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Introduction. This paper is a continuation of the previous paper [4] in
which we have proved, among others, that the bundle space of a principal circle
bundle over a complex manifold, which has a connection satisfying certain
conditions, admits a normal almost contact structure (cf. Theorem 6 [4]). In this
paper we first consider the converse of the above theorem, and we shall call
such a bundle, for the sake of simplicity, a contact bundle over a complex
manifold (§1. Theorem 1).

In §2 we consider the period function of a regular closed vector field (Def.
3) and we prove Theorem 4 which says that the period function of a regular
closed analytic vector field X on a complex manifold M is the real part of a
holomorphic function on M if JX is also a closed vector field on M, J being
the complex structure tensor of M. Using this theorem we shall prove that if
the vector field ξ of a normal almost contact structure (φ, ξ, η) is a regular
closed vector field, the period function of ξ is necessarily constant. From this
we shall see that there is no other example of normal almost contact structures
than the examples constructed in Theorem 6 [4], at least, when the vector field
ξ is a closed vector field.

In §3 we consider the family of contact bundles over a complex manifold
M0 and we shall finally show that two contact bundles are isomorphic if and
only if there exists a diffeomorphism f0 of M0 onto itself such that f*Ω = Ώ,
where Ω and o are associated 2-forms on M0 to each contact bundle, when
MO is simply connected (cf. Def. 1).

1. Contact bundles over complex manifolds. Let M(M0, S
1, TT) be a

principal circle bundle over a (always C00-) differentiate manifold M0, S
1 being

the 1-dimensional torus and π being the projection of M onto M0. Let Σ = (φ,
ξ,η) be a normal almost contact structure (cf. Def. 2 [4]) on M. The Lie algebra
r of Sl being identified with the real number field R, we shall now suppose
that η is a connection form on M and that ξ is a vertical fundamental vector
field A* corresponding to the unit vector A of r. As in [4] we shall denote by
S5(M) the Lie algebra of vector fields on M.

In the sequel we shall often denote the differential of a differentiable map
/ by the same letter /. We shall now prove the following theorem1} which

1) Y. Hatakeyama obtained similar results in Tόhoku Math. Journ., 15(1963), pp. 176-181.
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may be considered as a converse to Theorem 6 [4].

THEOREM 1. Notations and assumptions being as above, we can find an
unique complex structure J on M0 such that φ(X*~) = (JX)* for X € 33(M0),
where X* denotes the lift of X with respect to the connection η. Moreover,
the 2-form β on Λf0 such that dη = π*Ω satisfies the following condition

β( jx, JY) - β(x, Y)
for X, Y € 33(M0), ί.e. β is α 2-form of type (1.1) wzίΛ respect to J.

PROOF. Take a tangent vector X of M0 at ρ0 £ M0. Define

(1. 1) JX = TΓφXl

where p £ M, ττ(^>) = />0, and Xp* is the lift of X at p with respect to the
connection η. By (1. 1), J is well defined. In fact, take p' £ M such that π(p')
= />o Then p' = Ra p for some element α £ 51, Ra being the right translation
corresponding to a. Then X*/ = RaX£. It must be shown that ττφX*> = TΓφX*.
For this, it is sufficient to prove that φ°Λα — ̂ α°<£ Since f generates a one
parameter group of right translations of M, it is now sufficient to prove that
the Lie derivative of φ with respect to ξ vanishes identically, i.e.

(1-2) [ξ, ΦY] = φ[ξ,Y]

for all Y € 23(M). However, (1. 2) was proved as (2.13) in [4]. Hence by (1.1),
J is well defined. First, we prove that J2 = — 1,1 being the identity map. In
fact, for X € T /Mo), J\X) = ιrψ(JX)* = ττφ((,rφXp*)*)= τrφ(φX*) = - ,rX* = -
-X, where we have used the fact that φXξ is horizontal in the third equality.
Hence J is an almost complex structure on M0. To prove that J is integrable,
we first remark that

(JX)* = φ(X*)

for X e S3 (M0). Next we shall prove that

J[X, Y] = [JX, Y] + [X, JY] + J[JX, JY]

for X, Y e S3(M0). For this purpose, X* being the lift of X with respect to η,
we calculate the lift (J[X, Y])* of J[X, Y], using (2. 3) [4], as follows:

