SATURATION OF LOCAL APPROXIMATION BY LINEAR POSITIVE OPREATORS

YOSHIYA SUZUKI

(Received December 19, 1964, and in revised form, March 25, 1965)

1. Introduction and inverse theorem. Let f(x) be an integrable function, with period 2π and let its Fourier series be

(1)
$$S[f] \equiv \sum_{k=0}^{\infty} A_k(x) \equiv \frac{a_0}{2} + \sum_{k=1}^{\infty} (a_k \cos kx + b_k \sin kx).$$

If the positivity of f(x) implies the positivity of a linear operator $L_n(f, x)$, the operator is called a linear positive operator.

Let $\rho_k^{(n)}$ $(k=0,1,2,\cdots,\rho_0^{(n)}=1)$ be the "summating" function and consider a family of linear positive operators

(2)
$$L_n(f, x) = \sum_{k=0}^{\infty} \rho_k^{(n)} A_k(x).$$

Let us suppose that for a positive constant C, we have

(3)
$$\lim_{k \to \infty} \frac{1 - \rho_k^{(k)}}{1 - \rho_k^{(n)}} = Ck^2 \quad (k = 1, 2, \cdots).$$

The purpose of the present paper lies in considering local saturation by linear positive operators. Throughout the paper the norms should be taken with respect to the variable x and the subscript p $(1 \le p \le \infty)$ to L^p -norm will be generally omitted. Another convention is that the space (C) is meant by the notation L^{∞} , and the interval [a,b] is an arbitrary subinterval of $[0,2\pi]$. Thus the class $\operatorname{Lip}(\alpha,p)$ with $p=\infty$ reduces to $\operatorname{Lip}\alpha$. Also, let us write

$$\parallel L_{\scriptscriptstyle n}(f,x) - f(x) \parallel_{\scriptscriptstyle (a,b)} \ \equiv \left(\int_{\scriptscriptstyle a}^{\scriptscriptstyle b} \! |L_{\scriptscriptstyle n}(f,x) - f(x)|^{\; p} \; dx
ight)^{rac{1}{p}}$$

and

$$\operatorname{Lip}(1, p; a, b) \equiv \{ f(x) | \sup_{|h| \le \delta} || f(x+h) - f(x) ||_{(a,b)} = O(\delta) \}.$$

THEOREM 1. (1°) If $||L_n(f,x)-f(x)||_{(a,b)} = O(1-\rho_1^{(n)})$, then f(x) is a linear function in [c,d], where [c,d] is any fixed subinterval of [a,b].

(2°) If $||L_n(f,x)-f(x)||_{(a,b)} = O(1-\rho_1^{(n)})$, then f'(x) belongs to the class Lip(1,p;c,d).

THEOREM A. (G.Sunouchi [5]). A necessary and sufficient condition for f''(x) to exist and belong to the class B over (a,b) is the uniform boundedness of $\sigma_m^3[x,S'']$ over [a,b], where $\sigma_m^2[x,S'']$ means the (C,2)-means of the second derived series of (1).

THEOREM B. (G. Sunouchi [5]). A necessary and sufficient condition for f''(x) to exsist and belong to the class L^p (p>1) over (a,b) is

$$\int_{a}^{b} \sigma_{m}^{2}[x, S'']|^{p} dx = O(1).$$

THEOREM C. (G.Sunouchi [5]). A necessary and sufficient condition for f'(x) to exsist and belong to the class BV over (a,b) is

$$\int_{1}^{b} \sigma_{m}^{1}[x, S''] | dx = O(1).$$

PROOF OF THEOREM 1. (1°) The proofs of the proposition (1°) and (2°) are almost the same. So we shall only give the proof of the proposition (2°) with respect to (C)-norm. The proofs of the propositions (1°) and (2°) in L^p -space are analogous to the case (C)-space.

(2°) Since

$$L_n(f, x) - f(x) = O(1 - \rho_1^{(n)})$$
 uniformly over (a, b) ,

we have

$$\sigma_m^2 \left[x, \frac{1}{1 - \rho_1^{(n)}} \left\{ f(x) - L_n(x, f) \right\} \right] = O(1)$$

for every m and uniformly in x in any fixed interval subinterval of [a, b], because

$$\frac{1}{1-\rho_1^{(n)}} \left\{ L_n(f,x) - f(x) \right\} \sim \sum_{k=0}^{\infty} \frac{1-\rho_k^{(n)}}{1-\rho_1^{(n)}} A_k(x) ,$$

(see Zygmund [6, p. 367, Th. 9.20]). Letting $n \to \infty$, we get by (3)

212 Y. SUZÜKI

$$\sigma_m^2 \left[x, \sum_{k=0}^{\infty} k^2 A_k(x) \right] = O(1).$$

Hence we have $f''(x) \in B$ in [c, d] from Theorem A.

