

It is to be noted that $\lambda_{x}(p)>0$ for each $p \in M$ by the regularity of X.
For the period function $\lambda(p)=\lambda_{X}(p)$ of a closed vector field X we have the following lemma (cf. [1] p. 722).

Lemma 1. The period function $\lambda(p)$ is a differentiable function on M, especially it is continuous.

THEOREM 3. Let (ϕ, ξ, η) be a normal almost contact structure on M. Suppose that ξ is a closed vector field such that its period function $\lambda_{\xi}(p)$ is a constant. Then there exist a complex manifold M_{0} and $a C^{\infty}$-map π of M onto M_{0} such that $M\left(M_{0}, S^{1}, \pi\right)$ is a principal circle bundle over M_{0}, η is a connection form on M and ξ is a vertical vector field on M.

PRoof. Let $\lambda_{5}(p)=c_{0}=$ const. Then the torus group $S^{1}=R / Z \cdot c_{0}$ of real numbers modulo c_{0} operates on M by

$$
(t, p) \rightarrow \varphi_{t}(p) \quad \text { for } t \in R, p \in M
$$

where $\varphi_{t}=\exp t \xi$ is the 1-parameter group of transformations of M generated by ξ. Clearly the only element of S^{1} having a fixed point in M is the identity. Hence by a well known theorem [2] and the same argument in [1] p.725, M has a S^{1}-bundle structure. Let M_{0} be the base space of this bundle. To prove that η defines a connection form on M it is sufficient to prove that η is right invariant. For this it suffices to see that the Lie derivative of η with respect to ξ vanishes identically i. e. $\xi \cdot \eta(X)-\eta([\xi, X])=0$ for $X \in \mathfrak{N}(M)$. However, this is an immediate consequence of (2.7) [4] by putting $Y=\xi$. Hence the bundle $M\left(M_{0}, S^{1}, \pi\right)$ satisfies the conditions of Theorem 1 and thus M_{0} has a complex structure, which proves Theorem 3.

Now we want to prove that if the vector field ξ of a normal almost contact structure (ϕ, ξ, η) on M is closed, the period function of ξ is necessarily constant on M. For this purpose we shall prove the following theorem which may be considered as an analogue of Lemma 1 for the complex case.

THEOREM 4. Let M be a complex manifold and X be an analytic vector field on M, i.e. X generates a local 1-parameter group of holomorphic transformations of M. Suppose that X and $J X$ are both closed vector fields, J denoting the complex structure of M. Put $f(p)=\lambda_{X}(p)+\sqrt{-1} \lambda_{J X}(p)$.

Then f is a holomorphic function on M.
Proof. Put $\widetilde{X}=X-\sqrt{-1} J X$. Then \widetilde{X} is a holomorphic vector field on M, i.e. $\widetilde{\mathrm{X}}$ can be expressed locally as follows:

$$
\widetilde{\mathrm{X}}=\sum_{i=1}^{n} h_{i}(w) \frac{\partial}{\partial w_{i}}
$$

for complex coordinates system $\left\{w_{1}, \cdots, w_{n}\right\}$, where $h_{i}=h_{i}\left(w_{1}, \cdots, w_{n}\right)$ is a holomorphic function for $i=1,2, \cdots, n$. Fix a point $p_{0} \in M$. Since $X \neq 0$ on M, by a well known theorem, we can find a complex coordinates system $\left\{z_{1}, \cdots, z_{n}\right\}$ on a neighborhood $U=U\left(p_{0}\right)$ of p_{0} such that

$$
\begin{equation*}
z_{i}\left(p_{0}\right)=0 \tag{i}
\end{equation*}
$$

$$
i=1,2, \cdots, n
$$

(ii) $\quad \widetilde{X}=\frac{\partial}{\partial z_{1}}$
on U.
Let C denote the additive group of complex numbers. Then C operates holomorphically on M by $z \cdot p=\exp t X \cdot \exp s J X \cdot p$, for $z=t+\sqrt{ }-1 s$ and $p \in M$. We note here that $\exp t X$ and $\exp s J X$ commutes since $[X, J X]$ $=0$. Put $f\left(p_{0}\right)=z^{0}=x^{0}+\sqrt{-1} y^{0}, x^{0}$ and y^{0} being real and put

$$
z_{1}(z \cdot p)=g\left(z, z_{1}(p), \cdots, z_{n}(p)\right)
$$

for $\left|z-z^{0}\right|<\varepsilon$ and $p \in U, \varepsilon$ being sufficiently small. Since \widetilde{X} is a holomorphic vector field, the function $g\left(z, z_{1}, \cdots, z_{n}\right)$ is holomorphic for $\left|z-z^{0}\right|<\varepsilon,\left|z_{i}\right|$ $<a$ for some $a>0$. We want to solve the equation

$$
g\left(z, 0, z_{2}, \cdots, z_{n}\right)=0
$$

for z. For this, we show first that

$$
\frac{\partial g}{\partial z}\left(z^{0}, 0, \cdots, 0\right) \neq 0
$$

In fact,

$$
\begin{aligned}
& \frac{\partial g}{\partial z}\left(z^{0}, 0, \cdots, 0\right)=\lim _{z \rightarrow 0} \frac{g\left(z^{0}+z, 0 \cdots 0\right)-g\left(z^{0}, 0 \cdots 0\right)}{z} \\
& \quad=\lim _{z \rightarrow 0} \frac{z_{1}\left(\left(z^{0}+z\right) \cdot p_{0}\right)-z_{1}\left(z^{0} \cdot p_{0}\right)}{z} \\
& \quad=\lim _{z \rightarrow 0} \frac{z_{1}\left(z \cdot p_{0}\right)-z_{1}\left(p_{0}\right)}{z} \\
& \quad=\lim _{t \rightarrow 0} \frac{z_{1}\left(t \cdot p_{0}\right)-z_{1}\left(p_{0}\right)}{t} \\
& \quad=X_{p_{0}}\left(z_{1}\right)=\left(\frac{\partial}{\partial x_{1}}\right)_{p_{0}}\left(x_{1}+\sqrt{-1} y_{1}\right)=\left(\frac{\partial}{\partial x_{1}}\right)_{p_{0}}\left(x_{1}\right)=1,
\end{aligned}
$$