(J[X, Y])* - φ[X, Y]* = φ(λ[X* Y*]) = φ[X*, Y*]

= [φX*, Y*] + [X*,φY*] + φ[φX*, φY*] - [φX* η(Y*)-φY* η(X*)}ξ

= [(JX)*, Y*] + [X*, (JY)*] + φ[(JX)*, (JY)*]

= ^([(JX)*, Y*])| + [JX, Y]* + n([X*, (JY)*])!.+ [X, JY}*
+ φ([JX,JYP)

= [JX,Y]* + [X, JY]* + (J[JX, JY])* + {η([(JX}*, Y*])

+ η(\X*, (JY)*])}έ
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It is now sufficient to prove that

η([φX*9Y*]) + ή([X*9 φY*]) = 0

for X, Y ^ SS(M0). By (2. 7) [4] we see

ritφx* γ*i) - φx* IKY*) - Y* *(Φχ*) + rti Φ'x*, *y*i)
- η([ - X* + η(X*)ξ, φY*]) - - ^[X*, φY*]).

Hence we have proved that J is integrable.
Now it is well known that there exists (uniquely) a 2-form Ω on M0 such

that dη = τr*Ω. For this Ω we calculate as follows:

Ω(JX, JY) - Ω(TΓΦX*, TΓφY*) = (TΓ*Ω)(ΦX*, φY*)

φY*) = - - iflφX* ψy*]) = - - ιτ([X* Y*])

Y*) - ττ*Ω(X*, Y*) - Ω(X, Y),

where we have used (2. 7) [4] in the fifth equality. The uniqueness of J is clear
from φ(X*) = (JX)*. Thus Theorem 1 is proved.

DEFINITION 1. Let M(M0, S\ττ) be a principal circle bundle, and Σ = (φ,
f , ?;) be a normal almost contact structure on M satisfying the conditions of
Theorem 1. For the sake of simplicity we shall call such a bundle M(M0, Sl,τr)
with 2 α contact bundle over a complex manifold M0. The 2-form Ω on
M0 in Theorem 1 will be called the associated 2-forπι to the contact bundle
(or associtead 2-form to η).

THEOREM 2. Let M(M0, S\ TT) αw J M(MO> -S1, TT) be contact bundles with
S an J 2 ^^^ / ^ an isomorphism of ^ to ^ (cf. Def. 4 [4]). TA^n ί/i^r^ exists
a holomorphic homeomorphism fϋ of M0 onto M0 such that τir°f =/0

0τr αrcJ
/o* Ω = Ω, where Ω an J Ω denote the associated 2-form to the contact bundles
M and M respectively.

PROOF. Since / is an isomorphism of Σ to S> /(£) = ξ. Hence / is a fibre
preserving map of M onto M Therefore / induces a diffeomorphism /0 of M0

onto MO such that τro/ = fQ

orπ . To prove that/ is holomorphic, it is sufficient
to prove that

jfQX=foJX

for all X <= 33 (M0), J and J being the complex structures of M0 and Mo
respectively. Now

(1. 3) /0JX =/0τrφX* = ̂ /φX* -

We shall next prove that

(1. 4) fX* = (/.X)».
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In fact, η(fX*) - (f*vj)X* = η(X*) = 0, whence fX* is horizontal. On the other
hand π(fX*) =fQπX* = /0X, which proves (1.4). Inserting (1.4) into (1.3), we
have

= Jf0X.

Thus Theorem 2 is proved.

2. Period functions of regular closed vector fields.

DEFINITION 2. Let M be a differentiable manifold and let X be a vector
field on M such that Xp Φ 0 for any p £ M. Then clearly X defines a 1-
dimensional (involutive) distribution on M i.e. X defines a 1-dimensional vector
subspace of the tangent space of M at each point of M. Let Cp be the maximal
integral curve of this distribution through the point p. X is called regular if for
each point pQ € M there exists a coordinates system {xlyx2y ,xn} on a
neighborhood U(po) of ^?0 such that

(i) *i(A) = 0 i = 1,2, • • • , / ! ,

(ii) C, n C7(A) - {q € C7(A)| ̂ (g) - *,(/>) ί = 2, 3, - - , n}

for all point />

DEFINITION 3. Let X be a regular vector field on M. We shall call X a
(regular) closed vector field on Aί, if for each p £ M, Cp is a closed curve.
When X is a closed vector field, φt = expίX denoting the 1- parameter group
of transformations on M generated by X, we define a function λX/>) on M as
follows:

\x(p) = inf {ίl* > 0, φt(p) = p}.

