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1. G. Sunouchi [3] has recently introduced some new methods of sum-
mability which are regular. These are defined in the following way. A series

oo

Σ an is said to be summable (ffi, ci) to s if the series in

•F ( \ — ( ί°° S m X J \ Y^ f°° S ^ n nU .7 Π

V° χ a + l I n=i "a naua+1

converges in some interval 0 < t < t0 and fi(t)—>s as t^>0 + . A series

Σ an is said to be summable (ffi*, a) to 5 if the series in

converges in some interval 0 < t < ί0 and / 2 (t) —> 5 as ί -^0 +.
It is purpose of this paper to obtain information about these Sunouchi's

methods of summability and generalization of them. Throughout this paper,
p denotes a positive integer and a denotes a real number, not necessarily an
integer, such that 0 < a < p. Let us put

C * " = Jo ~l^~dX>

φ(n,t) ^ φ(nt) = ( Q J

Then a series ^ an will be said to be summable (ffi, />, Λ) to s if the series in

f(p, a,t)= a0 + Σ an φ{ni)

converges in some interval 0 < t < t0 and f(p, <x,t)—>s as t —>0 + . Under
this definition, the ($, Λ) method and the (ft*, α) method are reduced to the

1) The author thanks to Professors G. Sunouchi and S. Yano for their valuable suggestions.
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(ffi, 1, ά) method and the (β, 2, a) method, respectively. On the other hand,
00

for a series 52 an, let us write σ®, — s%/A%, where s% and A% are defined by

the relations

n=0 71=0 n=0

00

Then, if σ% —> s as n —> 00, we say that the series 52 an is summable (C,β) to 5.
72 = 0

00

(See, for example, [4].) If σξ —>s as n —>oo and 52 lσ^ ~" σw+i I < + °°, the
71=0

00

series 52 #» is said to be summable |C,/S| to s. It is well-known that, if the
71=0

00

series 52 an is summable (C,/β) to 0, then 5̂  = o(τzβ), 0 fg Ύ fg /3. Our main

results in this paper are the following theorems.

00

THEOREM 1. Let 0 <β <a < p. Then, if a series 52 an is summable
71 = 0

oo

(C, β) to s, the series 52 an is summable (fi), p, a) to s.

THEOREM 2. Let 0 <a<ρ and let \n > 0 (w = 1, 2, ) and the series

52 — ^ converge. Then, if

the series 52 an is summable (β, p, a) to s.
71 = 0

THEOREM 3. Let 0 < a < p. Then, if a series Σan is summable \C,a\
71=0

to s, the series 52 an is summable (β, p, a) to s.
71 = 0

2. Some Lemmas.

LEMMA 1. Let 0 < a < p and let Amφ(n, t) denote the m-th difference of
φ{n, t) with respect to n. Then
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(2. 1) Amφ(n, i) = O{n-«-ιtm-«-1)

when m is a positive integer such that m ^ p + 1, and

(2. 2) Δ>(n, i) = O(n-atβ-a)

when μ is a positive integer such that μ ^ p.

PROOF. By an extension of the mean value theorem in the differential

calculus [1 p. 178], we have

(2. 3) Δ - v ( n , ί ) = : ( _ i r ( c i . ) - t ί

where θ is some point such that nt <θ <(n + m)t. Hence, for the proof of

(2.1), it is sufficient to prove that

or

(2. 4) -—^r φ(x) = O{x~

Now we have to show that, for mi^=p + 1,

An elementary calculation shows that, for k fg p,

sin* x = ηk(x) Σ 2

 J VKV sinp-υ x,

where 7A>I; are constants depending only on k and v, and

77fc(x) = 1 (£ even), = cos x {k odd) .

On the other hand

say.

Then, by Leibnitz formula,



dxm-1 \ xa+
*-<
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i>=0
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Since O^v^k^m—l^p, we get

(2.5)

Then, by τ;fc(α;) = O(l), we have (2. 4). Therefore, by (2. 3),

Δ>(n, t) =

The proof of (2. 2) is similar to that of (2.1). In this case, it is sufficient to

prove that, when O^v^k^μ—l^p— 1,

xk~μ sin*-* x =

But this is easily proved as in (2. 5). Hence we have (2. 2).

LEMMA 2. Le£ 0< 7 fg a < />. Then, for non-integral number 7,

(2. 6) , *, ί) = w, ί) =

(2.7)

and

(2.8)

G{Ί, A, t) = O(kM-f"x tm-"*ψ

- l , A, t) =

PROOF. We shall first prove (2.6). Let ρ=[l/t] and write

k+p-l co

n=k n=k+p/

say. Then, using (2.1) for m = 1,

Σ(n-i

2) Throughout this paper, [x] denotes the greatest integer less than x.
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= O(Jc°-1 ty~a).

By the repeated use of Abel transformation

P-trl-2-

= Σ

Since p is an integer, we have [7] + 2 5^ p + 1, and then, by (2.1),

<7iOM) = O ( έ ( Λ
\n=0

= o

"-1 ty-η.

Thus we have (2.6). Next we shall prove (2. 7). By the repeated use of Abel
transformation, we have, by (2.1),

Σ, An7'1 Δφ(n + k, t)
n=0

71 = 0

+ O I Σ » m " y (n+k)-"'1 ίω-«+» I
\w=A;+l /

= o Ik-*-1 ίw-+i £; c» + i)m-A
\ 71 = 0 I
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+ o

which is the required result (2. 7). Similarly we have

CO

G(γ-1, k,t) = Σ AT y Δφ(n + k, t)

which is the required result (2.8).

