ON NORMAL ALMOST CONTACT STRUCTURES WITH A REGULARITY

Ακιμικό Μοριμότο

(Received November 5, 1963)

Introduction. This paper is a continuation of the previous paper [4] in which we have proved, among others, that the bundle space of a principal circle bundle over a complex manifold, which has a connection satisfying certain conditions, admits a normal almost contact structure (cf. Theorem 6 [4]). In this paper we first consider the converse of the above theorem, and we shall call such a bundle, for the sake of simplicity, a contact bundle over a complex manifold (§1. Theorem 1).

In §2 we consider the period function of a regular closed vector field (Def. 3) and we prove Theorem 4 which says that the period function of a regular closed analytic vector field X on a complex manifold M is the real part of a holomorphic function on M if JX is also a closed vector field on M, J being the complex structure tensor of M. Using this theorem we shall prove that if the vector field ξ of a normal almost contact structure (ϕ, ξ, η) is a regular closed vector field, the period function of ξ is necessarily constant. From this we shall see that there is no other example of normal almost contact structures than the examples constructed in Theorem 6 [4], at least, when the vector field ξ is a closed vector field.

In §3 we consider the family of contact bundles over a complex manifold M_0 and we shall finally show that two contact bundles are isomorphic if and only if there exists a diffeomorphism f_0 of M_0 onto itself such that $f_0^*\overline{\Omega} = \Omega$, where Ω and $\overline{\Omega}$ are associated 2-forms on M_0 to each contact bundle, when M_0 is simply connected (cf. Def. 1).

1. Contact bundles over complex manifolds. Let $M(M_0, S^1, \pi)$ be a principal circle bundle over a (always C^{∞} -) differentiable manifold M_0, S^1 being the 1-dimensional torus and π being the projection of M onto M_0 . Let $\Sigma = (\phi, \xi, \eta)$ be a normal almost contact structure (cf. Def. 2 [4]) on M. The Lie algebra r of S^1 being identified with the real number field R, we shall now suppose that η is a connection form on M and that ξ is a vertical fundamental vector field A^* corresponding to the unit vector A of r. As in [4] we shall denote by $\mathfrak{V}(M)$ the Lie algebra of vector fields on M.

In the sequel we shall often denote the differential of a differentiable map f by the same letter f. We shall now prove the following theorem¹⁾ which

¹⁾ Y. Hatakeyama obtained similar results in Tôhoku Math. Journ., 15(1963), pp. 176-181.

may be considered as a converse to Theorem 6 [4].

THEOREM 1. Notations and assumptions being as above, we can find an unique complex structure J on M_0 such that $\phi(X^*) = (JX)^*$ for $X \in \mathfrak{B}(M_0)$, where X* denotes the lift of X with respect to the connection η . Moreover, the 2-form Ω on M_0 such that $d\eta = \pi^*\Omega$ satisfies the following condition

$$\Omega(JX, JY) = \Omega(X, Y)$$

for $X, Y \in \mathfrak{B}(M_0)$, i.e. Ω is a 2-form of type (1.1) with respect to J.

PROOF. Take a tangent vector X of M_0 at $p_0 \in M_0$. Define

$$(1. 1) JX = \pi \phi X_p^*$$

where $p \in M$, $\pi(p) = p_0$, and X_p^* is the lift of X at p with respect to the connection η . By (1.1), J is well defined. In fact, take $p' \in M$ such that $\pi(p') = p_0$. Then $p' = R_a \cdot p$ for some element $a \in S^1$, R_a being the right translation corresponding to a. Then $X_{p'}^* = R_a X_p^*$. It must be shown that $\pi \phi X_{p'}^* = \pi \phi X_p^*$. For this, it is sufficient to prove that $\phi \circ R_a = R_a \circ \phi$. Since ξ generates a one parameter group of right translations of M, it is now sufficient to prove that the Lie derivative of ϕ with respect to ξ vanishes identically, i.e.

$$(1. 2) \qquad \qquad [\xi, \phi Y] = \phi[\xi, Y]$$

for all $Y \in \mathfrak{B}(M)$. However, (1.2) was proved as (2.13) in [4]. Hence by (1.1), J is well defined. First, we prove that $J^2 = -1, 1$ being the identity map. In fact, for $X \in T_{p_0}(M_0), J^2(X) = \pi \phi(JX)_p^* = \pi \phi((\pi \phi X_p^*)_p^*) = \pi \phi(\phi X_p^*) = -\pi X_p^* = -X$, where we have used the fact that ϕX_p^* is horizontal in the third equality. Hence J is an almost complex structure on M_0 . To prove that J is integrable, we first remark that

$$(JX)^* = \phi(X^*)$$

for $X \in \mathfrak{B}(M_0)$. Next we shall prove that

$$J[X,Y] = [JX,Y] + [X,JY] + J[JX,JY]$$

for $X, Y \in \mathfrak{B}(M_0)$. For this purpose, X^* being the lift of X with respect to η , we calculate the lift $(J[X,Y])^*$ of J[X,Y], using (2.3) [4], as follows:

$$\begin{split} (J[X,Y])^* &= \phi[X,Y]^* = \phi(h[X^*,Y^*]) = \phi[X^*,Y^*] \\ &= [\phi X^*,Y^*] + [X^*,\phi Y^*] + \phi[\phi X^*,\phi Y^*] - \{\phi X^* \cdot \eta(Y^*) - \phi Y^* \cdot \eta(X^*)\} \xi \\ &= [(JX)^*,Y^*] + [X^*,(JY)^*] + \phi[(JX)^*,(JY)^*] \\ &= \eta([(JX)^*,Y^*]) \xi + [JX,Y]^* + \eta([X^*,(JY)^*]) \xi + [X,JY]^* \\ &\quad + \phi([JX,JY]^*) \\ &= [JX,Y]^* + [X,JY]^* + (J[JX,JY])^* + \{\eta([(JX)^*,Y^*]) \\ &\quad + \eta([X^*,(JY)^*]) \} \xi. \end{split}$$

It is now sufficient to prove that

$$\eta([\phi X^*, Y^*]) + \eta([X^*, \phi Y^*]) = 0$$

for $X, Y \in \mathfrak{B}(M_0)$. By (2.7) [4] we see

$$\begin{split} \eta([\phi X^*, Y^*]) &= \phi X^* \cdot \eta(Y^*) - Y^* \cdot \eta(\phi X^*) + \eta([\phi^2 X^*, \phi Y^*]) \\ &= \eta([-X^* + \eta(X^*)\xi, \phi Y^*]) = - \eta([X^*, \phi Y^*]). \end{split}$$

Hence we have proved that J is integrable.