We shall call λ^(/>) the period function of X. We shall denote frequently
£ p— (exp ίX) /> for — oo < ^ < oo? p ς M, whenever there is no confusion.

It is to be noted that \χ(£) > 0 for each p £ M by the regularity of X.
For the period function X(/>) = λ^(^) of a closed vector field X we have

the following lemma (cf. [1] p. 722).

LEMMA 1. The period function λ(/>) z"s α differentiable function on M,
especially it is continuous.

THEOREM 3. Let (φ, ξ, η) be a normal almost contact structure on M.
Suppose that £ is a closed vector field such that its period function λf(/>) is a
constant. Then there exist a complex manifold M0 and a C^-map π of M
onto MO such that M(M0, 5

1, TT) is a principal circle bundle over MQ, η is a
connection form on M and ξ is a vertical vector field on M.

PROOF. Let \ξ(p) = c0 = const. Then the torus group S1 = R/Z c0 of real
numbers modulo CQ operates on M by
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(ί, p) -* φt(p) for ί € R9 p 6 M,

where <^ = exp ί£ is the 1-parameter group of transformations of M. generated
by ξ. Clearly the only element of S1 having a fixed point in M is the identity.
Hence by a well known theorem [2] and the same argument in [1] p.725, M

has a ^-bundle structure. Let M0 be the base space of this bundle. To prove
that η defines a connection form on M it is sufficient to prove that η is right
invariant. For this it suffices to see that the Lie derivative of η with respect to

ξ vanishes identically i.e. ξ η(X) - ??([£, X]) = 0 f or X £ SS(M). However, this
is an immediate consequence of (2. 7) [4] by putting Y — ξ. Hence the bundle
M(M0, S

1, TT) satisfies the conditions of Theorem 1 and thus M0 has a complex
structure, which proves Theorem 3.

Now we want to prove that if the vector field ξ of a normal almost contact
structure (φ, ξ, η) on M is closed, the period function of ξ is necessarily constant

on M. For this purpose we shall prove the following theorem which may be
considered as an analogue of Lemma 1 for the complex case.

THEOREM 4. Let M be a complex manifold and X be an analytic vector
field on M, i. e. X generates a local \-parameter group of holomorphίc
transformations of M. Suppose that X and JX are both closed vector fields,

J denoting the complex structure of M. Put f(p) = \χ(p) + A/— 1 λj^(/>).
Then f is a holomorphic function on M.

PROOF. Put X = X - \/ - 1 JX. Then X is a holomorphic vector field on

M, i.e. x can be expressed locally as follows:

for complex coordinates system {wί9 , Wn}, where hi — hi(wί9 , wn) is a
holomorphic function for i = 1, 2, , n. Fix a point pQ € M. Since X ^ 0 on
M9 by a well known theorem, we can find a complex coordinates system
[zl9 9zn] on a neighborhood U = U(p0) of p0 such that

( i ) ^(A) - 0 ί = 1, 2, - - , 7i,
o

(ii) z = g£ on 17.

Let C denote the additive group of complex numbers. Then C operates

holomorphically on M by z /> = exp ίX exp 5 JX p, for # = £ + */ — 1 5
and p € M. We note here that exp ίX and exp sJX commutes since [X, JX]

= 0. Put /(/>0) = z° = .r0 + v/ - 1 y, ;r° and y° being real and put
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for I z — z° I < 8 and p £ U, 8 being sufficiently small. Since J£ is a holomorphic

vector field, the function g(z,zl9 9zn) is holomorphic for \z — z°\ < £, \Zi\

< a for some a > 0. We want to solve the equation

g(z, 0, *g, , zn} = 0

for #. For this, we show first that

In fact,
I

fr .O. . . ..0) = lίm ̂  + *»<>• 0)

= ιim

= Y ( }=(pλzl) \
where we have put zl = xλ -f- A/— 1 yl9 xl and y1 being real. Using the

existence theorem of implicit functions, we can find a holomorphic function

h(z2, , zn) in I Zi | < a (i = 2, , n) such that

(g(h(z2, , «n), 0, 2;2, , «n) = 0.

