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1. A complex-valued function f on the unit circle of the complex plane
27
belongs to H! if fe L' andf fe)edd =0 for n=1,2,3,---. In gene-
0

ral, let A be a logmodular algebra on a compact Hausdorff space X and m
a representing measure for A ([4]). H'(dm) is defined as the L'(dm)-closure
of A or, equivalently, as the class of functions such that f € L'(dm) and

ffgdm =0 for every g € A,, where A, = {g |9 ¢ A,fgdm = 0}. Clearly,
X X

the definition of H'(dm) is weaker than that of H' for the unit circle. This
is because Ay = {g| g < A,, f - f(e”)dd = 0}, where A, denotes the algebra

of all continuous functions on the unit circle that admit analytic extensions
in the disk, is spanned by {¢™|n =1,2,3,---}, while existence of such a
family of functions in A,, is not guaranteed.

We are interested in these circumstances and intend to show that existence
of a certain family of functions which spanns A, (or A) characterizes an
algebra of all generalized analytic functions on a compact group among
function algebras on a compact space X. We discuss this problem in §3.
§4 is devoted to another considerations based on the fundamental Lemma 1.

2. Let I be a discrete abelian group containing a subsemigroup T,
such that I', contains the identity and generates 1"; let G be the dual group
of I' and p the normalized Haar measure on G. (We shall throughout exclude

the case where T',=T). Let A(G) = (£ | f < CG), fn)= [ flgXoMdu(p)=0

for all ¥ € I',} where ((G) is the algebra of all complex-valued continuous
functions on G. Then by Theorem 4.1 in [3], A(G) can be regarded as the
algebra of all generalized analytic functions with respect to I',¥>. It is clear
that I',C A(G). If T', NT';' = (1) (1 denotes the identity), then I' is partially
ordered ; if in addition I'=T", U I';* then I' is linearly ordered. The linearly

*) Under these assumptions, we shall call A(G) the general case.
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ordered case is treated in [5] and functions of A(G) are called of analytic type.
Examples are well known for both partially and linearly ordered cases. As
for the (non-trivial) general case where I', U I';* = I and T, N T'7' = (1), we
give an example as follows: T' = the set of all lattice points in the plane,
I, ={mn)|m=0,234--+; n=0, 1, =2, +3,+ 1.

By a functin algebra on a compact Hausdorff space X we shall under-
stand a uniformly closed proper subalgebra of C(X) which contains the
constants and separates the points of X. A(G) is a function algebra on G,
and even a Dirichlet algebra when I'=T, U T';iX. We denote by A, the
hyperplane of A associated with a probability measure m on X, ie. A, =

{(flf e A,ffdm =0}. If m is a multiplicative functional on A, that is,
p e

f fgdm = f fdm f gdm for f,g € A, m is said to be a representing measure.

p.¢ X X

3. The following is proved in [5] (p. 217) with the assumption that I" is
linearly ordered. Although the same method applies in the general case, we
give the proof by direct approximation arguments.

LEMMA 1. Let T, T , G and A(G) be as defined in §2. Let ALG)
=(f1 € AG), [ @) dutg) = 0, then
A(G) = closed linear span of T, and
ALG) = closed linear span of T\{1}.

PROOF. It is sufficient to show that any f € A(G), f # 0, is uniformly
approximated by trigonometric polynomials consisting of elements of T',.
Choose a continuous function # such that |f*« — f||. <&/2, and for this #,

a trigonometic polynomial v(@) = >_ b(Y)(@,7) such that ||#—v ||« < &/2|f]|w.
Then we have |[f*v—f|l. <& Clearly f*v ¢ C(G) and

(fro)@) = S bMFM (2,7 =3 a)(p,").

Yer,
The case for A,(G) is similar.