REMARK 1. We have only to apply Theorem B or C in order to verify the facts (1°) and (2°) in L^{p} -space $(p \ge 1)$.

2. Direct theorem. Let us suppose that the linear positive operator (2) can be represented in the following form:

$$L_n(f,x) = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x+t) U_n(t) dt,$$

where

(4)
$$U_n(t) = \frac{1}{2} + \sum_{k=1}^{\infty} \rho_k^{(n)} \cos kt \ge 0.$$

THEOREM 2. If f'(x) belongs to the class Lip(1, p; a, b) and

$$(*)$$
 $L_n(t^2,0) = O(1-\rho_1^{(n)})$

then

$$||L_n(f,x)-f(x)||_{(c,d)}=O(1-\rho_1^{(n)}).$$

REMARK 2. If the constant in (3) is 1, the condition (*) can be omitted (see, [1]).

PROOF OF THEOREM 2. Let us write $\delta \equiv \min(c-a, b-d)$. By generalized Minkowski inequality, we have

$$\begin{split} \left(\int_{c}^{d} |L_{n}(f,x) - f(x)|^{p} dx \right)^{\frac{1}{p}} \\ &= \frac{1}{2\pi} \left\{ \int_{c}^{d} \left| \int_{0}^{\pi} \left[f(x+t) - 2f(x) + f(x-t) \right] U_{n}(t) dt \right|^{p} dx \right\}^{\frac{1}{p}} \\ &= \frac{1}{2\pi} \left\{ \int_{c}^{d} \left| \left(\int_{0}^{\delta} + \int_{\delta}^{\pi} \right) \left[f(x+t) + f(x-t) - 2f(x) \right] U_{n}(t) dt \right|^{p} dx \right\}^{\frac{1}{p}} \end{split}$$

$$\leq \frac{1}{2\pi} \left\{ \int_{c}^{d} \left| \int_{0}^{\delta} \left[f(x+t) + f(x-t) - 2f(x) \right] U_{n}(t) dt \right|^{p} dx \right\}^{\frac{1}{p}}$$

$$+ \frac{1}{2\pi} \left\{ \int_{c}^{d} \left| \int_{\delta}^{\pi} \left[f(x+t) + f(x-t) - 2f(x) \right] U_{n}(t) dt \right|^{p} dx \right\}^{\frac{1}{p}}$$

$$= I_{1} + I_{2}, \text{ say.}$$

Then

$$I_{1} \leq \frac{1}{2\pi} \int_{0}^{\delta} U_{n}(t) dt \left(\int_{c}^{d} |f(x+t) + f(x-t) - 2f(x)|^{p} dx \right)^{\frac{1}{p}}$$

$$\leq \frac{M}{2\pi} \int_{0}^{\delta} t^{2} U_{n}(t) dt$$

$$\leq \frac{M}{2\pi} \int_{-\pi}^{\pi} t^{2} U_{n}(t) dt = \frac{M}{2} L_{n}(t^{2}, 0) \qquad (5).$$

$$I_{2} = \frac{1}{2\pi} \left\{ \int_{c}^{d} \left| \int_{\delta}^{\pi} |f(x+t) + f(x-t) - 2f(x)| U_{n}(t) dt \right|^{p} dx \right\}^{\frac{1}{p}}$$

$$\leq \frac{1}{2\pi} \left\{ \int_{c}^{d} dx \left(\int_{\delta}^{\pi} |f(x+t) + f(x-t) - 2f(x)| U_{n}(t) dt \right)^{p} \right\}^{\frac{1}{p}}$$

$$\leq \frac{1}{2\pi} \left\{ \int_{c}^{d} dx \left(\int_{\delta}^{\pi} |f(x+t)| U_{n}(t) dt + \int_{\delta}^{\pi} |f(x-t)| U_{n}(t) dt + 2 \int_{\delta}^{\pi} |f(x)| U_{n}(t) dt \right)^{p} \right\}^{\frac{1}{p}}$$