where we have put $z_{1}=x_{1}+\sqrt{-1} y_{1}, x_{1}$ and y_{1} being real. Using the existence theorem of implicit functions, we can find a holomorphic function $h\left(z_{2}, \cdots, z_{n}\right)$ in $\left|z_{i}\right|<a(i=2, \cdots, n)$ such that

$$
\left\{\begin{array}{l}
h(0, \cdots, 0)=z^{0} \\
g\left(h\left(z_{2}, \cdots, z_{n}\right), 0, z_{2}, \cdots, z_{n}\right)=0
\end{array}\right.
$$

Next we shall prove that there exists a neighborhood $U_{1} \subset U$ of p_{0} such that

$$
\begin{equation*}
f(p)=h\left(z_{2}(p), \cdots, z_{n}(p)\right) \tag{2.1}
\end{equation*}
$$

for $p \in U_{1}$. For this purpose we shall prove the following lemma essentially proved in [1].

Lemma 2. Let X be a closed vector field on a differentiable manifold M and $\lambda(p)=\lambda_{x}(p)$ its period function. Let $\left\{x_{1}, \cdots, x_{m}\right\}$ be a system of coordinates on a neighborhood U of p_{0} such that

$$
\begin{equation*}
X_{p}=\left(\frac{\partial}{\partial x_{\alpha}}\right)_{p} \quad \text { for } p \in U \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
x_{i}\left(p_{0}\right)=0 \quad i=1,2, \cdots, m . \tag{ii}
\end{equation*}
$$

Put $x_{\alpha}(t \cdot p)=g\left(t, x_{1}(p), \cdots, x_{m}(p)\right)$. Suppose that $m \geqq 3$ and that there exists
a continuous function $h\left(x_{1}, \cdots, \hat{x}_{\alpha}, \cdots, \hat{x}_{\beta}, \cdots, x_{m}\right)$ for some β such that

$$
\begin{align*}
& h(0, \cdots, 0)=\lambda\left(p_{0}\right) \tag{iii}\\
& g\left(h\left(x_{1}, \cdots, \hat{x}_{\alpha}, \cdots, \hat{x}_{\beta}, \cdots, x_{m}\right), x_{1}, \cdots, x_{\alpha-1}, 0, x_{\alpha+1}\right.
\end{align*}
$$

$$
\left.\cdots, x_{\beta-1}, 0, x_{\beta+1}, \cdots, x_{m}\right)=0
$$

for $\left|x_{i}\right|<a$, a being sufficiently small positive number, where \wedge denotes the omission of the letter under the \wedge.

Then there exists a neighborhood U_{1} of p_{0} contained in U such that

$$
\lambda(p)=h\left(x_{1}(p), \cdots, \hat{x}_{\alpha}(p), \cdots, \hat{x}_{\beta}(p), \cdots, x_{m}(p)\right)
$$

for $p \in U_{1}$ satisfying $x_{\beta}(p)=0$.
Proof. If this lemma were false, there would exist a sequence of points $\left\{p_{v}\right\}_{v=1}^{\infty}$ such that $p_{v} \rightarrow p_{0}(\nu \rightarrow \infty), x_{\beta}\left(p_{v}\right)=0$ and that

$$
\lambda\left(p_{v}\right) \neq h\left(x_{1}\left(p_{v}\right), \cdots, \hat{x}_{\alpha}\left(p_{v}\right), \cdots, \widehat{x}_{\beta}\left(p_{v}\right), \cdots, x_{m}\left(p_{v}\right)\right)>0
$$

We can suppose that $x_{\alpha}\left(p_{v}\right)=0$ by virtue of (i). Now

$$
\begin{aligned}
& x_{\alpha}\left(h\left(x_{1}\left(p_{v}\right), \cdots, \hat{x}_{\alpha}\left(p_{v}\right), \cdots, \hat{x}_{\beta}\left(p_{v}\right), \cdots, x_{m}\left(p_{v}\right)\right) \cdot p_{v}\right) \\
& =g\left(h\left(x_{1}\left(p_{v}\right), \cdots, \hat{x}_{\alpha}\left(p_{v}\right), \cdots, \hat{x}_{\beta}\left(p_{v}\right), \cdots, x_{m}\left(p_{v}\right)\right), \cdots, x_{1}\left(p_{v}\right),\right. \\
& \cdots, x_{\alpha-1}\left(p_{v}\right), 0, x_{\alpha+1}\left(p_{v}\right), \cdots, x_{\beta-1}\left(p_{v}\right), 0, x_{\beta+1}\left(p_{v}\right), \\
& \left.\cdots, x_{m}\left(p_{v}\right)\right)=0 .
\end{aligned}
$$

Hence we can find an integer $k_{v}>1$ such that

$$
h\left(x_{1}\left(p_{v}\right), \cdots, \hat{x}_{\alpha}\left(p_{v}\right), \cdots, \hat{x}_{\beta}\left(p_{v}\right), \cdots, x_{m}\left(p_{v}\right)\right)=k_{v} \cdot \lambda\left(p_{v}\right)
$$

By the continuity of h

$$
\begin{aligned}
h\left(x_{1}\left(p_{v}\right), \cdots, \hat{x}_{\alpha}\left(p_{v}\right), \cdots, \hat{x}_{\beta}\left(p_{v}\right), \cdots, x_{m}\left(p_{v}\right)\right) \rightarrow h(0, \cdots, 0) & =\lambda\left(p_{0}\right) \\
(\nu & \rightarrow \infty) .
\end{aligned}
$$