Next we shall prove that there exists a neighborhood Ul c Ϊ7 of ^>0 such that

(2. 1) f(p) = h(zι(p\ ,zn(py)

for p € Uι. For this purpose we shall prove the following lemma essentially

proved in [1].

LEMMA 2. Let X be a closed vector field on a differ entίable manifold

M and λ(/>) — λχ(^>) its period function. Let {xι, ,xm} be a system of

coordinates on a neighborhood U of pQ such that

(ii) *,(£,) = 0 t = 1, 2, , m.

Put xa(t p) = g(t, Xι(p), ', xn(py). Suppose that m^3 and that there exists
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a continuous function h(xλ, , xa, , xβ, , xm) for some β such that

(iii) λ(0, ,0) = λ(/0

(ίv) g(h(Xι, , Xa, , Xβ, , Xm),Xly , XΛ-ι9 0, ^Λ + 1,

• , Xβ-ι, 0, Xβ+ι, , ;rm) = 0

for \Xι\ < a, a being sufficiently small positive number, where χ\ denotes the
omission of the letter under the /\.

Then there exists a neighborhood UΊ of p0 contained in U such that

\(p) = h(x,(p\ , xa(p\ , xβ(p\ , xm(p}}

for p £ Ul satisfying x$(p) = 0.

PROOF. If this lemma were false, there would exist a sequence of points
[pv}~=ι such that pv — > pQ(v — > oo), (̂̂ ,) = 0 and that

λ(A) ̂  h(x,(ρv\ , £«(&), , ί/3(A)» %^m(A)) > 0.

We can suppose that xa(pv) — 0 by virtue of (i). Now

= o(h(χ1(ρv\ ,

• , xa^(pv\ 0, xa+l(ρv\ ,

' ' ,^m(A)) = 0.

Hence we can find an integer £„ > 1 such that

By the continuity of h

h(Xι(pv\ , ί«(A)> ' ' % Xβ(fr\ ' ' % ^m(A)) ̂  ^(°» ' ' , 0) =

(ϊ, -̂  CO).

Hence kυ λ(^>u) -> λ(/>0) (z; -̂  oo). On the other hand, by virtue of Lemma 1,

λ(/>) is continuous, so λ(^) — > λ(^>0) (y — > °°) Therefore we have

λ(^0) = Urn kυ λ(A) ̂  lim 2λ(/0 = 2λ(^>0),

which implies λ(^>0) — 0. This contradiction completes the proof of Lemma 2.
Return now to the proof of Theorem 4. Let TT : U — > C7 be the map such

that

(77̂ ) - 0

(τr/>) - zt(p) (i ̂  2)

for p z U. Put
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and put

*l\Z29 * > Zn)lϊι\Z2 >* * *? Zn) ~~Γ /v 1. AZ-2V ̂  2> *? Zn/9

hl and Λ2 being real. We shall prove that

flTι(Λι(*8(/>), , «„(/>)), 0, 0, *,(/>), , «„(/>)) - 0

for p £ t/', where [/' is a neighborhood of />0 contained in U. In fact,

gι(hi(z2(p), , 2:n(̂ )), 0, 0, Z2(p\ , zn(pj)

= Re g(h^(p\ , «„(/>)), 0,0, *,(/>), - , «„(/>))

= Re z^h&^p), , a;n(/))) ττ/>)

= XιQlι(Zt(i>)9 -,«„(/>)) 7Γ )̂

= x,( A/ - 1 Λ,(«,(/>), , ZB(/»)) A ,(«„(/>), , «„(/»))

= Re Zl(h(zt(p), , zn(p}} -π p)

= Re g(h(z,(p), •••, zn(p)\ 0, zt(/.), , «„(/>)) = 0,

where we have used the commutativity [X, JX\ = 0 in the fifth equality. By
virtue of Lemma 2 there exists a neighborhood U[ of p0 contained in U' such
that \ΐ(ρ) = hι(z2(p), ' , zn(p)~) for p 6 C/ί satisfying 3Ί(/>) = 0. In the same
way, using Lemma 2 again, we can find a neighborhood t/ί' of />„ contained
in ί7J such that

for p € Z/ί' satisfying Xι(p) — 0. From this it follows that

(2.1) f(p) = h(z2(p), ,zn(p»

for p € Uϊ satisfying zλ(p) = 0. On the other hand it is easy to see that f(p)
— f(z ' P) f°r z with sufficiently small \ z \ . Hence we conclude that there exists
a neighborhood Ul of p0 contained in ΊJ" such that (2. 1) holds for p € Uλ.
Hence / is holomorphic in Ul9 which completes the proof of Theorem 4.

