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Introduction. Massey and Szczarba studied the continuous line element
field on a differentiable manifold and obtained a necessary condition under
which a manifold admits a continuous field of q independent line elements.
([1]) Meanwhile Adams investigated the continuous field of q frames on a
sphere and clarified the relations between the number q and the dimension
of the sphere. ([2]) A differentiable n-manifold admitting a continuous field
of n frames is said to be parallelizable. It is well-known that a differentiable
manifold admits a continuous non zero vector field if and only if its Euler
characteristic is zero. The intermediate status between above two cases is in
question. In this paper we shall mainly deal with the continuous field of
n — 3 frames on an rc-manifold.

§ 1. A q frame means an ordered set of q linearly independent vectors
while a q pseudo-frame means an ordered set of q vectors at least q — 1 of
which are linearly independent. The following facts are well-known:

I. Let Mn be a compact differentiable manifold. For each q there exists
a continuous field of tangent n — q frames defined over the q dimensional
skeleton KQ of Mn. In order that there exist such a field on any KQ+ι> it
is necessary that

Wq + i = 0 ,

where wQ+ί € HQ+\MnyZ2) denotes the Stiefel Whitney class. ([7] p. 199)

We have from I

COROLLARY. If Mn admits a continuous field of n — q frames (Org q < n)
it must be that

ZVQ + ί = ZVQ + 2 = = Wn = 0 .

Let Mn be a compact O-manifold with a Riemann metric and Ω o be its
curvature form. Chern introduced in [3] a characteristic class such that
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(l. l) p* = aq Σ, βtli!αv5 ίV, , P'm € H'\Mn, Z),
i

where ciq denotes some constant. Meanwhile the Pontryagin class is expressed
as follows:

(l. 2) ptQ = l* Σ 8 ( j ; I : : j* ) ft* niQjQ, p2

where δ ί j denotes the generalized Kronecker symbol. It is well-

known that P2q = P'2Q = 0 (g = odd) and P2Q is a polynomial of P'2t (t^=q) and
conversely P!2Q is a polynomial of P2t (t^q). Chern proved in [3] the following
theorem:

II. Let Mn be a manifold stated above. There exists a continuous field
of (n—2m-\-2) pseudo-frames over any Am dimensional skeleton if and only
if P\m = 0 (1 ίg m ig [n/4]). There exists a continuous field of (n—2m+2)
pseudo-frames over any skeleton whose dimension is less than Am.

We have from I and II the

THEOREM 1. Let Mn be a compact C°°-Riemannian manifold. In order
that Mn admit a continuous field of n—1 frames, it is necessary that

zv2 = . . . — Zυn = 0 and PA = P8 = = P±[n/t] = 0.

PROOF. The first part follows from I Corollary. We have from II

Plk =0, k^i

because we can form a continuous field of n pseudo-frames from a continuous
field of n — 1 frames.

COROLLARY. Let M±k (k ̂  1) be a compact orientable C°°-Riemannian
manifold. In order that Miίc admit a continuous field of4k — l frames, it is
necessary that 2Mik is "bord", i.e. 2MiJc—0.

PROOF. By Theorem 1 every Pontryagin numbers are zero. Hence the
free part of cobordism components of Mik is zero. Since every torsions of
the cobordosm ring are of order 2, the statement holds. ([4])
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REMARK. When 1 ^ k <; 3, Mik becomes "bord", because in such a case
the torsion doesn't exist.

§2.

THEOREM 2. Let Mn (n ^ 4) be a compact C*-Riemannian manifold.
In order that Mn admit a continuous field of n — 3 frames, it is necessary
that

( i ) wA = zv5 = = wn = 0,

(ii) P's = f\'2 = = î cn/4] = 0 and

(iii) P^ = -

If moreover n — Am and Mim is orientable, then it is necessary that

(iv) τ(Mim) = ^j^y- (Pty [Mim] = - ^ - P 4 m [M4m]

where τ or A denotes the index or the A-genus respectively.