Hence $k_{v} \cdot \lambda\left(p_{v}\right) \rightarrow \lambda\left(p_{0}\right)(\nu \rightarrow \infty)$. On the other hand, by virtue of Lemma 1 , $\lambda(p)$ is continuous, so $\lambda\left(p_{v}\right) \rightarrow \lambda\left(p_{0}\right)(\nu \rightarrow \infty)$. Therefore we have

$$
\lambda\left(p_{0}\right)=\lim k_{v} \cdot \lambda\left(p_{v}\right) \geqq \lim 2 \lambda\left(p_{v}\right)=2 \lambda\left(p_{0}\right)
$$

which implies $\lambda\left(p_{0}\right)=0$. This contradiction completes the proof of Lemma 2.
Return now to the proof of Theorem 4. Let $\pi: U \rightarrow U$ be the map such that

$$
\left\{\begin{array}{l}
z_{1}(\pi p)=0 \\
z_{i}(\pi p)=z_{i}(p) \quad(i \geqq 2)
\end{array}\right.
$$

for $p \in U$. Put

$$
g_{1}\left(t, x_{1}(p), y_{1}(p), z_{2}(p), \cdots, z_{n}(p)\right)=x_{1}(t \cdot p)
$$

and put

$$
h\left(z_{2}, \cdots, z_{n}\right)=h_{1}\left(z_{2}, \cdots, z_{n}\right)+\sqrt{-1} h_{2}\left(z_{2}, \cdots, z_{n}\right),
$$

h_{1} and h_{2} being real. We shall prove that

$$
g_{1}\left(h_{1}\left(z_{2}(p), \cdots, z_{n}(p)\right), 0,0, z_{2}(p), \cdots, z_{n}(p)\right)=0
$$

for $p \in U^{\prime}$, where U^{\prime} is a neighborhood of p_{0} contained in U. In fact,

$$
\begin{aligned}
& g_{1}\left(h_{1}\left(z_{2}(p), \cdots, z_{n}(p)\right), 0,0, z_{2}(p), \cdots, z_{n}(p)\right) \\
& =\operatorname{Re} g\left(h_{1}\left(z_{2}(p), \cdots, z_{n}(p)\right), 0,0, z_{2}(p), \cdots, z_{n}(p)\right) \\
& =\operatorname{Re} z_{1}\left(h_{1}\left(z_{2}(p), \cdots, z_{n}(p)\right) \cdot \pi p\right) \\
& =x_{1}\left(h_{1}\left(z_{2}(p), \cdots, z_{n}(p)\right) \cdot \pi p\right) \\
& =x_{1}\left(\sqrt{-1} h_{2}\left(z_{2}(p), \cdots, z_{n}(p)\right) \cdot h_{1}\left(z_{2}(p), \cdots, z_{n}(p)\right) \cdot \pi p\right) \\
& =x_{1}\left(h\left(z_{2}(p), \cdots, z_{n}(p)\right) \cdot \pi p\right) \\
& =\operatorname{Re} z_{1}\left(h\left(z_{2}(p), \cdots, z_{n}(p)\right) \cdot \pi p\right) \\
& =\operatorname{Re} g\left(h\left(z_{2}(p), \cdots, z_{n}(p)\right), 0, z_{2}(p), \cdots, z_{n}(p)\right)=0,
\end{aligned}
$$

where we have used the commutativity $[X, J X]=0$ in the fifth equality. By virtue of Lemma 2 there exists a neighborhood U_{1}^{\prime} of p_{0} contained in U^{\prime} such that $\lambda_{X}(p)=h_{1}\left(z_{2}(p), \cdots, z_{n}(p)\right)$ for $p \in U_{1}^{\prime}$ satisfying $y_{1}(p)=0$. In the same way, using Lemma 2 again, we can find a neighborhood $U_{1}^{\prime \prime}$ of p_{0} contained in U_{1}^{\prime} such that

$$
\lambda_{J X}(p)=h_{2}\left(z_{2}(p), \cdots, z_{n}(p)\right)
$$

for $p \in U_{1}^{\prime \prime}$ satisfying $x_{1}(p)=0$. From this it follows that

$$
\begin{equation*}
f(p)=h\left(z_{2}(p), \cdots, z_{n}(p)\right) \tag{2.1}
\end{equation*}
$$

for $p \in U_{1}^{\prime \prime}$ satisfying $z_{1}(p)=0$. On the other hand it is easy to see that $f(p)$ $=f(z \cdot p)$ for z with sufficiently small $|z|$. Hence we conclude that there exists a neighborhood U_{1} of p_{0} contained in $U_{1}^{\prime \prime}$ such that (2.1) holds for $p \in U_{1}$. Hence f is holomorphic in U_{1}, which completes the proof of Theorem 4.

In the rest of $\S 2, M$ is assumed to be connected.
THEOREM 5. Let (ϕ, ξ, η) be a normal almost contact structure on M such that ξ is a closed vector field on M. Then the period function λ_{ξ} of ξ is a constant on M.

Proof. Put $\widetilde{M}=M \times S^{1}, S^{1}$ being the 1 -dimensional torus with the natural (normal) almost contact structure. Then \widetilde{M} has a complex structure J induced by (ϕ, ξ, η). Consider ξ as a vector field on \widetilde{M}. Then ξ is an analytic vector field on \widetilde{M} with respect to J, since (ϕ, ξ, η) is normal. Let $f(\widetilde{p})=\lambda_{\xi}(\widetilde{p})+\sqrt{-1}$ $\lambda_{J \xi}(\tilde{p})$ be the function associated to ξ as in Theorem 4. It is clear that $\lambda_{J \xi}(\tilde{p})$ is
constant, so $\lambda_{\xi}(\tilde{p})$ is also constant since $f(\tilde{p})$ is holomorphic on \tilde{M}. On the other hand, since $\lambda_{\xi}(\widetilde{p})=\lambda_{\xi}(p)$ for $\widetilde{p}=(p, t), t \in S^{1}, \quad p \in M, \lambda_{\xi}(p)$ is also constant on M, which completes the proof.