In the rest of §2, M is assumed to be connected.

THEOREM 5. Let (φ, |, η) be a normal almost contact structure on M such
that ξ is a closed vector field on M. Then the period function \ξ of ξ is a
constant on M.

PROOF. Put M = M X S\ Sl being the 1-dimensional torus with the natural

(normal) almost contact structure. Then M has a complex structure J induced

by (φ, ξy η) Consider ξ as a vector field on M. Then ξ is an analytic vector

field on M with respect to J, since (φ,ξ,η) is normal. Let/(/>) = λ$(/>) + \/ — 1

be the function associated to ξ as in Theorem 4. It is clear that λjf (/>) is
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constant, so λ^ (p) is also constant since f(p) is holomorphic on M On the

other hand, since λξ(p) = λf(/>) for p = (p, t), t € S\ p £ M, \ξ(p) is also
constant on M, which completes the proof.

COROLLARY 1. Let (φ, £, η) be a normal almost contact structure on M
such that ξ is a closed vector field on M. Then M has a circle bundle
structure over a complex manifold M0.

In fact, since the period function of ξ is constant we can apply Theorem 3.

COROLLARY 2. Let (φ, |, η) be a normal almost contact structure on a
compact manifold M such that ξ is a regular vector field on M. Then M has
a circle bundle structure as in Corollary 1.

In fact, every maximal integral curve of a regular vector field on M is a
closed set in M, so compact in M, which says that ξ is a closed vector field on
M. Hence we can apply Corollary 1.

In the case when ξ is a proper vector field, i.e. ξ generates a global 1-para-
meter group exp££(— oo < t <oo) of transformations on M, we want to show
that I is a closed vector field if there exists one point pQ € M such that the
maximal integral curve Cpo through p0 is a closed curve. For this purpose we
prepare the following two lemmas.

For a proper vector field X we define ~λχ(p) as in Def. 3, while \*(p)
= oo if t p --^ p for any t > 0.

LEMMA 3. Let X be a regular, proper vector field on a differentiable
manifold M. Let M° be the set of all points p £ M such that 'λχ(p) < °°.
Then M° is open in M.

PROOF. Let p0 £ M°. Then there exists a system of coordinates [xlyx29 ,
xn] on an open neighbourhood U of p0 such that (i) (ii) of Def. 2 are satisfied.

o
Put \γ(po) — λ0. We can assume that \x±\ < X0 on U and that X = ^— on U.

ox\
By the continuity of exp λ0X we can find an open neighborhood V of pQ

contained in U such that λ0 V C U. We shall show that V C M°. Take a
point p € V. Then λ0 /> € U. Now by the property (ii) there exists a real
number t such that λ0 p — t p, t \ < λ0. Hence (λ0 — t) p — p holds. Since
λ0 - t > 0, it follows p € M°, which proves V C M°, q.e.d.

LEMMA 4. Let X be a regular, proper vector field on M. Let p0 £ M
such that \γ(po) = oo. Then for each positive number K there exists an open
neighborhood U of pQ such that \(p) g: K for any p € U.

PROOF. Let [x1,x2, , xn} be a system of coordinates on an open neigh-
bourhood UQ of po satisfying (i) (ii) of Def.2. We can assume that there exists a
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o

positive number Kl < K such that | xγ \ < Kl on U0 and that X = ~— on U.
ox i

τζ

Put A = {t pQ\ ~^- ^t^K}. Since ρQ $ A, there exist open sets W and U1
Zj

such that A d Wy pQ ^ Ul C. U0 and W" Π C/i = #. Now it is easy to find an
jζ

open neighbourhood U of p0 contained in U1 such that t p € W for -~ ^t ̂

K and p € U. We shall show that λ(/>) > K ίor p £ U. Take a point ^> e U

and ί such that 0 < t ̂  K. If t ̂  ̂ y-, then ί /> ̂  p holds by (ii). If t ̂  ̂  ,

then t p £ W, so t p <£ U^ Hence t pφpioτ 0 < t ̂  K, which shows λ(/>)
^ X, q. e. d.