Now it is well known that there exists (uniquely) a 2-form Ω on M_0 such that $d\eta = \pi^* \Omega$. For this Ω we calculate as follows:

$$\begin{split} \Omega(JX, JY) &= \Omega(\pi \phi X^*, \ \pi \phi Y^*) = (\pi^* \Omega)(\phi X^*, \ \phi Y^*) \\ &= d\eta(\phi X^*, \ \phi Y^*) = - \frac{1}{2} \ \eta([\phi X^*, \ \phi Y^*]) = - \frac{1}{2} \ \eta([X^*, \ Y^*]) \\ &= d\eta(X^*, \ Y^*) = \pi^* \Omega(X^*, \ Y^*) = \Omega(X, Y), \end{split}$$

where we have used (2.7) [4] in the fifth equality. The uniqueness of J is clear from $\phi(X^*) = (JX)^*$. Thus Theorem 1 is proved.

DEFINITION 1. Let $M(M_0, S^1, \pi)$ be a principal circle bundle, and $\Sigma = (\phi, \xi, \eta)$ be a normal almost contact structure on M satisfying the conditions of Theorem 1. For the sake of simplicity we shall call such a bundle $M(M_0, S^1, \pi)$ with Σ a contact bundle over a complex manifold M_0 . The 2-form Ω on M_0 in Theorem 1 will be called the associated 2-form to the contact bundle (or associted 2-form to η).

THEOREM 2. Let $M(M_0, S^1, \pi)$ and $\overline{M}(\overline{M}_0, S^1, \overline{\pi})$ be contact bundles with Σ and $\overline{\Sigma}$. Let f be an isomorphism of Σ to $\overline{\Sigma}$ (cf. Def. 4 [4]). Then there exists a holomorphic homeomorphism f_0 of M_0 onto \overline{M}_0 such that $\overline{\pi} \circ f = f_0 \circ \pi$ and $f_0^* \overline{\Omega} = \Omega$, where Ω and $\overline{\Omega}$ denote the associated 2-form to the contact bundles M and \overline{M} respectively.

PROOF. Since f is an isomorphism of Σ to $\overline{\Sigma}$, $f(\xi) = \overline{\xi}$. Hence f is a fibre preserving map of M onto \overline{M} . Therefore f induces a diffeomorphism f_0 of M_0 onto \overline{M}_0 such that $\overline{\pi} \circ f = f_0 \circ \pi$. To prove that f is holomorphic, it is sufficient to prove that

$$\overline{J}f_0 X = f_0 J X$$

for all $X \in \mathfrak{B}(M_0)$, J and \overline{J} being the complex structures of M_0 and \overline{M}_0 respectively. Now

(1. 3)
$$f_0 J X = f_0 \pi \phi X^* = \overline{\pi} f \phi X^* = \overline{\pi} \overline{\phi} f X^*.$$

We shall next prove that

(1. 4)
$$fX^* = (f_0X)^*.$$

In fact, $\bar{\eta}(fX^*) = (f^*\bar{\eta})X^* = \eta(X^*) = 0$, whence fX^* is horizontal. On the other hand $\bar{\pi}(fX^*) = f_0\pi X^* = f_0X$, which proves (1.4). Inserting (1.4) into (1.3), we have

$$f_{0}JX = \overline{\pi}\overline{\phi}(f_{0}X)^{*} = \overline{J}f_{0}X.$$

Thus Theorem 2 is proved.

2. Period functions of regular closed vector fields.

DEFINITION 2. Let M be a differentiable manifold and let X be a vector field on M such that $X_p \neq 0$ for any $p \in M$. Then clearly X defines a 1dimensional (involutive) distribution on M i.e. X defines a 1-dimensional vector subspace of the tangent space of M at each point of M. Let C_p be the maximal integral curve of this distribution through the point p. X is called *regular* if for each point $p_0 \in M$ there exists a coordinates system $\{x_1, x_2, \dots, x_n\}$ on a neighborhood $U(p_0)$ of p_0 such that

(i)
$$x_i(p_0) = 0$$
 $i = 1, 2, \dots, n,$

(ii)
$$C_p \cap U(p_0) = \{q \in U(p_0) | x_i(q) = x_i(p) \mid i = 2, 3, \dots, n\}$$

for all point $p \in U(p_0)$.

DEFINITION 3. Let X be a regular vector field on M. We shall call X a (regular) closed vector field on M, if for each $p \in M$, C_p is a closed curve. When X is a closed vector field, $\varphi_t = \exp tX$ denoting the 1-parameter group of transformations on M generated by X, we define a function $\lambda_X(p)$ on M as follows:

$$\lambda_{x}(p) = \inf\{t \mid t > 0, \varphi_{t}(p) = p\}.$$

We shall call $\lambda_x(p)$ the *period function* of X. We shall denote frequently $t \cdot p = (\exp tX) \cdot p$ for $-\infty < t < \infty$, $p \in M$, whenever there is no confusion.

It is to be noted that $\lambda_{X}(p) > 0$ for each $p \in M$ by the regularity of X.

For the period function $\lambda(p) = \lambda_X(p)$ of a closed vector field X we have the following lemma (cf. [1] p. 722).

LEMMA 1. The period function $\lambda(p)$ is a differentiable function on M, especially it is continuous.

THEOREM 3. Let (ϕ, ξ, η) be a normal almost contact structure on M. Suppose that ξ is a closed vector field such that its period function $\lambda_{\xi}(p)$ is a constant. Then there exist a complex manifold M_0 and a C^{∞} -map π of M onto M_0 such that $M(M_0, S^1, \pi)$ is a principal circle bundle over M_0 , η is a connection form on M and ξ is a vertical vector field on M.

PROOF. Let $\lambda_{\xi}(p) = c_0 = \text{const.}$ Then the torus group $S^1 = R/Z \cdot c_0$ of real numbers modulo c_0 operates on M by

$$(t, p) \rightarrow \varphi_t(p)$$
 for $t \in R, p \in M$,

where $\varphi_t = \exp t\xi$ is the 1-parameter group of transformations of M generated by ξ . Clearly the only element of S^1 having a fixed point in M is the identity. Hence by a well known theorem [2] and the same argument in [1] p.725, Mhas a S^1 -bundle structure. Let M_0 be the base space of this bundle. To prove that η defines a connection form on M it is sufficient to prove that η is right invariant. For this it suffices to see that the Lie derivative of η with respect to ξ vanishes identically i. e. $\xi \cdot \eta(X) - \eta([\xi, X]) = 0$ for $X \in \mathfrak{B}(M)$. However, this is an immediate consequence of (2.7) [4] by putting $Y = \xi$. Hence the bundle $M(M_0, S^1, \pi)$ satisfies the conditions of Theorem 1 and thus M_0 has a complex structure, which proves Theorem 3.

