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1. Introduction. For a series ^ an or sequence sn (n — 0,1, 2, ) of

its partial sums, there is a generalization of Abel or (A) summability which
has been defined as follows:

For any a> — 1, {sn} is summable (Aa) to 5 (finite), or briefly, sn—»s(AQ,),
if

( 1 )

the series in (1) being supposed to converge for 0 < x < 1. The particular
case of (Aa) summability with a=0 is (A) summability and the limiting case
with a=—l, separately defined below after Borwein [1], may be called (L)
summability after Ishiguro ([3], [4]).

{sn} is summable (L) to s, or sn —> s (L), if

i °°

( 2 )

the convergence of the series in (2) being assumed for 0 < x < 1. Sum-
mability (AΛ) introduced independently by Jakimovski ([5], p. 374) and
Rajagopal ([7], p. 93), has been considered in detail by Borwein [1], while
summability (L) mentioned by Hardy ([2], p. 81) in one connexion and by
Rajagopal ([7], p. 94) in another, has been subsequently studied, first by
Borwein [1] in respect of its relation to summability (Aα), a > — 1, as well as
certain other summabilities, and then by Ishiguro independently (loc. cit.)
from the point of view of Tauberian theory. It is the object of this paper
to continue Ishiguro's work by presenting three Tauberian theorems for
summability (L), numbered 1(1/), II (L) and 111(1/) in the sequel, analogous
to well-known theorems for Abel summability and their extensions to sum-
mability (Ac).

In a discussion of the Tauberian theorems last mentioned, the methods
of summability (Aa) for all a > —1 can in general be uniformly treated, so
that the treatment includes as a special case the Abel method (Ao) or (A).
However, such a uniform treatment of the (Aa) methods cannot always be
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extended to the (L) method. Either a known basic proposition to which we

appeal in the case of the (Aa) methods has to be modified in details if not

in essentials to make it applicable to the (L) method (e.g. Proposition 1 or 2

infra), or else the basic proposition for the (AΛ) methods is not applicable

at all to the (L) method. The first alternative is illustrated by the proofs of

Theorems 1(1/), ΠI(L) and the second alternative by the proof of Theorem

II (L)*. It should be mentioned at the same time that the proofs of these

particular theorems for (JL) summability suggest similar proofs of the analogous

Theorems I (A), II (A), III (A) for (Aa) summability, though they may not be

useful pointers to proofs of other theorems for (Aa) summability or to proofs

of analogous theorems for other summabilities.

The authors would like to acknowledge here, their indebtedness to Prof.

C. T. Rajagopal for help in the preparation of their paper and to Dr. B.

Kuttner for a kindly scrutiny of their original manuscripts which has resulted

in a correction.

2. Preliminary results. The methods of summability (Aα), tf> — 1, and

summability (L) are particular cases of a positive regular method of summa-

bility (T) defined thus:

( 3 )

If, for » = 0,1,2, , cn(y) ^ 0(y>0), cn(y)->0(y^°°), Σ c*(y) = 1,
71 = 0

oo

{sn} is such that τ(y) = Σ cn(y) sn converges for y > 0 ,
71 = 0

then {sn} is summable (r) to s when τ(y) —> s as y —> oo .

Summability (T) as defined by (3) reduces to summability (Aa) as defined by

(1) or summability (L) as defined by (2), according as

( 4 ) cn(y) = an(y) = (1 -

or

(5) Cn(y) = Xn(y
" ^ # v n w - logα-e-^^+i)

If the transform τ(y) of (3) corresponding to the cn's of (4) and (5) be denoted

respectively by Aa(y) and L(y) the definitions in (1) and (2) can be restated

thus:

* Theorem I(L) is the first authors and Theorem II(L), ΠI(X), are the second authors.
The theorems, with their authorship thus specified, formed the substance of two communica-
tions to the 29th Conference of the Indian Mathematical Society held at Madras in December
1963. As for Theorems I (A), II (A), IIL(A), full details of their proofs are supplied in an
unpublished paper of the second author's.
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oo

( 6 ) sn -> s(Aa) if Aa(y) = Σ an(y) sn-+s as y -> oo ,
n=0

( 7 ) sn -» s(L) if L(y) = Σ *>n(y) sn-+s as y -> oo ,
71=0

where tfw(y) and λw(y) have the definitions in (4) and (5).