Corollary 1. Let (ϕ, ξ, η) be a normal almost contact structure on M such that ξ is a closed vector field on M. Then M has a circle bundle structure over a complex manifold M_{0}.

In fact, since the period function of ξ is constant we can apply Theorem 3.
Corollary 2. Let (ϕ, ξ, η) be a normal almost contact structure on a compact manifold M such that ξ is a regular vector field on M. Then M has a circle bundle structure as in Corollary 1.

In fact, every maximal integral curve of a regular vector field on M is a closed set in M, so compact in M, which says that ξ is a closed vector field on M. Hence we can apply Corollary 1.

In the case when ξ is a proper vector field, i.e. ξ generates a global 1-parameter group $\exp t \xi(-\infty<t<\infty)$ of transformations on M, we want to show that ξ is a closed vector field if there exists one point $p_{0} \in M$ such that the maximal integral curve $C_{p_{0}}$ through p_{0} is a closed curve. For this purpose we prepare the following two lemmas.

For a proper vector field X we define $\lambda_{X}(p)$ as in Def. 3, while $\lambda_{X}(p)$ $=\infty$ if $t \cdot p \neq p$ for any $t>0$.

Lemma 3. Let X be a regular, proper vector field on a differentiable manifold M. Let M^{0} be the set of all points $p \in M$ such that $\lambda_{x}(p)<\infty$. Then M^{0} is open in M.

Proof. Let $p_{0} \in M^{0}$. Then there exists a system of coordinates $\left\{x_{1}, x_{2}, \cdots\right.$, $\left.x_{n}\right\}$ on an open neighbourhood U of p_{0} such that (i) (ii) of Def. 2 are satisfied. Put $\lambda_{x}\left(p_{0}\right)=\lambda_{0}$. We can assume that $\left|x_{1}\right|<\lambda_{0}$ on U and that $X=\frac{\partial}{\partial x_{1}}$ on U. By the continuity of $\exp \lambda_{0} X$ we can find an open neighborhood V of p_{0} contained in U such that $\lambda_{0} \cdot V \subset U$. We shall show that $V \subset M^{\circ}$. Take a point $p \in V$. Then $\lambda_{0} \cdot p \in U$. Now by the property (ii) there exists a real number t such that $\lambda_{0} \cdot p=t \cdot p,|t|<\lambda_{0}$. Hence $\left(\lambda_{0}-t\right) \cdot p=p$ holds. Since $\lambda_{0}-t>0$, it follows $p \in M^{0}$, which proves $V \subset M^{0}$, q.e.d.

Lemma 4. Let X be a regular, proper vector field on M. Let $p_{0} \in M$ such that $\lambda_{x}\left(p_{0}\right)=\infty$. Then for each positive number K there exists an open neighborhood U of p_{0} such that $\lambda(p) \geqq K$ for any $p \in U$.

Proof. Let $\left\{x_{1}, x_{2}, \cdots, x_{n}\right\}$ be a system of coordinates on an open neighbourhood U_{0} of p_{0} satisfying (i) (ii) of Def.2. We can assume that there exists a
positive number $K_{1}<K$ such that $\left|x_{1}\right|<K_{1}$ on U_{0} and that $X=\frac{\partial}{\partial x_{1}}$ on U. Put $A=\left\{t \cdot p_{0} \left\lvert\, \frac{K_{1}}{2} \leqq t \leqq K\right.\right\}$. Since $p_{0} \nsubseteq A$, there exist open sets W and U_{1} such that $A \subset W, p_{0} \in U_{1} \subset U_{0}$ and $W \cap U_{1}=\varnothing$. Now it is easy to find an open neighbourhood U of p_{0} contained in U_{1} such that $t \cdot p \in W$ for $\frac{K_{1}}{2} \leqq t \leqq$ K and $p \in U$. We shall show that $\lambda(p)>K$ for $p \in U$. Take a point $p \in U$ and t such that $0<t \leqq K$. If $t \leqq \frac{K_{1}}{2}$, then $t \cdot p \neq p$ holds by (ii). If $t \geqq \frac{K_{1}}{2}$, then $t \cdot p \in W$, so $t \cdot p \notin U_{1}$. Hence $t \cdot p \neq p$ for $0<t \leqq K$, which shows $\lambda(p)$ $\geqq K$, q.e.d.

THEOREM 6. Let (ϕ, ξ, η) be a normal almost contact structure on a connected manifold M, such that ξ is a regular, proper vector field on M. Suppose that $\lambda_{\xi}\left(p_{0}\right)<\infty$ for some $p_{0} \in M$, then $\lambda_{\xi}(p)<\infty$ for any $p \in M$, i.e. ξ is a closed vector field on M.

