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1. The central limit problem in the theory of probability is to determine
the conditions under which the distribution functions of sums of random
variables should converge [2]. In the case of independent variables the
problem was solved completely. The studies on this problem for dependent
variables are separated into two ways. One is to specify the dependency of
variables by their conditional probabilities and one of the best known result
is due to S. Bernstein [1]. The other is to specify the functional form of
the variables and in this direction R. Salem and A. Zygmund proved the
central limit theorem for lacunary trigonometric series [3].

T H E O R E M O F SALEM AND ZYGMUND. Let

Ly(t) = Σ c * cos2τrmk(t + φk) , mk+ί/mk ^ q > 1 ,

where [ck] and {φk} be arbitrary sequences of real numbers for -which

-* + °° and ^ = o(||L^||) , as Λ / ^ + o o .

Then we have, for any set EG [0,1] of positive measure and any real number

lim -—y lίt tzE, LN{i)/\\ LN II ^ ω} \ = — τ = = - Γ exp ( - ~) du.™

This theorem shows that the asymptotic behavior of a lacunary trigonometric
series resembles that of independent random variables.

The purpose of the present note is to prove a version of the central limit
theorem for trigonometric series not necessarily lacunary. Throughout this

*) For a measurable set E, \E\ denotes its Lebesgue measure.
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note we set

ir i - N \i/2

(1. 1) SN(t) =Σak cos2τrk(t + ak) and AN = [ — £ aύ
k=l \ Δ fc=l I '

and assume that

(1.2) AN.-*+o°, as i V ^ + o o .

In §§2-6 we prove the following

THEOREM 1. Let [nk] be a lacunary sequence of positive integers, that
is,

(1. 3) nk+1/nk ^ q > 1,

and let us put

(1. 4) Δx(0 = 5^(0 and Ak(t) = ^ ( ί ) - ^ ^ / ^ * > 1 •

(1. 5) sup I Ak(t) I = o(AJ , as k -> + oo ,

and, for some function g(t)

r1 i k

(1. 6) lim I ~4T~Σ {Δm(t) + 2Am(t)Am+ί(t)} — g{t)

the function g(t) is non-negative and we have, for any set E C [0,1] of
positive measure and any real number ω Φ 0,

(1. 7)
Λ Λ f /ΛD / 2 \

2 7 Γ | A | J.R •'-oo y Z y

where ω/0 denotes + oo or — oo according as ω > 0 or ω < 0.

If AS^) is lacunary, then our theorem is that of Salem and Zygmund.
In [4] we proved this theorem under somewhat restricted conditions.

For any given lacunary sequence {nk}, we can construct a trigonometric
k

series SN(t) such that lim Aΰl X] [Δm+ι(t)Δm(t)} exists for all t and does not
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vanish identically. Therefore, the above theorem shows that the sequence of

functions {Δk(t)} is asymptotically one-dependent, that is, n—k>l implies the

asymptotic independence of two sets of functions

{Δxφ, Δ2(ί), , Δ4(ί)} and {Δn(ί), Δn+1(ί), , Δm(ί)} .

Let FE(ω) be the distribution function on the right hand side of (1. 7), then

we have, for any real number λ,

f git^dt.

Therefore, for the proof of our theorem, it is sufficient to show that for any

fixed real number λ

(1. 8) lim / exp \f- SN{t)\ dt = ίexp \^£- g(t)\ dt .

In the same way we can prove a corresponding limit theorem for the

remainder terms of the Fourier series of a squarely integrable function.

2. From now on we assume that the conditions of Theorem 1 are

satisfied. Let us put

(2. 1) U,(t) = Σ, Δ*(ί) = Sntr{t) - Snβ_nr(t) ,

(2. 2) B! = J U\(t)dt and CS = ]Γ B\ =A%yr.9

where r is a fixed positive integer satisfying

(2. 3) ^(1 - g"1) > 6 .

Then we have, by the conditions of the theorem,

(2. 4) C ^ + o o , BN = o(CN),

Nr

(2. .5) sup I UN(t) I ̂  sup E I Δ*(ί) | = o{C*), as N-> + oo,
C ' A=(iV-i)r+l

and, for any m satisfying n^N^ι)r < m ̂  w^r,
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(2.. 6) Γ Sm(t)- Σ, Ult) dt^B% = o{C%), as +co ,

LEMMA 1. We have

im flim

P R O O F . We have

(2. 7) U\{t)+2Uι{t)Uι+λ{t) =

where Wt(t) = X,(t) + Yι(β)+Zt(t) and

Xι(t)=Σ,

+ 2Uι(t)Uι+1(t)} - g{t) dt = 0.