The following two propositions for the transform τ(y) are modifications

of known results, required for our purpose.

PROPOSITION 1. Suppose that

( i ) φ(u) is a positive monotonic increasing unbounded function of u^

such that

->oo if 1 ί g Wo < W -> oo

(ii) the functions cn(y) satisfy the following conditions in addition to

the conditions at the beginning of (3) :

M

(8) Σ'n(y)-»0 if M->oo,3,->oo, Φ(;y)-Φ(M)->oo,
n=0

if N—* oo, y -> oo, φ(ΛΓ) —

(10)

(iii) {5n} Z5 5wc/i that there are positive numbers a and b which make

(11) sq-sp> -a{Φ(q) - Φ(p)} -b for q>p>pQ.

Then τ(y) = O(l) (y -> °°) im/rf£βs 5W = O(l) (n -> oo).

Proposition 1 is a modified form of a principle due to Vijayaraghavan,

as stated by Hardy ([2], p. 306, Theorem 238), and is proved exactly like that

principle.

PROPOSITION 2. Suppose that, in Proposition 1, (ii) is replaced by a

condition as follows:

y and positive integers M, N are related so that

Φ(y) - Φ(M) = μ > 0, Φ(N) - Φ(y) = v>0,

and, corresponding to any small e > 0, we have:
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Σ c»(y) < e

(9')

(100

for all large enough y, M, N, μ, v ,

and additionally, for any choice of μ, v suitably large and all large enough

y,M,N

(12) cn(y) I Φ(n) - Φ(p) \ < K(μ, v), where p = M or N.

Suppose also that hypothesis (iii) of Proposition 1 is changed to

(13) sp - sq = oL(X) (Φ(g) - Φ(p)} + oL(l) , q > p -> oo .

Then the conclusion of Proposition 1 can be refined as follows:

Osc τ(y) = Osc sn < oo ,

2/-»oo 7i-»oo

i.e. lim.

α/Z ί/ie limits being finite.

Proposition 2 is a companion to Proposition 1, proved just like its original
version, in a somewhat different form, given by Rajagopal ([8], Theorem B).

PROPOSITION 3. If {sn} is real, sn —> s(L) in the sense of (7) and sn is
bounded on one side, then

(14)
tm = 2 +

logm V° ' 2

which relation may be said to define summability (/) of {sn} to s and written

This proposition has been proved by Ishiguro ([3], Theorem 2).

PROPOSITION 4. ( i ) Summability (I) of {sn} to s in the sense of (14) is
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equivalent to summability (R, log(n + ϊ), 1) of {sn} to s in the usual sense ([2],
p. 86):

(ii) Summability (I) of {sn} to s and

lim inf (sn — sn^) n log n = —w (O^w < oo)
7Z-»oo

together imply the convergence of {sn} to s.

Part (i) of Proposition 4 is well known ([2], p. 87, Theorem 37) and part
(ii) follows from (i) by a familiar Tauberian theorem ([2], Theorem 67 and
p. 145, Notes).

3. Theorems. In all the theorems which follow, {sn} is a real sequence.
Of the immediately following pair of analogous theorems for summabilities
(Aa) and (L), the second is proved and the first is merely stated as it can be
proved similarly. In the case a = 0 the first theorem is classical ([2], p. 154,
Theorem 91).

THEOREM I (A). If {sn} is summable (Aa) to s and such that

(15) lim inf (sn — sn_x) n——w (O^w < oo),

then sn is convergent to s.

THEOREM I (L). If {sn} is summable (L) to s and such that

(16) lim inf (sn — 5W_X) n log n = —w ( 0 ^ w < oo),
n-*oo

then sn is convergent to s.