LEMMA 2. Let T, be a semi-group contained in a commutative group
T and 1 € T'.. Then the following are equivalent :

(1) T.nr=(Q)
(2) T\ {1} is a semi-group.
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PROOF. Suppose that I', N I';! contains a v, Y# 1. Then 7, v! € ', \
{1}, hence I',\{1} cannot be a semi-group. Conversely, let I",\{1} be not
a semi-group. Then, since I', is a semi-group, there exist 7, ¥, in I'y such
that v; #1, v, # 1 and v,%, = 1. Thus, 77! € I'y, so 'y, N I';' = ().

From the above lemmas it is easily seen that if I', N I';' = (1) then the
normalized Haar measure p on G is a representing measure for A(G).

THEOREM 1. Let A be a function algebra on X. If there exist a pro-
bability measure m on X and a family P of functions in A, each of which
has the modulus 1 everywhere on X and if they satisfy

(@) P-Pc P (semi-group under the pointwise multiplication),

) L'Y,(x) Yo(x)dm(x) =0 for ", Y, € P, v, # ", (orthogonality),
(¢c) A, = closed linear span of P,

then X is homeomorphic to a compact abelian group G with G partially
ordered and A is isometric and isomorphic to an A(G) with respect to a

AN
semi-group of G. The converse is also true.

PROOF. First, let G, I', T', and A(G) with respect to I', be given and
T, NT=(1). We take p and T, \{1} for m and P. From Lemmas 1 and
2, it is clear that they satisfy all the requirements.

Next, we shall show the sufficiency of the conditions. Let T', = P U {1}
and I'=T.-I';' (1 denotes the constant function on X and “—” means the
complex conjugates of functions), then I' is a commutative group generated
by I'y. Since P is a semi-group, Lemma 2 implies that I', N I';' = (1). We
regard I' as equipped with the discrete topology and denote by G the dual of
I'. For arbitrary « € X we define a function @, on T by @.(v) = ¥(x), Y <T.
It is easily seen that @, is a character of T', so that @, € G. Thus, we obtain
a mapping ® of X into G such that ®(x) = @,, £ € X. Since A separates the
points of X and A is represented as the closed linear span of I', by (c), I,
itself separates the points of X. This implies that ® is one-to-one. Moreover
® is continuous, because G has the weak topology by members of I. X is
thus embedded in G.

Now, let v=m®!, then v is a positive measure on G the support of which
is contained in ®(X). For ¥ € I" we have ¥ =77, 71, 7: €'y, so by (b)

[@omate)= [ v@F@dn@ =0  for v=1

and
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L () = L dm(z) = 1.

It follows that v=u, the nomalized Haar measure on G, and this implies that
P(X)=G.

Let A(G) be the algebra of all generalized analytic functions with respect
to I'y. If we define the mapping ¥ by W(f) =fo®!, f ¢ ((X), it is easily
seen from Lemma 1 and (c) that ¥(A) = A(G). That ¥(A4,) = A.G) is also
clear. Thus, the proof is completed (we have also proved that m becomes a
representing measure for A).

If we require I" to be linearly ordered in Theorem 1 it must be satisfied
that P- P\ {1} ¢ P U P}, since this is equivalent to I'=T", U I';. Fur‘ﬁl\mr-
more, it is well known that I' is linearly ordered if and only if G=T is
connected ([5]). The linearly ordered analogue of Theorem 1 is the following

THEOREM 2. Let A be a function algebra, and let m and P satisfy the
JSollowing conditions :

() P-PcP.
() For ¥,%, e P(v,%=7,), v\, ¢ P or v7,cP.
(¢) A, = closed linear span of P.

Then X is homeomorphic to a compact connected group G and A is represented
as A(G) with respect to a semi-group I, which defines a linear order on T.
Furtheremore, (c) can be equivalently replaced by the condition :

(¢) m is a representing measure for A and P separates the points of X.

The converse is also true.