2Wι{f)

(2.8)

Δ/ί),

Let tf z(or tcί) denotes the maximum (or minimum) frequency of terms of a
trigonometric polynomial Xt(t)> then we have, by (1. 3) and (2.1),

2nlr > wt^ w/ι^M.in{nk-nk-ι', (Z-l)r + 2^=k^lr} > n^^r+iil-q'1) .

From (1. 3) and (2. 3), it is easily seen that

w/

ι+2/wι > qr+2 (1-q-1) 2"1 > 1 .

This implies that if \k — l\ ^ 2, then Xt(t) and Xk(t) are orthogonal. Hence,
by the Schwarz inequality, we have

(2. 9) Γ IΣ. Xι(t)\2 d* ̂  2 Σ f X\(t)dt = 2 E Γ | έ Δ^

In the same way we can see that Ak(t) Σ a n ( l
m-2

Σ a r e
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orthogonal if \m — k\> c(q), where c(q) is a constant depending only on q.
Hence we have, for some constant K depending only on q,

. 1 IT . 1 #*-2 )2

/ x\(t)dt^κγ., I Δί(θ Σ ΔXO dt

as

By (2. 9) and the above relation, we have

£ JΣ *I( ' )Γ Λ = o(C» , as

In the same way, we can obtain

dt = o(C$ and f\^Zι(t)Ydt = o(P^)9 as iV->+oo .

By the above relations, (2. 7) and (1. 6), we can prove the lemma.

3. From (2.5) it is seen that there exists a non-decreasing sequence of
positive integers {φ(k)} such that

(3.1) φ(N) ->+oo and φ(N) Max sup | Ut(t) | = o(C^), as JV-> +oo.

Putting ψ(k) = Σ Φ(m)> w e c a n t a ke a sequence of integers {p(k)} satisfying

the following conditions;

p(0) = 1, and yfr(2k — l) < p(k) ^ '

(3 .2)
and 5p(A:)-i ^ ίΦC^)}'1 Σ ^ ' ^ o r ^ = ^

ί = ψ(2A:-l)

Since ^(2^—1) <i p{k) and φ(k)-+ +oo, as ^ ^ +oo? we have

(3. 3) 2^ -Bpc*)-i = Σ ίΦ(^)}"1 Σ ^ 2 + ^(m)-i = o(Cp{m)) , as m -> +oo

If we put

Dm = Q,,, and T t ( ί ) = Σ V,(t) ,
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then we have, by (3. 3),

(3. 4) f £ Tk{t) - Σ Ut{t) 2 dt = oφl), as m - + <

and, by (3.1) and (3. 2),

(3. 5) I Tk(t) I rg Σ I [7,(01 ^ 3 φ(2 *) Max sup | Ut(t) \

389

^ 3 φ(p(k))Ma.x sup I £/<(*) | = o(DΛ)*), as k -> + oo .

By (2. 6), (3. 4) and (3 .5) we have, for any k satisfying nrp(m_i) < k g n r p ( m ),

/
I

J

as

Hence by (1.8), to prove our theorem it is sufficient to show that for any
fixed real number λ,

(3. 6) lim f exp -g- £ Tk{t) \ dt = [ exp

L E M M A 2. W<?

dt ^ 0.

REMAEK. By this lemma we can see that g(t) is non-negative.

P R O O F . We have

PW-2

(3. 7)

where

(3.8)
p{k)-2 1-2

l=p(k-l)+2 j=p{k-l)

Estimating the maximum and minimum frequencies of terms of a trigonometric
polynomial VL(t) in the same way as those of Xiif) in Lemma 1, we can see

*) From (3.2), it is seen that
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that {Vk(t)} is orthogonal. Hence we have, by (3. 8),

j 2 m z l ip(k)-2 1-2m z l

k = l J °

j(t)\ dt,
J=p(k-l)+2 j=p{k-l)

ί-2

and in the same way we can see that UL(t) Σ U5{t) and t/s(ί) Σ ^ ( 0 a r e

orthogonal if \s—1\^2. Therefore we obtain, by the Schwarz inequality and
(3. 5),

1-2 \2/•I / m 2 m p(k)-2 «1 / 1-2

0 U = l ) A:=l l=iKA:-l)+2 ° \J=P{k-l)

J ̂
°

^ 2
p(k)-2

as

On the other hand we have, by (3.7),

m P(w )