Ishiguro ([4], Theorem 2) has proved Theorem I(L) in the special case
lim(sw—sn_i) nlog n = 0, of (16). Theorem I (L) as stated follows obviously
from the lemma given below taken along with Proposition 3 and Proposition
4 successively.

LEMMA (L). If L(y) is defined as in (7) and bounded as y —> oo or in
particular, convergent to s as j> —> oo, then hypothesis (16) ensures that sn is
bounded.

This lemma may be deduced thus from Proposition 1. We first observe
that the hypothesis (16) of the lemma ensures hypothesis (11) of Proposition 1
with φ(u) = u log u. The remaining hypotheses (8), (9), (10) of Proposition 1
are also ensured by the cn(y) = °λn(y) of (5) and the Φ(u) corresponding to
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our choice of φ(w)> viz.

Γ Γ dt
• Λ Γ d t Γ
V ' Je φ(t) Je tφ(t) Je tlogt

when 3/, M, iV are such that, as y —> °o,

(17)
or

In the first place, we get from (5) and (17), as y

0
Z-, n+\ i—. Λ . v

log^ v n+λ [°gy Ύ n + i ι°gy

Next, since we may suppose that y < N as y —> oo?

_3L _

Finally, using the fact that logx ^x — 1 (;r>0), we get when y-* 00,

log
Λ + l

logy *

1

logiV

n/N)
log3; l o g i \ Γ ^ w+1

log3;.logAΓ 5 JV+z; l o g (ΊV + λ

XogyΛogN ~

TΛP-Σ
p-v/V
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= _ ? (l — e~1/v)~2

logylogN N2

y ' 2

log y log N y N I log y log N

Thus the hypotheses of the lemma imply the hypotheses of Proposition 1 in
a special case and the conclusion of boundedness of sn in the proposition can
be carried over to the lemma.

A second pair of analogous theorems for summabilties (Aa) and (L) is
given below. Alternative (i) of each of these theorems can be treated as a
special case of Proposition 1. In fact, alternative (i) of Theorem II (L) has
been so treated in Lemma (L), and alternative (i) of Theorem II (A) can be
similarly treated.

THEOREM II (A). Suppose that {sn} satisfies the condition (15) and that
the transform Aa(y) of {sn} defined in (6) satisfies the condition

(18) lim sup Aa(y) < oo .

Then

either ( i ) lim inf Aa(y) > — oo ? with sn = O(l) ,

or (ii) lim inf Aa(y) = — oo ? with

(19) sn 5g [w + o(ΐ)] log log n (n —> oo) .

THEOREM II (L). Suppose that {sn} is subject to the condition (16) and
that the transform L(y) of {sn} defined in (7) is subject to the condition

Sn =

0-

In the case of alternative (ii) of each of the above theorems, for which
a proof has not been indicated, the following points may be noted. Alterna-
tive (ii) of Theorem II (A), in the case a = 0, is due to Karamata [6] who also
showed that (19) then gives the best possible upper estimate for sn in that

(20)

Then

(21)

either

or

( i )

(ϋ)

lim sup L(y) <
ίH-oo

lim inf L(y) > — oo

lim inf L(y) = — oo

[w + o(l)] log log log

oo

>

n

with

with

(n-
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log log n on the right side of (19) is not always replaceable by a smaller
function of n. Further, alternative (ii) of Theorem II (A) for all a > — 1 is
deducible from a general result which is a complement to Proposition 1,
obtained by Rajagopal and Vijayaraghavan ([8], Corollary 1 under Theorem
1). But alternative (ii) of Theorem II (L) is not so deducible and is proved
below ab initio.

We first note that, by (16) we can find a positive integer Mo, correspond-
ing to any small e >0 such that

n

Σ (*r-Sr-i) > ~ O + 0 Σ -ZΛZZZ. (n>M> Mo)
r=M+l M+l ' 1 U & '

I
JM

du
JM ulogu

(22) = - (w + e) (log log n - log log M).