Proof. Let M^{0} be the set of points p for which $\lambda_{5}(p)<\infty$, then M^{0} is open in M by Lemma 3. Put $\lambda_{0}=\lambda_{\xi}\left(p_{0}\right)$, and $M_{1}=\left\{p \in M \mid \lambda_{\xi}(p)=\lambda_{0}\right\}$. Let ($\phi^{0}, \xi^{0}, \eta^{0}$) be the restriction of (ϕ, ξ, η) to the open submanifold M^{0}. Since (ϕ^{0}, ξ^{0}, η^{0}) is normal, we can apply Theorem 5. Hence $\lambda_{\xi^{0}}=\lambda_{\xi} \mid M^{0}$ is constant on each connected component of M^{0}. From this it follows that M_{1} is open in M. Next we shall prove that M_{1} is closed in .M. Take a sequence of points $p_{v} \in$ $M_{1}(\nu=1,2, \cdots)$ such that $p_{\nu} \rightarrow q \in M(\nu \rightarrow \infty)$. If $\lambda_{\xi}(q)=\infty$, then by Lemma 4 for $K=2 \lambda_{0}$, we can find an open neighbourhood U of q such that $\lambda_{5}(p) \geqq$ $2 \lambda_{0}$ for $p \in U$. Since $p_{v_{0}} \in U$ for a sufficiently large $\nu_{0}, \lambda_{0}=\lambda_{\xi}\left(p_{v_{0}}\right) \geqq 2 \lambda_{0}$ implies a contradiction. Hence $\lambda_{\xi}(q)<\infty$, so $q \in M^{0}$. Now, since $\lambda_{\xi 0}(p)$ is a continuous function on M^{0} by Lemma $1, \lambda_{\xi}(q)=\lim \lambda_{5}\left(p_{v}\right)=\lambda_{0}$. Hence $q \in M_{1}$, which proves that M_{1} is closed in M. Since M is connected, the non empty open, closed set M_{1} coincides with M, which proves Theorem 6.
3. Family of contact bundles over a complex manifold. We shall define the product of two contact bundles (M, Σ) and ($\bar{M}, \bar{\Sigma}$) over a complex manifold M_{0}, (cf. Def. 1). First we recall the definition of the product (or called sometimes sum) of the principal circle bundles M and \bar{M} (cf. e.g. [3]). Let $M=M\left(M_{0}, S^{1}\right.$, $\pi)$ and $\bar{M}=\bar{M}\left(M_{0}, S^{1}, \bar{\pi}\right) . \Delta(M \times \bar{M})$ denotes the set of all elements $(p, \bar{p}) \in M$ $\times \bar{M}$ such that $\pi(p)=\bar{\pi}(\bar{p})$. We say that two elements (p, \bar{p}) and (q, \bar{q}) of $\Delta(M$ $\times \bar{M})$ are equivalent if there exists an element $a \in S^{1}$ such that

$$
p \cdot a=q, \bar{p} \cdot a^{-1}=\bar{q} .
$$

We denote by $M \cdot \bar{M}$ the quotient space of $\Delta(M \times \bar{M})$ by this equivalence relation. The projection from $\Delta(M \times \bar{M})$ onto M_{0} induces a projection from
$M \cdot \bar{M}$ onto M_{0}, which we shall denote by $\tilde{\pi}=\pi \cdot \bar{\pi}$. The action of S^{1} on $\Delta(M \times \bar{M})$ defined by $(p, \bar{p}) \cdot a=(p \cdot a, \bar{p}),(p, \bar{p}) \in \Delta(M \times \bar{M}), a \in S^{1}$ preserves the equivalence relation, hence it defines the action of S^{1} on $M \cdot \bar{M}$. The bundle $M \cdot \vec{M}\left(M_{0}, S^{1}, \widetilde{\pi}\right)$ is, by definition, the product of M and \bar{M}. It is known that the family of circle bundles over M_{0} form a multiplicative abelian group by this multiplication, the unit element being the trivial circle bundle over M_{0}.

Let now $\Sigma=(\phi, \xi, \eta)$ and $\bar{\Sigma}=(\bar{\phi}, \bar{\xi}, \bar{\eta})$. We define a linear differential form $\eta \times \bar{\eta}$ on $M \times \bar{M}$ as follows:

$$
\eta \times \bar{\eta}=\rho^{*}(\eta)+\bar{\rho}^{*}(\bar{\eta}),
$$

where ρ and $\bar{\rho}$ are the natural projection from $M \times \bar{M}$ onto M and \bar{M} respect ively. We denote also by $\eta \times \bar{\eta}$ the restriction of $\eta \times \bar{\eta}$ to $\Delta(M \times \bar{M})$. Then there exists an unique differential form $\tilde{\eta}$ on $M \cdot \bar{M}$ such that

$$
\mu^{*}(\tilde{\eta})=\eta \times \bar{\eta}
$$

where μ is the natural projection of $\Delta(M \times \bar{M})$ onto $M \cdot \bar{M}$. We can see that $\tilde{\eta}$ defines a connection on $M \cdot \bar{M}$ and the 2 -forms $\Omega, \bar{\Omega}$ and $\widetilde{\Omega}$ associated to the connections $\eta, \bar{\eta}$ and $\tilde{\eta}$ respectively satisfy

$$
\widetilde{\Omega}=\Omega+\bar{\Omega} .
$$

(For the proof, cf. [3] p.32). We denote $\tilde{\eta}=\eta \cdot \bar{\eta}$.
We want now to define the product $\bar{\phi}=\phi \cdot \bar{\phi}$ of ϕ and $\bar{\phi}$ as follows. As usual we denote by $T_{p}(M)$ the tangent space of M at p. Then we see that the tangent space $T_{(p, \bar{p})}(\Delta(M \times \bar{M}))$ can be identified with the subspace $T^{0}{ }_{(p, \overline{\bar{p}})}(M$ $\times \bar{M})$ of $T_{(p, \bar{p})}(M \times \bar{M})$ defined by

$$
T_{(p, \bar{p})}^{0}(M \times \bar{M})=\left\{(X, \bar{X}) \in T_{(p, \bar{p})}(M \times \bar{M}) \mid \pi X=\bar{\pi} \bar{X}\right\} .
$$

Lemma 5. Let $\left(X_{p}, \bar{X}_{\bar{p}}\right) \in T_{(p, \bar{p})}(\Delta(M \times \bar{M}))$ and $\left(X_{q}^{\prime}, \bar{X}_{\bar{q}}^{\prime}\right) \in T_{(q, \bar{q})}(\Delta(M \times \bar{M}))$. Then, $\mu\left(X_{p}, \bar{X}_{\bar{p}}\right)=\mu\left(X_{q}^{\prime}, \bar{X}_{\bar{q}}^{\prime}\right)$ implies $\mu\left((J \pi X)_{p}^{*}\right.$, $\left.(J \pi X)_{\bar{p}}^{*}\right)=\mu\left(\left(J \pi X_{q}^{\prime}\right)_{q}^{*},\left(J_{\pi}^{\prime} X_{q}^{\prime}\right)_{\bar{q}}^{*}\right)$, where $Y_{p}^{*}\left(Y_{\bar{p}}^{*}\right.$ resp. $)$ denotes the lift of $Y(\bar{Y}$ resp.) at p (at $\overline{\bar{p}}$ resp.) with respect to the connection η ($\bar{\eta}$ resp.).