Now we want to prove that if the vector field ξ of a normal almost contact structure (ϕ, ξ, η) on M is closed, the period function of ξ is necessarily constant on M. For this purpose we shall prove the following theorem which may be considered as an analogue of Lemma 1 for the complex case.

THEOREM 4. Let M be a complex manifold and X be an analytic vector field on M, i.e. X generates a local 1-parameter group of holomorphic transformations of M. Suppose that X and JX are both closed vector fields, J denoting the complex structure of M. Put $f(p) = \lambda_x(p) + \sqrt{-1} \lambda_{Jx}(p)$. Then f is a holomorphic function on M.

PROOF. Put $\tilde{X} = X - \sqrt{-1} JX$. Then \tilde{X} is a holomorphic vector field on M, i.e. \tilde{X} can be expressed locally as follows:

$$\widetilde{\mathbb{X}} = \sum_{i=1}^{n} h_{i}(w) \frac{\partial}{\partial w_{i}}$$

for complex coordinates system $\{w_1, \dots, w_n\}$, where $h_i = h_i(w_1, \dots, w_n)$ is a holomorphic function for $i = 1, 2, \dots, n$. Fix a point $p_0 \in M$. Since $X \neq 0$ on M, by a well known theorem, we can find a complex coordinates system $\{z_1, \dots, z_n\}$ on a neighborhood $U = U(p_0)$ of p_0 such that

(i) $z_i(p_0) = 0$ $i = 1, 2, \dots, n,$ (ii) $\widetilde{X} = \frac{\partial}{\partial z_i}$ on U.

Let C denote the additive group of complex numbers. Then C operates holomorphically on M by $z \cdot p = \exp tX \cdot \exp s JX \cdot p$, for $z = t + \sqrt{-1} s$ and $p \in M$. We note here that $\exp tX$ and $\exp sJX$ commutes since [X, JX]= 0. Put $f(p_0) = z^0 = x^0 + \sqrt{-1} y^0$, x^0 and y^0 being real and put

$$z_1(z \cdot p) = g(z, z_1(p), \cdots, z_n(p))$$

for $|z - z^0| < \varepsilon$ and $p \in U$, ε being sufficiently small. Since \tilde{X} is a holomorphic vector field, the function $g(z, z_1, \dots, z_n)$ is holomorphic for $|z - z^0| < \varepsilon$, $|z_i| < a$ for some a > 0. We want to solve the equation

$$q(z, 0, z_2, \cdot \cdot \cdot, z_n) = 0$$

for z. For this, we show first that

$$\frac{\partial g}{\partial z}(z^0,0,\cdots,0)\neq 0.$$

In fact,

$$\begin{aligned} \frac{\partial g}{\partial z} &(z^0, 0, \dots, 0) = \lim_{z \to 0} \frac{g(z^0 + z, 0 \dots 0) - g(z^0, 0 \dots 0)}{z} \\ &= \lim_{z \to 0} \frac{z_1((z^0 + z) \cdot p_0) - z_1(z^0 \cdot p_0)}{z} \\ &= \lim_{z \to 0} \frac{z_1(z \cdot p_0) - z_1(p_0)}{z} \\ &= \lim_{t \to 0} \frac{z_1(t \cdot p_0) - z_1(p_0)}{t} \\ &= X_{p_0}(z_1) = \left(\frac{\partial}{\partial x_1}\right)_{p_0}(x_1 + \sqrt{-1} \ y_1) = \left(\frac{\partial}{\partial x_1}\right)_{p_0}(x_1) = 1. \end{aligned}$$

where we have put $z_1 = x_1 + \sqrt{-1} y_1$, x_1 and y_1 being real. Using the existence theorem of implicit functions, we can find a holomorphic function $h(z_2, \dots, z_n)$ in $|z_i| < a \ (i = 2, \dots, n)$ such that

$$\begin{cases} h(0,\cdots,0)=z^0 \ g(h(z_2,\cdots,z_n),0,z_2,\cdots,z_n)=0. \end{cases}$$

Next we shall prove that there exists a neighborhood $U_1 \subset U$ of p_0 such that

(2. 1)
$$f(p) = h(z_2(p), \cdots, z_n(p))$$

for $p \in U_1$. For this purpose we shall prove the following lemma essentially proved in [1].

LEMMA 2. Let X be a closed vector field on a differentiable manifold M and $\lambda(p) = \lambda_x(p)$ its period function. Let $\{x_1, \dots, x_m\}$ be a system of coordinates on a neighborhood U of p_0 such that

(i) $X_p = \left(\frac{\partial}{\partial x_{\alpha}}\right)_p$ for $p \in U$

(ii)
$$x_i(p_0) = 0$$
 $i = 1, 2, \dots, m$

Put $x_{\alpha}(t \cdot p) = g(t, x_1(p), \dots, x_m(p))$. Suppose that $m \ge 3$ and that there exists

a continuous function $h(x_1, \dots, \hat{x}_{\alpha}, \dots, \hat{x}_{\beta}, \dots, x_m)$ for some β such that

- (iii) $h(0, \dots, 0) = \lambda(p_0)$
- (iv) $g(h(x_1, \cdots, \hat{x}_{\alpha}, \cdots, \hat{x}_{\beta}, \cdots, x_m), x_1, \cdots, x_{\alpha-1}, 0, x_{\alpha+1},$

 $\boldsymbol{\cdot}\boldsymbol{\cdot}\boldsymbol{\cdot}\boldsymbol{\cdot}\boldsymbol{x}_{\beta-1},\ 0,\ \boldsymbol{x}_{\beta+1},\boldsymbol{\cdot}\boldsymbol{\cdot}\boldsymbol{\cdot}\boldsymbol{\cdot}\boldsymbol{x}_m)=0$

for $|x_i| < a$, a being sufficiently small positive number, where \land denotes the omission of the letter under the \land .

Then there exists a neighborhood U_1 of p_0 contained in U such that

$$\lambda(p) = h(x_1(p), \cdots, \widehat{x}_{\alpha}(p), \cdots, \widehat{x}_{\beta}(p), \cdots, x_m(p))$$

for $p \in U_1$ satisfying $x_{\beta}(p) = 0$.