We next observe that, by (16) again, there is a constant K>0 such that

n n i

s = 5. + y (5 — $ Λ > sβ — 2£ V1 — - — (2 < n < M)

cite

u log u

(23) = Ky - Xlog logn>K' - KloglogM,

where iΓ = 52 + K loglog 2. Recalling the defintion of L(y) in (7) we can
write:

00 M-l 00

and then use (23) in the second term on the right side and (22) in the third
term. The result is

SMΣ K(y) <L(y)-K'Σ, K(y) + KloglogM Σ K(y) +
n=M 0 0

00

+ (w + e) Σ (log log n - log log M) \n(y).
M

On the right side, the first term is by hypothesis (20) bounded above and
the factor multiplying K' in the second term is positive and less than unity
from the defintion of \n(y) in (5). Hence these two terms are together less
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than a positive constant K", and we get

sM < J ^ + KloglogM^J λ»(y) +

+ ΨP- Σ dog log n - log log M) Xn(y)

(24) = Σ 1 + Σ 2 + Σ 3 (say).

In each of the three terms on the right side of (24),

M~1 ]_ M~Ύ

? ^Cy) = - logd-e-^) Σ

(25) ^ 4

where C is a positive constant, if

(26) log y = log M log log M (M > Mx)

which is a choice of y (for all suitable large M, as stated) adopted throughout

in the rest of this proof. Using (25) and (26) in the terms ]Γ) and JZ of

(24), we get

l Z 0 ^ ^ ^ logy-log M-C ^

(28)

Also,

(29) < w+e . 1 r\oglogu-\oglogMe_u/vdu

^ 1 logy JΛ «

—1 ^ log log M-loglogM -.
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Changing the variable in the last integral to v=u/y9 we get

V* < w+e m 1 f°° log log y v — log log M ^ υ

Zso ^ M-l

1 ί Γι s7
— I (log log y—log log M) I —
gy Λ,/« v

<

ψ: logy [

0

+ r l o g l o g y - i o g l o g M e_υdv+ r i o g i o g ^ e _ Ώ d )
Jl V Jy V J

(30) = Σ 3 1 + Σ 3 2 + Σ 33.

Using (25) and (26) in Y] , Y] and Y] , we find that

Σ < i^+^ogy . loglog,y-loglogM _
-̂'si logj - logM-C logj; v &^ & /

(31) — (zv + e) log log log M (M -> oo),

/ <C (w + β) ~j -Λ τ~p—-7z~ ^ I " dv

*-~*2 log 3;—logM—C log^y Ji ^

(32) = o ( l ) (M->oo),

(33)
log3;—log M—C log^ Jy v

(M->oo).

Using (31), (32), (33) in (30), we get ^ 3 < (w + 2 β) log loglogM for all large

M. Then using the last relation together with (27) and (28) in (24) we reach

the desired conclusion (21) with M in place of n:

SM ̂  [w + o(l)] logloglogM (M-> oo) .

REMARK ON THEOREM II (L). The omission of the Tauberian condition

(16) may imply an upper estimate for sM larger than the one reached above, as

shown by the example

sΏ = (-ϊ)n(n+ψ> - [ l - ( - l ) ] ( » + l ) .

The last pair of analogues in this paper, for summabilities (Λa) and (L),

are the Tauberian theorems which follows. They are refinements of the
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alternatives (i) of Theorems II (A) and II (L), deducible from Proposition 2 by
similar arguments. For the reason last stated, the deduction of the theorem
for (L) summability and that for (Aa) summability is omitted.

THEOREM III (A). If {sn} satisfies the condition

(34) lim inf (sn — sw_i) n = 0 ,

and the transform Aa(y) of {sn} in (6) is bounded as y —> °°, then

Osc sn = Osc Aa(y).

THEOREM Π I ( L ) . If {sn} is subject to the condition

(35) lim inf (sn — 5n_x) n log n = 0 ,

and the transform L(y) of {sn} in (7) is bounded as j>—> °°, then

Osc sn — Osc L(y) .