Proof. Let θ be the projection of $\Delta(M \times \bar{M})$ onto M_{0}. For an element $a \in S^{1}$ we define the map Q_{a} of $\Delta(M \times \bar{M})$ onto itself by

$$
Q_{a}(p, \bar{p})=\left(p a, \bar{p} a^{-1}\right)
$$

for $(p, \bar{p}) \in \Delta(M \times \bar{M})$. Then clearly $\mu \circ Q_{a}=\mu$, and $\theta=\tilde{\pi} \circ \mu$ hold. Now by the assumption

$$
\tilde{\pi} \mu\left(X_{p}, \bar{X}_{\bar{p}}\right)=\tilde{\pi} \mu\left(X_{q}^{\prime}, \bar{X}_{\bar{q}}^{\prime}\right) .
$$

Hence

$$
\pi X_{p}=\theta\left(X_{p}, \bar{X}_{\bar{p}}\right)=\theta\left(X_{q}^{\prime}, \bar{X}_{\bar{q}}^{\prime}\right)=\pi X_{q}^{\prime} .
$$

Since $\mu(p, \bar{p})=\mu(q, \bar{q})$, there exists an element $a \in S^{1}$ such that $q=p \cdot a, \bar{q}=$ $\bar{p} \cdot a^{-1}$. Therefore we have

$$
\left(J_{\pi} X_{q}^{\prime}\right)_{q}^{*}=\left(J \pi X_{q}^{\prime}\right)_{p \cdot a}^{*}=R_{a}\left(J \pi X_{p}\right)_{p}^{*}
$$

and

$$
\left(J_{\pi} X_{q}^{\prime}\right)_{\overline{\tilde{q}}}^{\overline{\tilde{q}}}=R_{a^{-1}}\left(J_{\pi} X_{p}\right)_{\overline{\tilde{p}}}^{\overline{\tilde{V}}}
$$

Hence

$$
\begin{aligned}
& \mu\left(\left(J \pi X_{q}^{\prime}\right)_{q}^{*},\left(J \pi X_{q}^{\prime}\right)_{\underset{q}{*}}^{*}\right)=\mu\left(R_{a}\left(J \pi X_{p}\right)_{p}^{*}, R_{a^{-1}}\left(J \pi X_{p}\right)_{\tilde{p}}^{\frac{*}{p}}\right) \\
& =\mu \circ Q_{a}\left(\left(J \pi X_{p}\right)_{p}^{*},\left(J \pi X_{p}\right)_{\bar{p}}^{*}\right) \\
& =\mu\left(\left(J \pi X_{p}\right)_{p}^{*},\left(J \pi X_{p}\right)_{\bar{p}}^{\bar{*}}\right), \quad \text { q.e.d. }
\end{aligned}
$$

By virtue of Lemma 5 we can define a tensor field $\bar{\phi}$ of type (1.1) on M. \bar{M} as follows:

$$
\begin{equation*}
\tilde{\phi}\left(\mu\left(X_{p}, \bar{K}_{\bar{p}}\right)\right)=\mu\left(\left(J_{\pi} X_{p}\right)_{p}^{*},(J \pi X)_{\bar{p}}^{\bar{*}}\right) \tag{3.2}
\end{equation*}
$$

for $\left(X_{p}, \bar{X}_{\bar{p}}\right) \in T_{(p, \bar{p})}(\Delta(M \times \bar{M}))$.
Next we define a vector field $\tilde{\xi}$ on $M \cdot \vec{M}$ as follows:

$$
\begin{equation*}
\tilde{\xi}_{\mu(p, \bar{p})}=\mu\left(\xi_{p}, 0_{\bar{p}}\right), \tag{3.3}
\end{equation*}
$$

where $0_{\bar{p}}$ denotes the zero tangent vector of \bar{M} at \bar{p}. We see easily that $\tilde{\xi}$ is well defined by (3.3) and $\tilde{\xi}$ is a vertical vector field of $M \cdot \bar{M}$ such that

$$
\tilde{\eta}(\tilde{\xi})=1
$$

Now we have the following proposition
Proposition 1. $\widetilde{\Sigma}=(\widetilde{\phi}, \tilde{\xi}, \tilde{\eta})$ is a normal almost contact structure on $M \cdot \bar{M}$.

Proof. For $X_{p_{0}} \in T_{p_{0}}\left(M_{0}\right)$ and $\pi p=p_{0}$ we denote by $X^{\%_{\mu(p, \bar{p})}}$ the lift of $X_{p_{0}}$ at $\mu(p, \bar{p})$ with respect to the connection $\tilde{\eta}$. Then it is easily seen that $X^{\tilde{*}_{\mu(p, \bar{p})}}$ $=\mu\left(X_{p}^{*}, X_{\bar{p}}^{*}\right)$. Hence by the definition (3.2) of $\tilde{\phi}$ we have

$$
\widetilde{\phi}\left(X_{\mu(p, \bar{p})}^{\tilde{p}^{2}}\right)=\widetilde{\phi}\left(\mu\left(X_{p}^{*}, X_{\tilde{p}}^{*}\right)\right)=\mu\left(\left(J X_{p_{0}}\right)_{p}^{*},\left(J X_{p_{0}}\right)_{\bar{p}}^{*}\right)=\left(J X_{p_{0}}\right)_{\mu(p, \bar{p})}
$$

which shows that

$$
\tilde{\phi}\left(X^{\tilde{*}}\right)=(J X)^{\tilde{\#}}
$$

for $X \in \mathfrak{Z}\left(M_{0}\right)$. By virtue of (3.1) we see that the associated 2 -form $\widetilde{\Omega}$ to $\tilde{\eta}$ is of type (1.1) with respect to J. Now in the same way as the proof of Theorem $6[4]$ we can prove that $\widetilde{\Sigma}$ is a normal almost contact structure of $M \cdot \bar{M}$. We shall not repeat the proof in detail.