PROOF. We have only to prove that (a), (b") and (¢) imply the conclusion
above, since other implications are easily verified. We conclude from (a),
(b) and (¢") that ®(X) = G as in the proof of Theorem 1, and I' is linearly
ordered by (b’), so G is connected. Lemma 1 implies that W¥(A) D A(G).
For the converse, let f ¢ A. If YeI', (I'y = PU {1}) then ¥ € P by (b’), so
we have

[ (o @ XeoXo M duto) = [ fa) @) dmiz) =0,

since m is a representing measure and f¥ € A,. Thus, ¥(f) ¢ A(G), which
completes the proof.
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We have treated above, merely for the sake of convenience, the case in
which I', N"I';'=(1). As for the general case,the analogous result is stated as
follows: Let m be a probability measure on X and P a family of functions
in A each of which is of modulus 1 on X such that they satisfy (a’) 1 € P,

P.PcC P, (b) for v,,Y, € P, (Y, #,), f Y. ¥, dm = 0 and (¢”") A=closed linear
X

span of P. Then X is considered as a compact group and A is represented
as an A(G), and vice versa. Theorem 1 is nothing but the case where P\ {1}
itself is a semi-group.

4. In this section we shall discuss an application of Lemma 1. Let A
be given as a logmodular algebra in Theorem 1. Let H*(dm)=L*(dm)-closure
of A, and H2(dm) = L*dm)-closure of A,, where m is a given measure in
Theorem 1 (and this is in fact a representing measure). Then L*dm) is
decomposed as L*dm)= H*dm) ® Hx(dm) ((4]). The conclusion of Theorem
1 and Lemma 1 imply that L*G) = L*dm) = L*-span of I', @ L*span of P
Since the character group constitutes a complete orthonormal family of L*G),
it follows that I' coincides with I', U I';'. Thus, for a logmodular algebra A,
Theorem 1 is reduced to Theorem 2. If in particular the algebra A(G) of
generalized analytic functions on G is logmodular, it is necessarily a Dirichlet
algebra.

The decomposition of L*(dm) is possible for any function algebra which
has the property that every complex homomorphism has a unique representing
measure ([6]). It follows as above that if A(G) has this property I' =T, UTI';
holds. This also holds in the general case:

THEOREM 3. For an algebra A(G) with respect to a semi-group I'.,
the following are equivalent :

QO r.nr*=r.

) A(G) is a Dirichlet algebra.

®3) A(G) is a logmodular algebra.

(4) Every homomorphism of A(G) admits a unique representing measure.

PROOF. It is sufficient to prove that (4) implies (1) (a Dirichlet algebra

is always logmodular). For the case I', N I';! = (1), this implication is already
proved, so we shall reduce the general case to it¥>. Let I'y=T', NI, A=1Y/T,

*) The following argument was suggested by that of [3].
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and A, =T.,/I. A, is a semi-group generating A and A,NA7'=() (I means
the identity of A). Let & = A and let A(®) be the algebra of all generalized
analytic functions on ® with respect to A.. We denote by %(G) the collection
of all functions in C(G) whose restrictions to & belong to A(®). This is cleary
a uniformly closed subalgebra of C(G). We show that A(G) C A(G). To see
this, it is sufficient to verify that TI', C %(G). Let u, denote the normalized
Haar measure on ®. Let v, € I', and ¥ € A,.

18 = [ (0,701 dus(e)

- f@ (@, 76Y™") dug(@) = 0,

since ¥, # 7. Thus, ¥, € AG).

Now, let A(G) satisfy the condition (4). Let A be any homomorphism
of A(®) and let m,, m, be its representing measures. Then for any f € A(G),
we have

h(F19) = [ f@) dmio)= [ fo) dmie) .

Let 2'(f) = (f|®), f € A(G), then h’ is a homomorphism of A(G) and
m,, m, are its representing measures, hence it follows that m, = m,. Thus we
have A = A, U A7 so I' =T, U I';! which completes the proof.

REMARK. An example is constructed in [1] which shows that a homo-
morphism of a function algebra (and even an A(G)) admits non-unique
representing measures. From above considerations we can easily derive a
set of simple examples given by A, = closed linear span of {1,¢*+1, gik+2?
cee}, B=1,2,3,-.-.
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