We deduce Theorem IΠ(L) from Proposition 2 on the lines of our
deduction of Lemma (L) from Proposition 1. We first note that hypothesis
(35) implies hypothesis (13) of Proposition 2 with φ(u) = u log u. As in the
derivation of Lemma (L) from Proposition 1, the cn(y) — Xn(y) of (5) and the
Φ(u) = loglogu corresponding to our choice of φ(u) can be shown to satisfy
hypotheses (80, (90 and (100 °f Proposition 2. Theorem III (L) will follow as
a special case of Proposition 2 if we show further that our choices of
Cn(y) and φ(u) or Φ(u) satisfy hypothesis (12) of Proposition 2 under the
accompanying condition that y, M, N may tend to oo but are such that

Φ(y)-Φ(M) = log ^fj = μ > μ0

(ft, v fixed).(36)

We begin by considering

Σ.cn(y)\Mn)-Φ(N)\ =Σ.Xn(y){Φ{N)-Φ(n)}+ f) Xn(y){Φ(n)-Φ(N)}
n=M n=M n=JV+l

(37) = £ + & (say).

AS2 has already been considered in the proof of Lemma (L) and shown to be
arbitrarily small for all sufficiently large y, M, N, μ, v. Also,
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S, = Σ K(y)ίΦ(N)-Φ(n)}

An obvious upper estimate for the extreme right-hand member, under the

condition (36), is given by

log log N — log log M ^ 1 _ , logiV log N— log M+ o(l)

~~ ° g l o g M # logj/

(y, M, 2^-> oo)

= (μ + i;) [ev - e~μ +

Hence, using in (37) the upper estimates for *St and S2 obtained above, we

get, with our choice of cn(y) and Φ(u),

oo

(38) Σ, c»(y) I *(») - * ( ^ ) l < 0* + v) (ev - «-") + e,

for all sufficiently large y, M, N and any pair μ, v chosen suitably large.

Next we have to consider

cπ(y) I Φ(«) - Φ(M)| = f; λ,,Cy) {Φ(») - Φ(M)}

1 _ ^ log log n - log log M (n+iyy , ,

(39)

The integral in (39) is the same as that in (29). And the treatment of this

integral in the steps following (29) and ending with (33) shows that

& logM \ logy /

_,_ log 2-
logj; Λ v

under the condition (36). Using the above upper estimate for S3 in (39) we

get at once
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oo

(40) Σ cn(y) I Φ(n) - Φ(M) | < μ(l - e~») + e
n=M

for cn(y), Φ(u) and y, M, N, μ, v as in (38).

(38) and (40) together show that hypothesis (12) of Proposition 2 is satisfied
as a special case in Theorem III (L). And so the deduction of Theorem IΠ(L)
from Proposition 2 is complete.

4. Concluding remarks. Ishiguro's Tauberian theorem ([4], Theorem 2),
already referred to, is an analogue of the original Tauberian theorem that,
for any sequence {sn} summability (A) and the condition limn(sn— sn-ι) = 0
together imply convergence. Theorems I (A), I(L) and Theorems III (A),
III (L) of the present paper are analogues of two successive developments of
the original Tauberian theorem, the first of which assumes that {sn} is
summable (A) and liminf n(sn— sn_i) ^ 0 but finite, and the second assumes
that {sn} is bounded (A) and liminf n(5n—5w_1)=0. The result last referred
to arises out of Vijayaraghavan's well-known extension of the original Tauberian
theorem, to the effect that a sequence [sn] is bounded when it is bounded (A)
and liminf ^(5^—5^-!) ^ 0. And there is a complement to Vijayaraghavan's
extension, due to Karamata [6] and mentioned earlier, in which the condition
that {sn} is bounded (A) is replaced by the condition that {sn} is bounded (A)
on the right. Theorems II (A) and II (L), in their alternative (i) are analogous
to Vijayaraghavan's theorem, while, in their alternative (ii), they are analogous
to Karamata's theorem.
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