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Introduction. We have already dealt with the indecomposability of
differentiable manifolds twice ([1],[2]). In this paper we shall show an
application of the mod g Pontryagin class, where ¢ denotes a prime number
bigger than 2, on this problem. The mod ¢ Pontryagin classes were systema-
tically investigated by Hirzebruch ([3], [4]). In particular the vanishment of
mod 3 dual-Pontryagin class of the highest dimension is fundamental for
our purpose.

1. Let g be a prime number bigger than 2 and let X, be a compact
orientable differentiable n#-manifold. For any cohomology class v € H"~2r@™"
(Xa, Z,) it holds that
CHRY Pov = s;v (3], [4D),
where 8] denotes the Steenrod power ([7])

1. 2 B2 H' (X, Zg) — H™7V (X, Zy)

and s denotes a mod g polynomial of Pontryagin classes such that

(1. 3) =0 Ly (o p) modg, t=r(g-D)
where

. 49 I (V7 /tghn/ %) = 5 Lo ==+ £,

(1. 5) p=>p= ]¢I 1+7v) and

1. 6) peHY(X,, Z).

The dimension of sj is equal to 27(g—1). We put

) Dby =11 Q+7), b¥e HY (Xq, Zy)

i=0 i
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where % denotes the reduction modulo ¢ and
_1
1. 8) = ?(q—l).
It is known that
1.9 b =2_Pus
where the summation is extended over all 7, » with
1. 10) 2j=0G+n(@-1. (4D

In the case ¢ =3, (1. 7) takes the form

(1. 11) Dbhyy=1 A+7%) =2 p

=0 i =0

and we have from (1. 9)

1. 12) F= 2 Pis.

J=i+7

We define b,; and s; by

(1. 13) ( z s:,) (; 3;) =1, §ecHY(X, Z)
and

(1. 14) (g bq,,> ( ; Zq,,) =1

which leads to

(1. 14y <§ bzfj)(‘; 1335,-) —1.

It is well known that
(i) Py = identity ;

(L 15) (i) B =0, 20>k, wecH X, Z0),

(i) Pilwv)= 2 Bu-P; ' v. (7))

We have from (1. 9), (1. 13),(1. 14) and (1. 15)
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(1. 16) Bu= X BE
2j=(1+7) (q-1)
because
(1. 17) 1=(Z®)(Z %)= = T > meims
120 J+k=0 J+k=0 i=20 7+5=1

_ <§ s_m%)(% ‘,]3;3’;) = <Z bec) (Z 5323?) )

=0

In particular 55, equals the mod 3 dual-Pontryagin class 7¥(< HY(X,, Z,)),
where

Z?jzpi=1-

Jj=0 =0
We have from (1. 16)
B _ ok W@D g
(1. 18) b= 2  Wsi=3+ 30 WS
2k=(i+J) (g—1) i=1
On the other hand (1. 13) leads to
2k 2k/(a—1) 2k
(1. 19 0=5s"4+ > sisdTt
i=1
Hence we have
_ 2k/(a-1) 2k 2k _,
(1. 20) bfv= 2 (B —sisdt ).
i=1

When 4%k=#7, we have from (1. 1) and (1. 20
(1. 21) B =0,

i.e. bq,x [Xu] is divisible by g. In particular
1. 22) 7 [Xul=0 mod 3.

2. If a differentiable manifold X, is a product of two differentiable
manifolds X, and X, we say that the X, is decomposable and if not we say
that X, is indecomposable ([1]).

We deal with a compact orientable differentiable X,;. Suppose that such
an X, be decomposable, i.e.
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2. 1) Xoo = X, x X,

Then we have for any multiplicative series >_ K,(p;, -+, p,) ([6])

120

(2 2) Kk(Pb *t P/C) [XUC] = KT(PI’ M) Pr) [XT] KS(PU ccy Ps) [Xs]

provided that »=0 mod 4. If r==0 mod 4, then the cobordism components of
X, consist only of torsions and hence the same thing holds for X,;. There-
fore all Pontryagin numbers of X,. are zero, in particular K,[X,:] equals

zero. In the case of ZZ_J,L ; we have from (1. 21) and (2. 2) the

J=0

THEOREM. Let X, be a compact orientable differentiable manifold.
If by [X.i] is not divisible by q°, then such an X, is indecomposable.

COROLLARY. If p.[X.:]l is not divisible by 9, then such an X, is
indecom posable.
We shall show some applications of above Corollary.
EXAMPLE 1. In the case W=F,/Spin (9) ([5], p. 534) the Pontryagin
classes are given by
2.3 p=p=0, pp=06u, p=3%" W[W]l=1, ucHW,Z).
Hence we have
2. 4 b= —p+2pps—3pip, + pi+ pi= =347, ie.
(2. 5) (W] = =3.
Thus W is indecomposable.

EXAMPLE 2. Let P,,,,(c) be the complex projective space of complex
dimension 2m+1. The total Pontryagin class of P,,,,(c) is given by

2. 6) p=0A+g)m, g H'(Piniio), Z).

Let X, be a compact orientable differentiable submanifold of P,,+,(c) and
let Mg be the cohomology class corresponding to the homology class repre-
sented by X,,. Then the dual-Pontryagin class of X,,, is given by ([6])

2.7 PulXim] = [AgA+Ng") (14 g7 2] [Poma(c)]

= [rgengy T -1y G @mi it i, )

el 7!
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— m 3m+1\ _ (3m
= o (¥ = G )

by virtue of
(2. 8) ™ [Poni(0] = 1.

Hence, if )»K?’m—l_l) — (3m )7&”} %= 0 mod 9, then such an X, is

m m—1

indecomposable.
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