Definition 4. $\widetilde{\Sigma}$ in Proposition 1 will be called the product of Σ and $\bar{\Sigma}$ and denoted by $\widetilde{\Sigma}=\Sigma \cdot \bar{\Sigma}$.

Definition 5. Let $L_{0}\left(M_{0}, S^{1}, \pi_{0}\right)$ be the trivial circle bundle over M_{0}, i. e. $L_{0}=M_{0} \times S^{1}$ and π_{0} is the usual projection from L_{0} onto M_{0}. We define the normal almost contact structure $\Sigma_{0}=\left(\phi_{0}, \xi_{0}, \eta_{0}\right)$ on L_{0} as follows:

$$
\begin{aligned}
& \phi_{0}(X, Y)=(J X, 0) \quad X \in T_{p_{0}}\left(M_{0}\right), Y \in T_{a}\left(S^{1}\right), \\
& \xi_{0}=\left(0, \frac{d}{d t}\right) \\
& \eta_{0}=(0, d t)
\end{aligned}
$$

where t denotes the coordinates of S^{1}.
.Lemma 6. Let $(M, \Sigma),(\bar{M}, \bar{\Sigma})$ be contact bundles over the same complex manifold M_{0}. Let $\Sigma=(\phi, \xi, \eta)$ and $\bar{\Sigma}=(\bar{\phi}, \bar{\xi}, \bar{\eta})$. Suppose that there is a bundle isomorphism f of M onto \bar{M} such that $f^{*} \bar{\eta}=\eta$. Then $f^{-1} \bar{\phi} f=\phi$ holds, i.e. Σ and $\bar{\Sigma}$ are isomorphic by f.

Proof. Put $\phi^{\prime}=f^{-1} \bar{\phi} f$. First we note that $f\left(X^{*}\right)=X^{\bar{*}}$ for $X \in \mathfrak{B}\left(M_{0}\right)$, since f is a bundle isomorphism such that $f^{*} \bar{\eta}=\eta$. Then for $X \in \mathfrak{B}\left(M_{0}\right)$ we have

$$
\phi^{\prime}\left(X^{*}\right)=f^{-1} \bar{\phi} f X^{*}=f^{-1} \bar{\phi} X^{F}=f^{-1}(J X)^{\bar{*}}=(J X)^{*}=\phi\left(X^{*}\right) .
$$

On the other hand we have $\phi^{\prime}(\xi)=\phi(\xi)=0$. Hence $\phi^{\prime}(X)=\phi(X)$ for any $X \in$ $\mathfrak{B}(M)$, which proves the lemma.

Lemma 7. Let $(M, \Sigma),\left(M_{1}, \Sigma_{1}\right),(\bar{M}, \bar{\Sigma})$ and $\left(\bar{M}_{1}, \Sigma_{1}\right)$ be contact bundles over the same complex manifold M_{0}. If $\Sigma \simeq \Sigma_{1}$ and $\bar{\Sigma} \cong \bar{\Sigma}_{1}$, then $\Sigma \cdot \bar{\Sigma} \simeq \Sigma_{1} \cdot \bar{\Sigma}_{1}$.

Proof. Let f (g resp.) be an isomorphism of Σ to Σ_{1} (of $\bar{\Sigma}$ to $\bar{\Sigma}_{1}$ resp.). Then the bundle isomorphisms f and g induce an bundle isomorphism h of $M \cdot \bar{M}$ onto $M_{1} \cdot \bar{M}_{1}$ such that $h^{*}\left(\eta_{1} \cdot \bar{\eta}_{1}\right)=\eta \cdot \bar{\eta}$, where η, for example, is the contact form of Σ, i. e. $\Sigma=(\phi, \xi, \eta)$. Hence $\Sigma \cdot \bar{\Sigma} \simeq \Sigma_{1} \cdot \bar{\Sigma}_{1}$ follows from Lemma 6.

Lemma 8. Let $(M, \Sigma),\left(M_{1}, \Sigma_{1}\right)$ and $\left(M_{2}, \Sigma_{2}\right)$ be contact bundles over the same complex manifold M_{0}. Then

$$
\begin{equation*}
\left(\Sigma \cdot \Sigma_{1}\right) \cdot \Sigma_{2} \cong \Sigma \cdot\left(\Sigma_{1} \cdot \Sigma_{2}\right) \tag{3.4}
\end{equation*}
$$

In fact, there exists a bundle isomorphism of $\left(M \cdot M_{1}\right) \cdot M_{2}$ onto $M \cdot\left(M_{1}\right.$. M_{2}) preserving the contact forms, hence (3.4) follows from Lemma 6.

In the same way as above two lemmas we can prove easily the following Lemma.

Lemma 9. Let $\left(L_{0}, \Sigma_{0}\right)$ be the trivial contact bundles over M_{0} and (M, Σ) be a contact bundle over M_{0}. Then we have

$$
\Sigma \cdot \Sigma_{0} \cong \Sigma_{0} \cdot \Sigma \cong \Sigma
$$

We now define the inverse Σ^{-1} of Σ for a contact bundle (M, Σ). For this purpose, we first recall the definition of $M^{-1}\left(M_{0}, S^{1}, \pi\right)$. The bundle space M^{-1} is the same as M. The action of an element a of S^{1} on M is $p \rightarrow p \cdot a^{-1}$ for $p \in M$. i. e. M^{-1} is different from M only in the action of the structure group S^{1}. Now we define $\Sigma^{-1}=(\phi,-\xi,-\eta)$ for M^{-1} if $\Sigma=(\phi, \xi, \eta)$ for M. Then we see that $\left(M^{-1}, \Sigma^{-1}\right)$ is a contact bundle over M_{0}. The following Lemma can be proved in the same way as the preceding lemmas.