THEOREM 6. Let (φ,ξ,η) be a normal almost contact structure on a
connected manifold M, such that ξ is a regular,, proper vector field on M.
Suppose that λf(/>0) < °° for some p0 £ M, then \(p) < °° for any p € M,
i. e. ξ is a closed vector field on M.

PROOF. Let M° be the set of points p for which λf(/>) < oo, then M° is
open in M by Lemma 3. Put λ0 = λf(/><>)> and M1 = {p € M|λf(/>) = λ0}. Let
(Φ0,^,??0) be the restriction of (φ,ξ,η) to the open submanifold M°. Since (φ°,
ξ°, 77°) is normal, we can apply Theorem 5. Hence λ^o = λ^|Λf° is constant on
each connected component of M°. From this it follows that M1 is open in M.
Next we shall prove that Ml is closed in .M. Take a sequence of points pυ €
M! (v = 1,2, •) such that £, —> q € M(y -> oo). If χf(g) = oo? then by Lemma
4 for X = 2λ0, we can find an open neighbourhood U of q such that ~λ>ξ(p) §̂
2λ0 for p £ U. Since /\,0 € [7 for a sufficiently large ι/0, λ0 = λf(^0) ̂  2λ0 implies
a contradiction. Hence λf(g) < oo, so q £ M°. Now, since λ^(/>) is a continuous
function on M° by Lemma 1, λf(g) = lim λf(/>υ) == λ0. Hence q € M1? which
proves that Mj is closed in M. Since Λί is connected, the non empty open,
closed set Mx coincides with M, which proves Theorem 6.

3. Family of contact bundles over a complex manifold. We shall define
the product of two contact bundles (M, Σ) and (M, Σ) over a complex manifold
MO, (cf. Def. 1). First we recall the definition of the product (or called sometimes
sum) of the principal circle bundles M and M (cf. e.g. [3]). Let M == M(MΌ,S\
TT) and M = M(M0, S\ TT). Δ(M x M) denotes the set of all elements (/>, p) z M
xM such that ττ(/>) = ττ(?). We say that two elements (p, p} and (q, q) of Δ(M
X Λf) are equivalent if there exists an element a € Sl such that

p a = q, p a~l = q.

We denote by M M the quotient space of Δ(Λί X M) by this equivalence
relation. The projection from Δ(M x M) onto M0 induces a projection from
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M M onto MO, which we shall denote by TT = IT π. The action of S1 on
Δ(M x M) defined by (p, ρ) a = (p a, ρ\ (p, p) € Δ(M x M), a £ Sl preserves
the equivalence relation, hence it defines the action of Sl on M M. The bundle
M M(MQ,Sl,τr) is, by definition, the product of M and M. It is known that
the family of circle bundles over M0 form a multiplicative abelian group by this
multiplication, the unit element being the trivial circle bundle over M0.

Let now Σ = (φ, ξ , η) and § = (φ, f , /?). We define a linear differential form
η x η on M x M as follows:

T; X η = p*(η) + p*(η\

where p and p are the natural projection from M x M onto M and M respect-
ively. We denote also by η x ij the restriction of η x η to Δ(M x M). Then
there exists an unique differential form η on M M such that

μ*(η) = η X η

where μ is the natural projection of Δ(M X M) onto M M. We can see that η
defines a connection on M M and the 2-f orms Ω, Ώ and β associated to the
connections η, η and η respectively satisfy

(3. 1) O = ίl + β '

(For the proof, cf. [3] p. 32). We denote η = η ϊj.
We want now to define the product $ — φ φ of φ and φ as follows. As

usual we denote by TP(M) the tangent space of M at p. Then we see that the
tangent space T(P!^ (Δ(M x M)) can be identified with the subspace T°(p)p)(M
x M) of T(pfg)(M x M) defined by

M) = {(X,X) € T ) ( M x

LEMMA 5. Leί (Xp,Xp) ^ T(ΛP)(Δ(M x M))
(Xί, Xϊ) ^ Tteιϊ) (Δ(M X M)). Then, μ(Xp,Xώ = μ(X'Q9 X^) implies

(JττX)l) - μ&JπXΰϊ, (JττX )l), where Y*(Yj resp.) denotes the lift of Y (y
res p.) at p(at p res p.) with respect to the connection η (η res p.).