+ Σ ^*(0 - ΣίUim^
k=l k=l

By (3. 3) and (3. 1), it is easily seen that

and

f Σ + um)(t)}

1/2 1/2

as

Thus by Lemma 1 and (3. 9), we can prove this lemma.
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4. Since Z ^ t + ° ° > (3.5) implies that Max sup| Tk{t)/DN | = o(l) ,

as N—> +00. Hence without loss of generality we may assume that
Max s\xp\Tk(t)/DN\ < 1/2 for all JV, that is,

(4. 1) lim e^ = 0 and 0 < eN. < 1/2 for all N,
jV-*oo

where

(4. V) eN = :
k^N t

If we put, for M^l

(4. 2) POιN(t,M) = l andPktΛ(t9M)= Π \l-^f\, for k^l,

then we have, by (4.1),

(4. 2') 0 ^ 1 - PjrtN(t9 M) = Λ / n 2 X; Tl(i) Pk.lty(t9 M) ̂  1 ,

and

(4.2") i -

Since 0 ΐ£ Pk,it(t, M) ίg 1, the above relations imply that

(4. 3)

(4. 3')

and

(4. 3")

1 "̂
- i - Ŷ  \TΛtΛ P * (tΠ3 Z ^ I 1 hyp) rk-ι,N\j>9

Tί(t)PU»(t, M) ^

By (4. 2") and (4. 3") it is seen that

(4. 4)
D%

Σ Tlit) PLUt> M)-M{1- PZAt, M)}
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On the other hand estimating log PNtN(t9 M), we have, by (4.1),

exp

Hence we have, for any OL > 0,

(4. 5) \PlN(t,M)-e-"<l«)>u\

j^grΣTO))-exp |

exp

+ ΣTO) - «

LEMMA 3. We have, for any M^l and real number λ,

6 X P TO) ^ , ^ , M)} - exp dt = 0.

PROOF. The integrand of the above integral is not greater than

At, M) = λ2 - 1
t, M) -

M

By (4. 4) and (4. 5), we have

4ψ *(f,M) ^ λ2e^ + λ 2 M| PA,*(*,Λί) - ^ - ^ ^ 1

^ λ2β|,. + ^j^ Σ, τ&) + 2 λ 2 Tr Σ Tϊ(ί) - ^(

Therefore, (4.1) and Lemma 2 imply that / ψjy(t,M)dt = o(l), as N
JO

LEMMA 4. JFor number λ ατz<i iVί^ 1,

Jo

*) From (1.6) and Lemma 2 it is seen that g(t) G L(0,1) and jgr (ί) ̂  0.
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where

\ 1/2

dt\

f
{O(t)>M}

f
PROOF. Since \eίa — eφ\ ig \a — β\, it is sufficient to show that

f 77" Σ Tk(t){l-Pk_ι>N(t, M)} dt ̂  (δ* + ηM).
Jo iΛ ^

From the definitions of Tk(t), (2. 3) and (1. 3) it is seen that the maximum

frequency zk and minimum frequency zk of terms of Tk(t) satisfy

(4.6) Zk = z'k and zk+ι /zk > 6 .

By (4.2) and (4.6) the frequency xk of any term of Pk,M(t, M) satisfies the

conditions

k k

xk^2γjzι<2zkγj 6<!"*> ̂  12zk/5 < 2z'k+1/5 ̂  2zk+1/5 .
1=1 1=1

Hence it is easily seen that

(4. 7) (frequencies of terms of Tk(t)Pk-ltN(t,M)) z (3z'k/5, 7zk/5).

Since (4.6) implies that the intervals (3zk/5, 7zk/5), k ^ 1, are disjoint,

[Tk(f){l— Pk-i,ir(f)}] is othogonal and we have

If dt) ^ /
) Jo

= ί wΣτiit){i-pk^N{t,M)γdt^ ί -γΰ
Jo VN k=ι Jo M

^ f g{t){l-PN,N{t,M)}dt + f
Jo a Jo

^ f g{t){l-e-^ιu}dt + M ϊ\PNS(t,M) - e-

dt

dt

Γ Γ1 1 N

/ gr(O Λ + / ()f(0 -JγΣ
JW)>M\ J° U N k=l

dt.
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By (4. 5) we have

S. TAKAHASHI

M \\ PN,N(t, M) - e~^'M\ dt

dt

dt,

From the above inequalities it is seen that

dt) ^

5. In this paragraph let λ and M, MS: 1, be any fixed real numbers.
We put, for these numbers λ and M,

(5. 1) = 1, and QKN{t) = Π 1 + (t)Pm^N{t,M)\ , for k ^ l .