PROOF. If this lemma were false, there would exist a sequence of points $\{p_{\nu}\}_{\nu=1}^{\infty}$ such that $p_{\nu} \to p_0(\nu \to \infty)$, $x_{\beta}(p_{\nu}) = 0$ and that

$$\lambda(p_
u)
eq h(x_1(p_
u), \cdots, \widehat{x}_lpha(p_
u), \cdots, \widehat{x}_eta(p_
u), \cdots, x_m(p_
u)) > 0.$$

We can suppose that $x_{\alpha}(p_{\nu}) = 0$ by virtue of (i). Now

$$egin{aligned} &x_lpha(h(x_1(p_
u),\cdots,\,\widehat{x}_lpha(p_
u),\cdots,\,\widehat{x}_lpha(p_
u),\cdots,\,x_m(p_
u))\cdot p_
u) \ &= g(h(x_1(p_
u),\cdots,\,\widehat{x}_lpha(p_
u),\cdots,\,\widehat{x}_eta(p_
u),\cdots,\,x_m(p_
u)),\cdots,x_1(p_
u), \ &\cdots,x_{lpha-1}(p_
u),0,\,x_{lpha+1}(p_
u),\cdots,\,x_{eta-1}(p_
u),0,\,x_{eta+1}(p_
u),\dots,\,x_{eta-1}(p_
u),0,\,x_{eta+1}(p_
u),\dots,x_{eta-1}(p_
u),0,\,x_{eta+1}(p_
u),\dots,x_{eta-1}(p_
u),0,\,x_{eta+1}(p_
u),\dots,x_{eta-1}(p_
u),\dots$$

Hence we can find an integer $k_{\nu} > 1$ such that

$$h(x_1(p_{\nu}), \cdots, \widehat{x}_{\alpha}(p_{\nu}), \cdots, \widehat{x}_{\beta}(p_{\nu}), \cdots, x_m(p_{\nu})) = k_{\nu} \cdot \lambda(p_{\nu}).$$

By the continuity of h

$$h(x_1(p_\nu), \cdots, \hat{x}_{\alpha}(p_\nu), \cdots, \hat{x}_{\beta}(p_\nu), \cdots, x_m(p_\nu)) \to h(0, \cdots, 0) = \lambda(p_0)$$
$$(\nu \to \infty).$$

Hence $k_{\nu} \cdot \lambda(p_{\nu}) \to \lambda(p_0) \ (\nu \to \infty)$. On the other hand, by virtue of Lemma 1, $\lambda(p)$ is continuous, so $\lambda(p_{\nu}) \to \lambda(p_0) \ (\nu \to \infty)$. Therefore we have

 $\lambda(p_0) = \lim k_{\nu} \cdot \lambda(p_{\nu}) \ge \lim 2\lambda(p_{\nu}) = 2\lambda(p_0),$

which implies $\lambda(p_0) = 0$. This contradiction completes the proof of Lemma 2.

Return now to the *proof of Theorem* 4. Let $\pi: U \to U$ be the map such that

$$\begin{cases} z_i(\pi p) = 0\\ z_i(\pi p) = z_i(p) \end{cases} \quad (i \ge 2) \end{cases}$$

for $p \in U$. Put

$$g_1(t, x_1(p), y_1(p), z_2(p), \cdots, z_n(p)) = x_1(t \cdot p)$$

and put

$$h(z_2, \cdots, z_n) = h_1(z_2, \cdots, z_n) + \sqrt{-1} h_2(z_2, \cdots, z_n),$$

 h_1 and h_2 being real. We shall prove that

$$g_1(h_1(z_2(p), \cdots, z_n(p)), 0, 0, z_2(p), \cdots, z_n(p)) = 0$$

for $p \in U'$, where U' is a neighborhood of p_0 contained in U. In fact,

$$g_{1}(h_{1}(z_{2}(p), \dots, z_{n}(p)), 0, 0, z_{2}(p), \dots, z_{n}(p))$$

$$= \operatorname{Re} g(h_{1}(z_{2}(p), \dots, z_{n}(p)), 0, 0, z_{2}(p), \dots, z_{n}(p))$$

$$= \operatorname{Re} z_{1}(h_{1}(z_{2}(p), \dots, z_{n}(p)) \cdot \pi p)$$

$$= x_{1}(h_{1}(z_{2}(p), \dots, z_{n}(p)) \cdot \pi p)$$

$$= x_{1}(\sqrt{-1} h_{2}(z_{2}(p), \dots, z_{n}(p)) \cdot h_{1}(z_{2}(p), \dots, z_{n}(p)) \cdot \pi p)$$

$$= \operatorname{Re} z_{1}(h(z_{2}(p), \dots, z_{n}(p)) \cdot \pi p)$$

$$= \operatorname{Re} g(h(z_{2}(p), \dots, z_{n}(p)), 0, z_{2}(p), \dots, z_{n}(p)) = 0,$$

where we have used the commutativity [X, JX] = 0 in the fifth equality. By virtue of Lemma 2 there exists a neighborhood U'_1 of p_0 contained in U' such that $\lambda_x(p) = h_1(z_2(p), \dots, z_n(p))$ for $p \in U'_1$ satisfying $y_1(p) = 0$. In the same way, using Lemma 2 again, we can find a neighborhood U''_1 of p_0 contained in U'_1 such that

$$\lambda_{\scriptscriptstyle JX}({p})=h_{\scriptscriptstyle 2}({z}_{\scriptscriptstyle 2}({p}), {\cdots}, \, {z}_{\scriptscriptstyle n}({p}))$$

for $p \in U_1''$ satisfying $x_1(p) = 0$. From this it follows that

(2. 1)
$$f(p) = h(z_2(p), \cdots, z_n(p))$$

for $p \in U_1''$ satisfying $z_1(p) = 0$. On the other hand it is easy to see that $f(p) = f(z \cdot p)$ for z with sufficiently small |z|. Hence we conclude that there exists a neighborhood U_1 of p_0 contained in U_1'' such that (2.1) holds for $p \in U_1$. Hence f is holomorphic in U_1 , which completes the proof of Theorem 4.

In the rest of $\S2$, M is assumed to be connected.

THEOREM 5. Let (ϕ, ξ, η) be a normal almost contact structure on M such that ξ is a closed vector field on M. Then the period function λ_{ξ} of ξ is a constant on M.

PROOF. Put $\widetilde{M} = M \times S^1$, S^1 being the 1-dimensional torus with the natural (normal) almost contact structure. Then \widetilde{M} has a complex structure J induced by (ϕ, ξ, η) . Consider ξ as a vector field on \widetilde{M} . Then ξ is an analytic vector field on \widetilde{M} with respect to J, since (ϕ, ξ, η) is normal. Let $f(\widetilde{p}) = \lambda_{\xi}(\widetilde{p}) + \sqrt{-1} \lambda_{J_{\xi}}(\widetilde{p})$ be the function associated to ξ as in Theorem 4. It is clear that $\lambda_{J_{\xi}}(\widetilde{p})$ is

constant, so $\lambda_{\xi}(\widetilde{p})$ is also constant since $f(\widetilde{p})$ is holomorphic on \widetilde{M} . On the other hand, since $\lambda_{\xi}(\widetilde{p}) = \lambda_{\xi}(p)$ for $\widetilde{p} = (p, t), t \in S^1$, $p \in M$, $\lambda_{\xi}(p)$ is also constant on M, which completes the proof.