PROOF. Let θ be the projection of Δ(M x M) onto M0. For an element
a £ Sl we define the map Qa of Δ(M X M) onto itself by

Qa(P,P) = (Pa, M'1)

for (ρ9 p) € Δ(M x M) Then clearly μ°Qa = /i, and <9 = π oμ hold. Now by the
assumption

ίfμ(Xp, Xf) = πμ.(X'v Xfi.

Hence

xf) - β(X'Q,
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Since μ(p, f ) = μ(q, q\ there exists an element a € Sl such that q — p a, q —
p a~l. Therefore we have

and

Hence

;9 (JτrX,)f), q - e - d .

By virtue of Lemma 5 we can define a tensor field $" of type (1. 1) on M
M as follows:

(3. 2) $(μ(Xp,χ,» = μ((JτrXp)ϊ, (JττX)f )

for (Xp,Xp) ^ T(P,-P,(Δ(M x M)).
Next we define a vector field f on M M as follows:

(3. 3) ζμ(P,p) = μ(ξp>0$),

where Op denotes the zero tangent vector of M at p. We see easily that ζ is
well defined by (3. 3) and ξ is a vertical vector field of M M such that

η(® = 1.

Now we have the following proposition

PROPOSITION 1. Σ = (<?', f ,̂ ) /5 α normal almost contact structure on
M M.

PROOF. For X^0 € TPO(M0) and ττ/> = )̂0 we denote by X\(P)p) the lift of
XPo at /A(^>, p) with respect to the connection η . Then it is easily seen that
= μ(X£,X|). Hence by the definition (3. 2) of $ we have

which shows that

for X ^ S3 (M0). By virtue of (3. 1) we see that the associated 2-form Ώ to ^ is
of type (1.1) with respect to J. Now in the same way as the proof of Theorem

6[4] we can prove that 2 is a normal almost contact structure of M M. We
shall not repeat the proof in detail.

DEFINITION 4. Σ in Proposition 1 will be called the product of Σ and 2

and denoted by Σ = Σ Σ
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DEFINITION 5. Let L0(M0, S
1, TTO) be the trivial circle bundle over M0, i.e.

L0 = M0 X Sl and ττ0 is the usual projection from L0 onto M0. We define the
normal almost contact structure 20 = (φo, £o> ?7o) on L0 as follows:

Φ0(x,y) =

170 = (0 , dt)

where t denotes the coordinates of S1.

.LEMMA 6. Let (M,2), (M, 2) fo contact bundles over the same complex
manifold M0. Let 2 = (Φ>ξ,η) and 5 = (φ, f , ̂ ). Suppose that there is a
bundle isomorphism f of M onto M such that f*η = η. Then f~lφf — φ holds,
i. e. Σ and § are isomorphic by f.

PROOF. Put φ' =f~lφf. First we note that /(X*) = X* for X € S5(M0),
since / is a bundle isomorphism such that /"x"^ = η. Then for X ^ S5(M0) we
have

On the other hand we have φ'(£) = φ(β = 0. Hence φ'(X) = φ (X) for any X
2}(M), which proves the lemma.

LEMMA 7. Lέtf (M,Σ), (M^ΣJ, (M, 2) ^^ (Mι,Σι) ^ contact bundles
over the same complex manifold M0. If Σ ̂  Σi αnJ 2 ̂  2ι> ^^^ 2 2 ^^ Σi Σi

PROOF. Let/(# resp.) be an isomorphism of 2 to Σi (of 2 to 2ι resp.).
Then the bundle isomorphisms f and g induce an bundle isomorphism h of
M M onto M! Mi such that h*(ηι ^i) = η ^, where 77, for example, is the
contact form of Σ, i. e. 2 — (φ, £, η). Hence 2 2 — ΣI 2ι follows from Lemma 6.