Lemma 10. Notations being as in Lemma 9, we have

$$
\Sigma \cdot \Sigma^{-1} \cong \Sigma^{-1} \cdot \Sigma \cong \Sigma_{0}
$$

Proposition 2. Let (M, Σ) and $(\bar{M}, \bar{\Sigma})$ be contact bundles over M_{0}. Suppose that the associated 2 -forms to (M, Σ) and $(\bar{M}, \bar{\Sigma}$) both vanishes identically, and suppose that M_{0} is simply connected. Then $\Sigma \cong \bar{\Sigma}$.

Proof. Let $\Sigma=(\phi, \xi, \eta), \bar{\Sigma}=(\bar{\phi}, \bar{\xi}, \bar{\eta})$. By the assumptions, the holonomy groups of η and $\bar{\eta}$ are both reduced to the identity. Take and fix three points $p_{1} \in M, \bar{p}_{1} \in \bar{M}$ and $p_{0} \in M_{0}$ such that $\pi\left(p_{1}\right)=p_{0}=\bar{\pi}\left(\bar{p}_{1}\right), \pi(\bar{\pi}$ resp. $)$ being the projection of $M\left(\bar{M}\right.$ resp.) onto M_{0}. Take a point $p \in M$. We want to correspond a point \bar{p} in \bar{M} to the point p. We choose a curve γ in M_{0} joining $\pi(p)$ and p_{0}. Take the horizontal lift $\tilde{\gamma}$ of γ on M whose initial point is p. Let q denote the end point of $\tilde{\gamma}$. Then there exists an (unique) element $a \in S^{1}$ such that $q=p_{1} \cdot a$. Now take the horizontal lift $\tilde{\gamma}^{\prime}$ of γ^{-1} on \bar{M} whose initial point is $\bar{\phi}_{1} \cdot a$, where γ^{-1} denotes the inverse curve of γ. Then the end point $\overline{\bar{p}}$ of $\tilde{\gamma}^{\prime}$ is independent on the choice of the curve γ, since the holonomy groups with respect to η and $\bar{\eta}$ are both identity. We now denote $\bar{p}=f(p)$. Then we can verify that f gives rise to an isomorphism from Σ to $\bar{\Sigma}$. Since the proof is canonical, we shall omit the proof in detail.

Corollary. Let (M, Σ) be a contact bundle over M_{0}, whose assciated 2 -form vanishes. Suppose M_{0} is simply connected. Then $\Sigma \cong \Sigma_{0}$.

Theorem 7. Let (M, Σ), $(\bar{M}, \bar{\Sigma})$ be contact bundles over a simply connected complex manifold M_{0}, whose associated 2 -forms are Ω and $\bar{\Omega}$ respectively. Suppose $\Omega=\bar{\Omega}$, then $\Sigma \cong \bar{\Sigma}$.

Proof. Consider the product $\Sigma \cdot \bar{\Sigma}^{-1}$ on $M \cdot \bar{M}^{-1}$. Then the associated 2 -form of $\Sigma \cdot \bar{\Sigma}^{-1}$ vanishes identically by the formula (3.1). Hence by the corollary above, we have

$$
\Sigma \cdot \bar{\Sigma}^{-1} \cong \Sigma_{0}
$$

Then by Lemma 8,9 and 10 we have

$$
\Sigma \cong \Sigma \cdot\left(\bar{\Sigma}^{-1} \cdot \bar{\Sigma}\right) \cong\left(\Sigma \cdot \bar{\Sigma}^{-1}\right) \cdot \bar{\Sigma} \cong \Sigma_{0} \cdot \bar{\Sigma} \cong \bar{\Sigma},
$$

which proves Theorem 7.

We shall now prove the following theorem ${ }^{2)}$ which is the converse to Theorem 2 when the base space is simply connected.

THEOREM 8. Let $(M, \Sigma)((\bar{M}, \bar{\Sigma})$ resp.) be a contact bundle over a complex manifold M_{0} (\bar{M}_{0} resp.) whose associated 2 -form is Ω ($\bar{\Omega}$ resp.). Suppose that there eixsts a diffeomorphism f_{0} of M_{0} onto \bar{M}_{0} such that $f_{0}^{*} \bar{\Omega}=\Omega$. Suppose also that M_{0} is simply connected. Then we can find an isomorphism f of Σ to $\bar{\Sigma}$ such that

$$
\begin{equation*}
\bar{\pi} \circ f=f_{0} \circ \pi, \tag{3.5}
\end{equation*}
$$

where π and $\bar{\pi}$ denotes the projection of M and \bar{M} onto M_{0} and \bar{M}_{0} respectively.

Proof. $M^{\prime}=M\left(\bar{M}_{0}, S^{1}, f_{0} \circ \pi\right)$ with Σ on M defines clearly a contact bundle over \bar{M}_{0} whose associated 2 -form is $f_{0}^{-1 *} \Omega=\bar{\Omega}$. By virtue of Theorem 7 there exists a bundle isomorphism f of M^{\prime} onto \bar{M} such that f is an isomorphism of Σ to $\bar{\Sigma}$. (3.5) is now clear by the definition of M and Theorem 8 is proved.

References

[1] W.M. Boothby and H.C.WANG, On contact manifolds, Ann. of Math., 68(1958), 721-734.
[2] H. Cartan, Espaces fibrés et homotopie, Séminaire H. Cartan, 1949-50.
[3] S. Kobayashi, Principal fibre bundles with the 1-dimensional toroidal group, Tôhoku Math. Journ., 8(1956), 29-45.
[4] A. Morimoto, On normal almost contact structures, Journ. Math. Soc. Japan, 15 (1963), 420-436

NAGOYA University.

[^1]
[^0]: 1) Y. Hatakeyama obtained similar results in Tôhoku Math. Journ., 15(1963), pp. 176-181.
[^1]: 2) A similar theorem as Theorem 8 may be proved even when $M_{0}\left(\bar{M}_{0}\right.$ resp. $)$ is an almost complex manifold.