COROLLARY 1. Let (ϕ, ξ, η) be a normal almost contact structure on M such that ξ is a closed vector field on M. Then M has a circle bundle structure over a complex manifold M_0 .

In fact, since the period function of ξ is constant we can apply Theorem 3.

COROLLARY 2. Let (ϕ, ξ, η) be a normal almost contact structure on a compact manifold M such that ξ is a regular vector field on M. Then M has a circle bundle structure as in Corollary 1.

In fact, every maximal integral curve of a regular vector field on M is a closed set in M, so compact in M, which says that ξ is a closed vector field on M. Hence we can apply Corollary 1.

In the case when ξ is a *proper* vector field, i.e. ξ generates a global 1-parameter group $\exp t\xi(-\infty < t < \infty)$ of transformations on M, we want to show that ξ is a closed vector field if there exists one point $p_0 \in M$ such that the maximal integral curve C_{p_0} through p_0 is a closed curve. For this purpose we prepare the following two lemmas.

For a proper vector field X we define $\lambda_x(p)$ as in Def. 3, while $\lambda_x(p) = \infty$ if $t \cdot p \neq p$ for any t > 0.

LEMMA 3. Let X be a regular, proper vector field on a differentiable manifold M. Let M^0 be the set of all points $p \in M$ such that $\lambda_x(p) < \infty$. Then M^0 is open in M.

PROOF. Let $p_0 \in M^0$. Then there exists a system of coordinates $\{x_1, x_2, \dots, x_n\}$ on an open neighbourhood U of p_0 such that (i) (ii) of Def. 2 are satisfied. Put $\lambda_x(p_0) = \lambda_0$. We can assume that $|x_1| < \lambda_0$ on U and that $X = \frac{\partial}{\partial x_1}$ on U. By the continuity of $\exp \lambda_0 X$ we can find an open neighborhood V of p_0 contained in U such that $\lambda_0 \cdot V \subset U$. We shall show that $V \subset M^0$. Take a point $p \in V$. Then $\lambda_0 \cdot p \in U$. Now by the property (ii) there exists a real number t such that $\lambda_0 \cdot p = t \cdot p$, $|t| < \lambda_0$. Hence $(\lambda_0 - t) \cdot p = p$ holds. Since $\lambda_0 - t > 0$, it follows $p \in M^0$, which proves $V \subset M^0$, q.e.d.

LEMMA 4. Let X be a regular, proper vector field on M. Let $p_0 \in M$ such that $\lambda_X(p_0) = \infty$. Then for each positive number K there exists an open neighborhood U of p_0 such that $\lambda(p) \ge K$ for any $p \in U$.

PROOF. Let $\{x_1, x_2, \dots, x_n\}$ be a system of coordinates on an open neighbourhood U_0 of p_0 satisfying (i) (ii) of Def.2. We can assume that there exists a

positive number $K_1 < K$ such that $|x_1| < K_1$ on U_0 and that $X = \frac{\partial}{\partial x_1}$ on U. Put $A = \{t \cdot p_0 | \frac{K_1}{2} \leq t \leq K\}$. Since $p_0 \notin A$, there exist open sets W and U_1 such that $A \subset W$, $p_0 \in U_1 \subset U_0$ and $W \cap U_1 = \emptyset$. Now it is easy to find an open neighbourhood U of p_0 contained in U_1 such that $t \cdot p \in W$ for $\frac{K_1}{2} \leq t \leq K$ K and $p \in U$. We shall show that $\lambda(p) > K$ for $p \in U$. Take a point $p \in U$ and t such that $0 < t \leq K$. If $t \leq \frac{K_1}{2}$, then $t \cdot p \neq p$ holds by (ii). If $t \geq \frac{K_1}{2}$, then $t \cdot p \in W$, so $t \cdot p \notin U_1$. Hence $t \cdot p \neq p$ for $0 < t \leq K$, which shows $\lambda(p) \geq K$, q. e. d.

THEOREM 6. Let (ϕ, ξ, η) be a normal almost contact structure on a connected manifold M, such that ξ is a regular, proper vector field on M. Suppose that $\lambda_{\xi}(p_0) < \infty$ for some $p_0 \in M$, then $\lambda_{\xi}(p) < \infty$ for any $p \in M$, i.e. ξ is a closed vector field on M.

PROOF. Let M^0 be the set of points p for which $\lambda_{\xi}(p) < \infty$, then M^0 is open in M by Lemma 3. Put $\lambda_0 = \lambda_{\xi}(p_0)$, and $M_1 = \{p \in M | \lambda_{\xi}(p) = \lambda_0\}$. Let (ϕ^0, ξ^0, η^0) be the restriction of (ϕ, ξ, η) to the open submanifold M^0 . Since (ϕ^0, ξ^0, η^0) is normal, we can apply Theorem 5. Hence $\lambda_{\xi^0} = \lambda_{\xi} | M^0$ is constant on each connected component of M^0 . From this it follows that M_1 is open in M. Next we shall prove that M_1 is closed in M. Take a sequence of points $p_v \in$ M_1 $(v = 1, 2, \cdots)$ such that $p_v \to q \in M(v \to \infty)$. If $\lambda_{\xi}(q) = \infty$, then by Lemma 4 for $K = 2\lambda_0$, we can find an open neighbourhood U of q such that $\lambda_{\xi}(p) \ge$ $2\lambda_0$ for $p \in U$. Since $p_{v_0} \in U$ for a sufficiently large $v_0, \lambda_0 = \lambda_{\xi}(p_{v_0}) \ge 2\lambda_0$ implies a contradiction. Hence $\lambda_{\xi}(q) < \infty$, so $q \in M^0$. Now, since $\lambda_{\xi^0}(p)$ is a continuous function on M^0 by Lemma 1, $\lambda_{\xi}(q) = \lim \lambda_{\xi}(p_v) = \lambda_0$. Hence $q \in M_1$, which proves that M_1 is closed in M. Since M is connected, the non empty open, closed set M_1 coincides with M, which proves Theorem 6.