LEMMA 8. Let (M,Σ), (M^Σi) and (M2,22) be contact bundles over the
same complex manifold MQ. Then

(3.4) (2 S1) S1-2 (Σ1 21).

In fact, there exists a bundle isomorphism of (M M^) M2 onto M (Ml

M2) preserving the contact forms, hence (3. 4) follows from Lemma 6.
In the same way as above two lemmas we can prove easily the following

Lemma.

LEMMA 9. Let (L0, 20) be the trivial contact bundles over MQ and (M, 2)
be a contact bundle over M0. Then zve have

2 2o = 2o - 2 = 2.
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We now define the inverse Σ"1 of Σ for a contact bundle (M, Σ). For this
purpose, we first recall the definition of M~1(MQ, Sl,τr). The bundle space M~l

is the same as M. The action of an element a of S1 on M is p—> p a~l for
p £ M. i. e. M~l is different from M only in the action of the structure group
S1. Now we define Σ"1 = (φ, — £, — η) for M~l if Σ = (φ, f, η) for Λf. Then we
see that (M"1, Σ"1) is a contact bundle over M0. The following Lemma can be
proved in the same way as the preceding lemmas.

LEMMA 10. Notations being as in Lemma 9, τve have

PROPOSITION 2. Let (M, Σ) and (M,Σ) be contact bundles over M0.
Suppose that the associated 2-forms to (M, Σ) arc J (M, 2) °̂̂  vanishes ident-
ically, and suppose that MQ is simply connected. Then Σ = 5-

PROOF. Let Σ = (φ, f , 97), Ug — (φ, f , 37). By the assumptions, the holonomy
groups of η and η are both reduced to the identity. Take and fix three points
pl € M, •£>! e M and ^0 ^ Λf0 such that TT^) = pQ = τr(^ι), ττ(^ resp.) being the
projection of M(M resp.) onto M0. Take a point p £ M. We want to correspond
a point p in M to the point p. We choose a curve 7 in M0 joining τr(p)
and />0. Take the horizontal lift 7 of γ on Λf whose initial point is p. Let ςr
denote the end point of 7. Then there exists an (unique) element a € S1 such
that q — pi a. Now take the horizontal lift 7' of 7"1 on M whose initial point
is pi a, where 7'1 denotes the inverse curve of 7. Then the end point p of 7'
is independent on the choice of the curve 7, since the holonomy groups with
respect to η and η are both identity. We now denote p =f(ρ). Then we can
verify that f gives rise to an isomorphism from Σ to Ij Since the proof is
canonical, we shall omit the proof in detail.

COROLLARY. Let (M, Σ) be a contact bundle over M0, whose assciated
2- form vanishes. Suppose M0 is simply connected. Then Σ ̂  Σ0.

THEOREM 7. Let (M, Σ), (M, Σ) be contact bundles over a simply connected
complex manifold M0, whose associated 2- forms are ίl and ^ respectively.
Suppose ίl = o> then Σ « 2

PROOF. Consider the product Σ lΓ1 on M M-1. Then the associated 2-form
of Σ ΪΓ1 vanishes identically by the formula (3.1). Hence by the corollary above,
we have

Then by Lemma 8, 9 and 10 we have

Σ ̂  Σ (Σ'1 Σ) - (Σ Σ'1) 2 ̂  2o 2 ̂  Σ,

which proves Theorem 7.
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We shall now prove the following theorem2) which is the converse to
Theorem 2 when the base space is simply connected.

THEOREM 8. Let (M, 2) ((M, 2) resp.) be a contact bundle over a complex
manifold M0 (Mo res p.) -whose associated 2-form is Ω (β resp.\ Suppose that
there eixsts a diffeomorphism /0 of MQ onto Mo such that f* Q = Ω. Suppose
also that MQ is simply connected. Then τve can find an isomorphism f of 2
to 2 such that

(3. 5) πof = f0oπ,

where TT and ϊτ denotes the projection of M and M onto M0 and Mo

PROOF. M = M(ΰ^S\f^Ίr) with 2 on M defines clearly a contact bundle
over Mo whose associated 2-form is fo**Ω = Ώ By virtue of Theorem 7 there
exists a bundle isomorphism / of M' onto M such that / is an isomorphism of
2 to 2 (3 5) is now clear by the definition of M' and Theorem 8 is proved.
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