PROOF, (i) and (ii) follow from I and II as in the case of Theorem 1.
We have from (1. 2)

(2.1) ^ - ^ Σ Ω Λ

Meanwhile we have from (1.2) and (ii)

(2. 2) P4* -

(27Γ) 2 ί, V J . 4y — ^ j

Thus (iii) holds. Let us prove (iv). We put

(2. 3) £ F4fc =
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Then the index is expressed as follows:

( 2 4 ) τ

We have from (2. 3)

(2.5) P,Z

which lead to

(2. 6) Σ. VS = (Σ V.ϊ - 2 Σ tίfi =Pi

2-2Pi.

Meanwhile we have from (iii)

(2.7) P 8 - ^ - P 4

2 .

From (2. 6) and (2.7) we have

(2.8) ΣTϊ = 0.
i

In such a way we can prove from (iii) and (2. 3) that every symmetric func-
tions of 7/s are zero except for the elementary ones. Therefore we can
regard Ί\ (t ̂  2) as zero in the following computations. Since

(2. 9) XΊi. = i +JLγ t + ..

we have from (2. 3) and (2. 4)

( 2 . 1 0 ) T = L

In such a way we have

. ii) A(M4m) = [ π -^tjψ} \M,Δ = \j(i-fyl + - •)] EM.J

= (--5-) ^ [ M 4 J . Q.E.D.

REMARK. We have from (iv)

(2. 12) A/τ=
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Thus in such a case the Λ-genus is divisible by 2m.

COROLLARY 1. Let Mn be a compact orientable C*-Riemannian manifold.
If Mn admits a continuous field of n—3 frames and Hik(Mn, Z)=0 for some
k (1 ̂  k ̂  [n/4]), then

Pu = 0 (/ ̂  k) and 2Mn — 0 .

PROOF. We have from Theorem 2 (iii)

(2. 13) Pu =^-P,ι = 0 (l^k)

and hence if n = 4m, every Pontryagin numbers become zero. Hence we
have 2Mn<~^0 as in the case of Theorem I Corollary.

COROLLARY 2. Let M4 m (m > 1) be a compact orientable C°°-Riemannian

manifold admitting a continuous field of 4m—3 frames. If moreover either

τ(Mim) or Λ(M4m) is zero, then 2M4 m — 0.

PROOF. From Theorem 2 (iii) and (iv) we see that every Pontryagin

numbers of MAm are zero.

COROLLARY 3. Let Min (n ̂  1) be a compact orientable C°°-Riemannian

manifold admitting a continuous field of 4n — 3 frames. If moreover Min is

differentiably imbedded in an Euclidian space E6n, then 2Min~~0.

PROOF. The dual Pontryagin classes are defined by

(2. 14) Σ P« Σ (-I)' Pu - 1 > Pit € H"\Mn, Z).

We have from Theorem 2 (iii)

(2.15) Σ ( - i y ^ = e - F 4 .

Hence we have from (2.14)

(2. 16) Σ P^ = eP* > i e

(2. 17) F 4 t = - ^ j - P i * .

If Min(zEQn differentiably, then we have
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(2.18) Λ . = 0, ([6])

i.e.

(2. 19) Pf = 0 .

Hence every Pontryagin numbers become zero. Q. E. D.

REFERENCES

Γ 1 ] W. S. MASSEY & R. H. SZCZARBA, Line element fields on manifolds, Trans. Amer.
Math. Soc, 104(1962), 450-456.

[ 2 ] J. F. ADAMS, Vector fields on spheres, Ann. of Math., 75(1962), 603-632.
[ 3 ] S. S. CHERN, On the characteristic classes of Riemannian manifolds, Proc. Nat. Acad.

Sci. U.S.A., 33(1947), 78-82.
[ 4 ] C. T. C. WALL, Determination of cobordism ring, Ann. of Math., 72(1960), 292-311.
[ 5 ] F. HlRZEBRUCH, Neue topologische Methoden in der algebraischen Geometrie, 1956,

Springer.
[ 6 ] Y. TOMONAGA, A-genus and differentiate imbedding, Tόhoku Math. Journ., 15(1963),

203-211.
[ 7 ] N. STEENROD, The topology of fibre bundles, 1951, Princeton.

UTSUNOMIYA UNIVERSITY, JAPAN.