3. PROOF OF THEOREM 1. We shall prove theorem when β is non-
integral, the case of integral β being easily proved by the method analogous
to the following argument. For the proof, we may assume, without loss of
generality, that a0 = 0, s = 0 and a — I <β. Since

ψin, ΐ) = (CΛ(t)-» / ^r-du = O(n-«t-«) ,

we have by Abel transformation and using s£ = o(na),

oo oo

f(p, a,t) = Σ, an ψ(n, t) = Σ< Δφ(n, t) .

Therefore, for the proof, it is sufficient to prove that the series

(3. 1) Σ

converges in some interval 0 < t < tQ and its sum tends to 0 as t —» 0 + . ,By
a well-known formula

o, 0 = Σ S" Σ ^-*' Δ*>(rc, 0 = Σ
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where

Here we must prove that this rearrangement is permissible. For this purpose,
it is sufficient to show that, for a fixed t > 0,

N CO

I* = Σ,4 Σ 4&-1 Aφ{n, t) -> 0 as 2V^ oo .
& = 1 n=N+\

But this is easily proved as following. By (2.1) and s% — o(nβ),

= O

Let us now write

Σ, sg GOS, *,«) = (Σ, +
l k=p

where p = [1/ί], 0 < ί < 1/2. Then using (2. 6) and s% = o(nβ)

V(t) =Σ,st G(β, k,t) = o (JZ kβ k—1 tβ-A = o(pP-a t*-«) = oil) ,

when t-+0 + . Now, since β—a<0, the series (3.1) converges for every
t > 0. On the other hand, using Abel transformation, we get, when t—>0 + ,

U(t) = Σ 5f+1 (G Off, k, t) - G Off, A + 1, ί)) + ̂ ί ί GOβ, p - l , ί )

/ \
= o Σ kP*l-k-«-l-t*-**x + o(pP+ι*p-"-ι-tfi-a)

\Λ=1 /

= o (^- β + 1^-+ 1) + o (p*-*f*-*) = o (1),

in virtue of our assumption α—1 </9. Hence the sum of the series (3.1)
tends to 0 when £—>0 + . Thus the theorem 1 is completely proved.

REMARK. In the proof of the theorem 1 when β = p—1, for the sake
P

of estimating the sum Σ sn~ι Ap φ(n, i), we use the inequality (2.2).

3) G(β,k,t)-G(β,k + l,t)=O(k-a-ιtβ-a+ι)\s proved by the method analogous to that of (2. 6).



(&, p, a) METHODS OF SUMMABILITY 381

4. PROOF OF THEOREM 2. We shall prove the theorem in which a is

non-integral, the theorem in which a is an integer being easily proved by

the method analogous to the following argument. For the proof, we may

assume, without loss of generality, that a0 = 0 and 5 = 0. Then, as in the

proof of the theorem 1, we have

oo oo

Σ, an φ(n, ί) = ΣΣ
where

G(Λ, A, o = Σ AT-*"1 A(p(n> 0
n=k

Let us now write

Σ 5? G(α, *, ί) = f Σ + Σ ) = U(t) + V(t),

say, where AΓ is an arbitrary fixed positive integer. By (2. 6) with Ύ = a,

v(t) = o(jr k'-Xt-k-*
\jc~N-

From this, we see that, by the convergence of the series Σ k~ιXk, the series

oo

Σ sί Gift, k, t)

converges for every t > 0. On the other hand we have

(4. 1) ί O(t) when a + 1 <g p,

1 O(tp-a) when a + 1 > p.

Hence

G(a, A, o = o (sup I Δ<p(7z, ί) I Σ I AT-*-1 I)

O(t) when ot + l g / > ,

α) when a + 1 > p.
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Therefore, since N is constant,

lim U(f) = 0 .

Then we have

lim sup

Since N is arbitrary and the series Σ ^ " 1 ^ * 1S convergent, we have

lim Σ s% G(a, ky t) — 0 ,

and theorem is completely proved.

5. PROOF OF THEOREM 3. We shall prove the theorem in which a is
non-integral, the theorem in which a is an integer being easily proved by
the method analogous to the following argument. For the proof, we may
assume, without loss of generality, that aQ — 0 and 5=0. Then, as in the proof
of the theorem 1, we have

oo' oo co

Σ anφ(n, t)=Σ, si G(«> *. *) = Σ ίσt ~ <>i+ι)UJfi) ,
n**\ k=l k=l

where

G(a, k, i) = Σ ^n-k1 Δ φ(n, t) and UJt) = J2A^ G(^ k> *) >
n=k k=l

provided that

(5. 1) UJt) = O(l) for 0 < t < 1 and m = 1,2, . . .

We shall now prove (5.1). If mt ^ 1, then, by (2 .7),

On the other hand, if mt > 1, then, putting p = [l/t], 0 < t < 1/2, we have,
by the modefied Abel transformation ([2 Lemma 3]) and (2. 8),
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p - l m

k=\

= OQ)+A}G{cL-l,p9t) - ,t)
k=p

Thus C7m(ί) is bounded uniformly in 0 < t < 1 and for all positive integers m.

Since the series ^ | σ ̂  — cr2+1 [ is convergent by our assumption, for an arbitrary

small £ > 0, there exists an integer ΛΓ = iV(£) such that

\σt-σt+1\)<€.
/

Further, using (4.1), we have, for a fixed iV,

Then we have

lim sup Σ (σ? - σt+1)Uk(t)
^ 0 +

Since £ is arbitrary, we have

lim Σ (at - σt+1) Uk(t) = 0 ,
^ 0

and the theorem is proved.
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