3. Family of contact bundles over a complex manifold. We shall define the product of two contact bundles (M, Σ) and $(\overline{M}, \overline{\Sigma})$ over a complex manifold M_0 , (cf. Def. 1). First we recall the definition of the product (or called sometimes sum) of the principal circle bundles M and \overline{M} (cf. e.g. [3]). Let $M = M(M_0, S^1, \pi)$ and $\overline{M} = \overline{M}(M_0, S^1, \overline{\pi})$. $\Delta(M \times \overline{M})$ denotes the set of all elements $(p, \overline{p}) \in M$ $\times \overline{M}$ such that $\pi(p) = \overline{\pi}(\overline{p})$. We say that two elements (p, \overline{p}) and (q, \overline{q}) of $\Delta(M \times \overline{M})$ are equivalent if there exists an element $a \in S^1$ such that

$$p \cdot a = q, \ \overline{p} \cdot a^{-1} = \overline{q}.$$

We denote by $M \cdot \overline{M}$ the quotient space of $\Delta(M \times \overline{M})$ by this equivalence relation. The projection from $\Delta(M \times \overline{M})$ onto M_0 induces a projection from

 $M \cdot \overline{M}$ onto M_0 , which we shall denote by $\tilde{\pi} = \pi \cdot \overline{\pi}$. The action of S^1 on $\Delta(M \times \overline{M})$ defined by $(p, \overline{p}) \cdot a = (p \cdot a, \overline{p}), (p, \overline{p}) \in \Delta(M \times \overline{M}), a \in S^1$ preserves the equivalence relation, hence it defines the action of S^1 on $M \cdot \overline{M}$. The bundle $M \cdot \overline{M}(M_0, S^1, \overline{\pi})$ is, by definition, the product of M and \overline{M} . It is known that the family of circle bundles over M_0 form a multiplicative abelian group by this multiplication, the unit element being the trivial circle bundle over M_0 .

Let now $\Sigma = (\phi, \xi, \eta)$ and $\overline{\Sigma} = (\overline{\phi}, \overline{\xi}, \overline{\eta})$. We define a linear differential form $\eta \times \overline{\eta}$ on $M \times \overline{M}$ as follows:

$$\eta \times \bar{\eta} = \rho^*(\eta) + \bar{\rho}^*(\bar{\eta}),$$

where ρ and $\overline{\rho}$ are the natural projection from $M \times \overline{M}$ onto M and \overline{M} respectively. We denote also by $\eta \times \overline{\eta}$ the restriction of $\eta \times \overline{\eta}$ to $\Delta(M \times \overline{M})$. Then there exists an unique differential form $\widetilde{\eta}$ on $M \cdot \overline{M}$ such that

$$\mu^*(\widetilde{\eta}) = \eta \times \widetilde{\eta}$$

where μ is the natural projection of $\Delta(M \times \overline{M})$ onto $M \cdot \overline{M}$. We can see that $\tilde{\eta}$ defines a connection on $M \cdot \overline{M}$ and the 2-forms Ω , $\overline{\Omega}$ and $\widetilde{\Omega}$ associated to the connections η , $\overline{\eta}$ and $\widetilde{\eta}$ respectively satisfy

$$(3. 1) \qquad \qquad \widetilde{\Omega} = \Omega + \overline{\Omega}.$$

(For the proof, cf. [3] p. 32). We denote $\tilde{\eta} = \eta \cdot \bar{\eta}$.

We want now to define the product $\widehat{\phi} = \phi \cdot \overline{\phi}$ of ϕ and $\overline{\phi}$ as follows. As usual we denote by $T_p(M)$ the tangent space of M at p. Then we see that the tangent space $T_{(p,\overline{p})}$ ($\Delta(M \times \overline{M})$) can be identified with the subspace $T^{\circ}_{(p,\overline{p})}(M \times \overline{M})$ of $T_{(p,\overline{p})}(M \times \overline{M})$ defined by

$$T^{0}_{(p,\overline{p})}(M\times\overline{M}) = \{(X,\overline{X}) \in T_{(p,\overline{p})}(M\times\overline{M}) | \pi X = \overline{\pi}\overline{X}\}.$$

LEMMA 5. Let $(X_p, \overline{X}_{\overline{p}}) \in T_{(p,\overline{p})}(\Delta(M \times \overline{M}))$ and $(X'_q, \overline{X}'_{\overline{q}}) \in T_{(q,\overline{q})} (\Delta(M \times \overline{M}))$. Then, $\mu(X_p, \overline{X}_{\overline{p}}) = \mu(X'_q, \overline{X}'_{\overline{q}})$ implies $\mu((J\pi X)_p^*, (J\pi X)_{\overline{p}}^*) = \mu((J\pi X'_q)_q^*, (J\pi X'_q)_{\overline{q}}^*)$, where $Y_p^*(Y_{\overline{p}} \text{ resp.})$ denotes the lift of Y (\overline{Y} resp.) at $p(at \ \overline{p} \text{ resp.})$ with respect to the connection η ($\overline{\eta} \text{ resp.})$.

PROOF. Let θ be the projection of $\Delta(M \times \overline{M})$ onto M_0 . For an element $a \in S^1$ we define the map Q_a of $\Delta(M \times \overline{M})$ onto itself by

$$Q_a(p, \overline{p}) = (pa, \overline{p}a^{-1})$$

for $(p, \overline{p}) \in \Delta(M \times \overline{M})$. Then clearly $\mu \circ Q_a = \mu$, and $\theta = \widetilde{\pi} \circ \mu$ hold. Now by the assumption

$$\widetilde{\pi}\mu(X_{p}, \ \overline{X}^{\overline{p}}) = \widetilde{\pi}\mu(X'_{q}, \ \overline{X}'_{\overline{q}}).$$

Hence

$$\pi X_p = heta(X_p, \overline{X}_{ar{p}}) = heta(X_q', \ \overline{X}_{ar{q}}) = \pi X_q'.$$

Since $\mu(p, \overline{p}) = \mu(q, \overline{q})$, there exists an element $a \in S^1$ such that $q = p \cdot a$, $\overline{q} = \overline{p} \cdot a^{-1}$. Therefore we have

$$(J\pi X'_{q})^{*}_{q} = (J\pi X'_{q})^{*}_{p \cdot a} = R_{a}(J\pi X_{p})^{*}_{p}$$

and

$$(J\pi X'_a)^{\overline{*}}_{\overline{a}} = R_{a^{-1}}(J\pi X_p)^{\overline{*}}_{\overline{p}}.$$

Hence

$$\mu((J\pi X_{q}')_{q}^{*}, (J\pi X_{q}')_{\bar{q}}^{*}) = \mu(R_{a}(J\pi X_{p})_{p}^{*}, R_{a^{-1}}(J\pi X_{p})_{\bar{p}}^{*})$$

$$= \mu \circ Q_{a}((J\pi X_{p})_{p}^{*}, (J\pi X_{p})_{\bar{p}}^{*})$$

$$= \mu((J\pi X_{p})_{p}^{*}, (J\pi X_{p})_{\bar{p}}^{*}), \qquad \text{q. e. d.}$$

By virtue of Lemma 5 we can define a tensor field $\overline{\phi}$ of type (1.1) on M. \overline{M} as follows:

(3. 2)
$$\widetilde{\phi}(\mu(X_p, \overline{X}_{\bar{p}})) = \mu((J\pi X_p)_p^*, (J\pi X)_{\bar{p}}^{\overline{*}})$$

for $(X_p, \overline{X}_{\overline{p}}) \in T_{(p,\overline{p})}(\Delta(M \times \overline{M})).$

Next we define a vector field $\boldsymbol{\xi}$ on $M \cdot \overline{M}$ as follows:

(3. 3)
$$\tilde{\xi}_{\mu(p,\bar{p})} = \mu(\xi_p, 0_{\bar{p}}),$$

where $0_{\overline{p}}$ denotes the zero tangent vector of \overline{M} at \overline{p} . We see easily that $\overline{\xi}$ is well defined by (3.3) and $\overline{\xi}$ is a vertical vector field of $M \cdot \overline{M}$ such that

 $\widetilde{\eta}(\widetilde{\xi}) = 1.$

Now we have the following proposition

PROPOSITION 1. $\widetilde{\Sigma} = (\widetilde{\phi}, \widetilde{\xi}, \widetilde{\eta})$ is a normal almost contact structure on $M \cdot \overline{M}$.

PROOF. For $X_{p_0} \in T_{p_0}(M_0)$ and $\pi p = p_0$ we denote by $X^{\tilde{*}}_{\mu(p,\bar{p})}$ the lift of X_{p_0} at $\mu(p, \bar{p})$ with respect to the connection $\tilde{\eta}$. Then it is easily seen that $X^{\tilde{*}}_{\mu(p,\bar{p})} = \mu(X^*_p, X^*_{\bar{p}})$. Hence by the definition (3.2) of $\tilde{\phi}$ we have

 $\widetilde{\phi}(X^{\widetilde{\ast}}_{\mu(p,\overline{p})}) = \widetilde{\phi}(\mu(X_p^{\ast}, X_{\overline{p}}^{\widetilde{\ast}})) = \mu((JX_{p_0})_p^{\ast}, (JX_{p_0}]_{\overline{p}}^{\widetilde{\ast}}) = (JX_{p_0})^{\ast}_{\mu(p,\overline{p})},$

which shows that

$$\mathcal{F}(X^{\tilde{*}}) = (JX)^{\tilde{*}}$$

for $X \in \mathfrak{B}(M_0)$. By virtue of (3.1) we see that the associated 2-form $\widetilde{\Omega}$ to $\widetilde{\eta}$ is of type (1.1) with respect to J. Now in the same way as the proof of Theorem 6[4] we can prove that $\widetilde{\Sigma}$ is a normal almost contact structure of $M \cdot \overline{M}$. We shall not repeat the proof in detail.

DEFINITION 4. $\widetilde{\Sigma}$ in Proposition 1 will be called *the product of* Σ and $\overline{\Sigma}$ and denoted by $\widetilde{\Sigma} = \Sigma \cdot \overline{\Sigma}$.

DEFINITION 5. Let $L_0(M_0, S^1, \pi_0)$ be the trivial circle bundle over M_0 , i.e. $L_0 = M_0 \times S^1$ and π_0 is the usual projection from L_0 onto M_0 . We define the normal almost contact structure $\Sigma_0 = (\phi_0, \xi_0, \eta_0)$ on L_0 as follows:

$$\begin{split} \phi_0(X,Y) &= (JX,0) & X \in T_{p_0}(M_0), \ Y \in T_a(S^1), \\ \xi_0 &= \left(0, \frac{d}{dt}\right) \\ \eta_0 &= (0, \ dt) \end{split}$$

where t denotes the coordinates of S^1 .

.LEMMA 6. Let (M, Σ) , $(\overline{M}, \overline{\Sigma})$ be contact bundles over the same complex manifold M_0 . Let $\Sigma = (\phi, \xi, \eta)$ and $\overline{\Sigma} = (\overline{\phi}, \overline{\xi}, \overline{\eta})$. Suppose that there is a bundle isomorphism f of M onto \overline{M} such that $f^*\overline{\eta} = \eta$. Then $f^{-1}\overline{\phi}f = \phi$ holds, *i.e.* Σ and $\overline{\Sigma}$ are isomorphic by f.

PROOF. Put $\phi' = f^{-1}\overline{\phi}f$. First we note that $f(X^*) = X^{\overline{*}}$ for $X \in \mathfrak{V}(M_0)$, since f is a bundle isomorphism such that $f^*\overline{\eta} = \eta$. Then for $X \in \mathfrak{V}(M_0)$ we have

$$\phi'(X^*) = f^{-1}\overline{\phi}fX^* = f^{-1}\overline{\phi}X^{\overline{*}} = f^{-1}(JX)^{\overline{*}} = (JX)^* = \phi(X^*).$$

On the other hand we have $\phi'(\xi) = \phi(\xi) = 0$. Hence $\phi'(X) = \phi(X)$ for any $X \in \mathfrak{V}(M)$, which proves the lemma.

LEMMA 7. Let (M, Σ) , (M_1, Σ_1) , $(\overline{M}, \overline{\Sigma})$ and $(\overline{M}_1, \Sigma_1)$ be contact bundles over the same complex manifold M_0 . If $\Sigma \simeq \Sigma_1$ and $\overline{\Sigma} \cong \overline{\Sigma}_1$, then $\Sigma \cdot \overline{\Sigma} \simeq \Sigma_1 \cdot \overline{\Sigma}_1$.

PROOF. Let f(g resp.) be an isomorphism of Σ to Σ_1 (of $\overline{\Sigma}$ to $\overline{\Sigma}_1$ resp.). Then the bundle isomorphisms f and g induce an bundle isomorphism h of $M \cdot \overline{M}$ onto $M_1 \cdot \overline{M}_1$ such that $h^*(\eta_1 \cdot \overline{\eta}_1) = \eta \cdot \overline{\eta}$, where η , for example, is the contact form of Σ , i. e. $\Sigma = (\phi, \xi, \eta)$. Hence $\Sigma \cdot \overline{\Sigma} \simeq \Sigma_1 \cdot \overline{\Sigma}_1$ follows from Lemma 6.

LEMMA 8. Let (M, Σ) , (M_1, Σ_1) and (M_2, Σ_2) be contact bundles over the same complex manifold M_0 . Then

(3. 4)
$$(\Sigma \cdot \Sigma_1) \cdot \Sigma_2 \cong \Sigma \cdot (\Sigma_1 \cdot \Sigma_2).$$

In fact, there exists a bundle isomorphism of $(M \cdot M_1) \cdot M_2$ onto $M \cdot (M_1 \cdot M_2)$ preserving the contact forms, hence (3.4) follows from Lemma 6.