LEMMA 5. For any f(t) z L(0,1), we have

lim f f{t) QN,N(t) dt= ί f(f)dt.
2V-»oo Jo Jo

PROOF. Since (4. 3) and (5.1) imply that | Q*,N(t)\2 ^ eλ*M, it is sufficient
to show that for any measurable set E c [0,1]

lim f {QvtN(

From (5.1) it is easily seen that

u

By (4. 7) and (5.1) the frequency of any term of QktN{t) is less than E 7^OT/5.
m=l

Thus by (4.7) the frequencies of terms of Tk(t) Pk-ι,N(t, M) Qk-ltN(t) belong to
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the interval 3^/5 - Σ 7*m/5, 7*^5 + ]Γ7zm/5 . Since (4.6) implies that
^ m=\ m = l -I

k-1

Σ, 7zm/5 < 74/25 ^ 7«*/25, the frequencies of Tk{t)Pk_hN(t, M)Q*-i.*(0 belong
7 Λ = 1

to the interval [8^/25, 42zk/25] and these intervals are disjoint. Therefore
k

Qm-i,jv(t) is a trigonometric sum whose order is not

greater than 42^/25 and not less than 8zk/259 If we put, for the indicator
function χE(t) of the set E

and

COS *>

then giiV>) and /42V') are zero for sufficiently large k and

. k 4Άz*/25

f Σ ^At, M)Qm-,At) = Σ(P5Γ} + ίίίf') cos 2τrmt.

Hence we have, by the ParsevaΓs relation,

/ {Q»At) - 1} dt
JE

= 7Γ /
JJN

where

-ltAt, M)Qk.ltAfi) dt cos 2TΓ £/?, ,

Since

a n d

^ IQ^OI < ^"^ a n d l i m N" = +°°, we have

-Ut, M)Qk.Ύ,N{t) ^ e^ I QN,N(t) I - o(l), as 2SΓ-+ + oo,

*) For simplicity of writing the formulas we assume that Sjsrif) contains cosine terms only.
Hence {Q,N,N(t) — 1} contains cosine terms only. The general case follows in the same
way.
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and

Σ +

/2 / r1

S. TAKAHASHI

^ Σ )
\k>N" I \k=l

1 / 2

+
1/2

, as

By the above relations we can prove the lemma.

LEMMA 6. We have, for any measurable set E c [0,1],

lim f exp ί-£- Σ Tk{t)Pk-liN{t, M)\ dt

PROOF. If we put ^i2 = (lH-zV)e 2 + J ω , for a real number #, then we
have I A(z)\ < | z | 3 if \z\<l/2. Therefore for any sequence of real numbers
zk9 * = 1,2, , N, \zk\< 1/2, we have

— 1 < - 1.

Thus we have, by (4. 3'),

(5. 2)

tλ» v—\ r\
exp Tl(t)PU,N(t, M)

as

Since ^ e

λmr\ we have, by Lemma 3,

- exp

-ϊ)\\dt

dt

as
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Further we have, by Lemma 5,

397

i m / QJV N(lim exp -l)\dt
)

-l)\dt .

By (5. 2) and the above two relations we can prove the lemma.

6. In this paragraph let λ denote any fixed real number and Ed[0,1]
any fixed set of positive measure. Further let e be an arbitrary positive
number. Since g(t) € L(0,1) and g(i) ̂  0, we can take a positive integer Mo

such that

_ i) j dt - jf exp < e/4 ,

and

ί Γ Γ1

I λ l ] J ff(f) + dt \ g(t) (1 —«

By Lemma 6 an integer N(M0) exists such that N> N(M0) implies that

<β/4,exp

and by (4.1) and Lemma 2 an integer iV0 exists such that N> NQ implies
that

dt\ < e/4 .

Therefore, by Lemma 4, N > Max(N[M0), No) implies that

This is (3. 6) and our theorem is proved.

7. In this paragraph let fit) be a function of L2(0,1) and
remainder of the Fourier series of f(t). Further let us put

the JV-th
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L \ 1/2

R%(t)dt\ = EN and Ak(t) = Rnk(t) - RnM(t) ,

where [nk] is a lacunary sequence of positive integers. Then we can prove
the following

THEOREM 2. Suppose that

sup I Ak(t) I = o(Enk) , as k -> + oo ,

r, for some function g(t)

im Jo -gr- Σ ίΔUO + 2Δm(ί)Δm+1(0} - #(*) ώ = 0 ,

then the function g{f) is non-negative and we have, for any set Ed [0,1] of
positive measure and any real number

lim
1 Γ

{t; tzE, RN(t)/EN^ω}\ = 7 _ L

s/ΔΊΓ \hj\ JE

exp -

where ω/0 denotes +oo or — oo according as ω>0 or ω<0.
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