In the same way as above two lemmas we can prove easily the following Lemma.

LEMMA 9. Let (L_0, Σ_0) be the trivial contact bundles over M_0 and (M, Σ) be a contact bundle over M_0 . Then we have

$$\Sigma \cdot \Sigma_0 \cong \Sigma_0 \cdot \Sigma \cong \Sigma.$$

We now define the inverse Σ^{-1} of Σ for a contact bundle (M, Σ) . For this purpose, we first recall the definition of $M^{-1}(M_0, S^1, \pi)$. The bundle space M^{-1} is the same as M. The action of an element a of S^1 on M is $p \to p \cdot a^{-1}$ for $p \in M$. i. e. M^{-1} is different from M only in the action of the structure group S^1 . Now we define $\Sigma^{-1} = (\phi, -\xi, -\eta)$ for M^{-1} if $\Sigma = (\phi, \xi, \eta)$ for M. Then we see that (M^{-1}, Σ^{-1}) is a contact bundle over M_0 . The following Lemma can be proved in the same way as the preceding lemmas.

LEMMA 10. Notations being as in Lemma 9, we have

$$\Sigma \cdot \Sigma^{-1} \cong \Sigma^{-1} \cdot \Sigma \cong \Sigma_0$$

PROPOSITION 2. Let (M, Σ) and $(\overline{M}, \overline{\Sigma})$ be contact bundles over M_0 . Suppose that the associated 2-forms to (M, Σ) and $(\overline{M}, \overline{\Sigma})$ both vanishes identically, and suppose that M_0 is simply connected. Then $\Sigma \cong \overline{\Sigma}$.

PROOF. Let $\Sigma = (\phi, \xi, \eta)$, $\overline{\Sigma} = (\overline{\phi}, \overline{\xi}, \overline{\eta})$. By the assumptions, the holonomy groups of η and $\overline{\eta}$ are both reduced to the identity. Take and fix three points $p_1 \in M$, $\overline{p}_1 \in \overline{M}$ and $p_0 \in M_0$ such that $\pi(p_1) = p_0 = \overline{\pi}(\overline{p}_1)$, $\pi(\overline{\pi} \text{ resp.})$ being the projection of $M(\overline{M} \text{ resp.})$ onto M_0 . Take a point $p \in M$. We want to correspond a point \overline{p} in \overline{M} to the point p. We choose a curve γ in M_0 joining $\pi(p)$ and p_0 . Take the horizontal lift $\widetilde{\gamma}$ of γ on M whose initial point is p. Let qdenote the end point of $\widetilde{\gamma}$. Then there exists an (unique) element $a \in S^1$ such that $q = p_1 \cdot a$. Now take the horizontal lift $\widetilde{\gamma}'$ of γ^{-1} on \overline{M} whose initial point is $\overline{p}_1 \cdot a$, where γ^{-1} denotes the inverse curve of γ . Then the end point \overline{p} of $\widetilde{\gamma}'$ is independent on the choice of the curve γ , since the holonomy groups with respect to η and $\overline{\eta}$ are both identity. We now denote $\overline{p} = f(p)$. Then we can verify that f gives rise to an isomorphism from Σ to $\overline{\Sigma}$. Since the proof is canonical, we shall omit the proof in detail.

COROLLARY. Let (M, Σ) be a contact bundle over M_0 , whose assciated 2-form vanishes. Suppose M_0 is simply connected. Then $\Sigma \simeq \Sigma_0$.

THEOREM 7. Let (M, Σ) , $(\overline{M}, \overline{\Sigma})$ be contact bundles over a simply connected complex manifold M_0 , whose associated 2-forms are Ω and $\overline{\Omega}$ respectively. Suppose $\Omega = \overline{\Omega}$, then $\Sigma \simeq \overline{\Sigma}$.

PROOF. Consider the product $\Sigma \cdot \overline{\Sigma}^{-1}$ on $M \cdot \overline{M}^{-1}$. Then the associated 2-form of $\Sigma \cdot \overline{\Sigma}^{-1}$ vanishes identically by the formula (3.1). Hence by the corollary above, we have

$$\Sigma \cdot \overline{\Sigma}^{-1} \cong \Sigma_0.$$

Then by Lemma 8,9 and 10 we have

 $\Sigma \cong \Sigma \cdot (\overline{\Sigma}^{-1} \cdot \overline{\Sigma}) \cong (\Sigma \cdot \overline{\Sigma}^{-1}) \cdot \overline{\Sigma} \cong \Sigma_0 \cdot \overline{\Sigma} \cong \overline{\Sigma},$

which proves Theorem 7.

We shall now prove the following theorem²⁾ which is the converse to Theorem 2 when the base space is simply connected.

THEOREM 8. Let $(M, \Sigma)((\overline{M}, \overline{\Sigma}) \text{ resp.})$ be a contact bundle over a complex manifold M_0 (\overline{M}_0 resp.) whose associated 2-form is Ω ($\overline{\Omega}$ resp.). Suppose that there eixsts a diffeomorphism f_0 of M_0 onto \overline{M}_0 such that $f_0^* \overline{\Omega} = \Omega$. Suppose also that M_0 is simply connected. Then we can find an isomorphism f of Σ to $\overline{\Sigma}$ such that

$$(3.5) \qquad \qquad \overline{\pi} \circ f = f_0 \circ \pi,$$

where π and $\overline{\pi}$ denotes the projection of M and \overline{M} onto M_0 and \overline{M}_0 respectively.

PROOF. $M = M(\overline{M}_0, S^1, f_0 \circ \pi)$ with Σ on M defines clearly a contact bundle over \overline{M}_0 whose associated 2-form is $f_0^{-1*}\Omega = \overline{\Omega}$. By virtue of Theorem 7 there exists a bundle isomorphism f of M onto \overline{M} such that f is an isomorphism of Σ to $\overline{\Sigma}$. (3.5) is now clear by the definition of M and Theorem 8 is proved.

References

- W. M. BOOTHEY and H. C. WANG, On contact manifolds, Ann. of Math., 68(1958), 721-734.
- [2] H. CARTAN, Espaces fibrés et homotopie, Séminaire H. Cartan, 1949-50.
- [3] S. KOBAYASHI, Principal fibre bundles with the 1-dimensional toroidal group, Tôhoku Math. Journ., 8(1956), 29-45.
 [4] A. MORIMOTO, On normal almost contact structures, Journ. Math. Soc. Japan, 15
- [4] A. MORIMOTO, On normal almost contact structures, Journ. Math. Soc. Japan, 15 (1963), 420-436

NAGOYA UNIVERSITY.

²⁾ A similar theorem as Theorem 8 may be proved even when $M_0(\overline{M}_0 \text{ resp.})$ is an almost complex manifold.