Since

$$\int_{\delta}^{\pi} |f(x+t)| \, U_n(t) \, dt \leq \frac{1}{(1-\cos\delta)^2} \int_{\delta}^{\pi} (1-\cos t)^2 \, U_n(t) \, |f(x+t)| \, dt \; ,$$

we get

$$\begin{split} I_2 & \leq \frac{1}{2\pi} \, \frac{1}{(1-\cos\delta)^2} \left\{ \int_{c}^{d}\!\! dx \left(\int_{\delta}^{\pi}\!\! (1-\cos t)^2 \, U_n(t) \, |\, f(x+t)| \, \, dt \right. \right. \\ & \left. + \int_{\delta}^{\pi}\!\! (1-\cos t)^2 \, U_n(t) |\, f(x-t)| \, \, dt + 2 \int_{\delta}^{\pi}\!\! (1-\cos t)^2 \, U_n(t) |\, f(x)| \, \, dt \right)^p \right\}^{\frac{1}{p}} \end{split}$$

214 Y. SUZUKI

$$\leq \frac{1}{2\pi} \frac{1}{(1-\cos\delta)^{2}} \left[\left\{ \int_{c}^{d} dx \left(\int_{\delta}^{\pi} (1-\cos t)^{2} U_{n}(t) |f(x+t)| dt \right)^{p} \right\}^{\frac{1}{p}} \\
+ \left\{ \int_{c}^{d} dx \left(\int_{\delta}^{\pi} (1-\cos t)^{2} U_{n}(t) |f(x-t)| dt \right)^{p} \right\}^{\frac{1}{p}} \\
+ \left\{ \int_{c}^{d} dx \left(\int_{\delta}^{\pi} (1-\cos t)^{2} U_{n}(t) |f(x)| dt \right)^{p} \right\}^{\frac{1}{p}} \right] \\
\leq \frac{1}{2\pi} \frac{1}{(1-\cos\delta)^{2}} \left[\int_{\delta}^{\pi} (1-\cos t)^{2} U_{n}(t) dt \left(\int_{c}^{d} |f(x+t)|^{p} dx \right)^{\frac{1}{p}} \right] \\
+ \int_{\delta}^{\pi} (1-\cos t)^{2} U_{n}(t) dt \left(\int_{c}^{d} |f(x-t)|^{p} dx \right)^{\frac{1}{p}} \\
+ 2 \int_{\delta}^{\pi} (1-\cos t)^{2} U_{n}(t) dt \left(\int_{c}^{d} |f(x)|^{p} dx \right)^{\frac{1}{p}} \right] \\
\leq \frac{M'}{2\pi} \frac{1}{(1-\cos\delta)^{2}} \int_{\delta}^{\pi} (1-\cos t)^{2} U_{n}(t) dt \\
\leq \frac{M'}{2\pi (1-\cos\delta)^{2}} \int_{-\pi}^{\pi} (1-\cos t)^{2} U_{n}(t) dt \\
= \frac{M'(1-\rho_{1}^{(n)})}{4\pi (1-\cos\delta)^{2}} \left(4 - \frac{1-\rho_{2}^{(n)}}{1-\rho_{1}^{(n)}} \right) = O(1-\rho_{1}^{(n)}) \tag{6},$$

where we apply the condition (3) and the fact that

$$L_n(\psi_k, 0) = rac{1}{\pi} \int_{-\pi}^{\pi} (1 - \cos kt) U_n(t) dt = 1 - \rho_k^{(n)},$$
 $\psi_k = 1 - \cos kx \ (k = 1, 2, \cdots).$

Hence, by (5) and (6), for any function $f'(x) \in \text{Lip}(1, p; a, b)$ we have

$$\|L_n(f,x)-f(x)\|_{(c,d)}=rac{M}{2}\,L_n(t^2,0)+O(1-
ho_1^{(n)})\,.$$

That is,

$$||L_n(f,x)-f(x)||_{(c,d)}=O(1-\rho_1^{(n)})$$
 q.e.d.

- 3. Determination of the class of local saturation by some linear positive operators.
 - 3.1 The integral of de la Vallée Poussin is defined by

$$V_n(x) = \frac{h_n}{2\pi} \int_{-\pi}^{\pi} f(x+t) \cos^{2n} \frac{t}{2} dt$$

$$= \sum_{k=0}^{n} \frac{(n!)^2}{(n-k)! (n+k)!} A_k(x), \quad h_n = \frac{2n(2n-2)\cdots 4\cdot 2}{(2n-1)(2n-3)\cdots 3\cdot 1},$$

$$\rho_k^{(n)} = \frac{(n!)^2}{(n-k)! (n+k)!} = 1 - \frac{k^2}{n} + O\left(\frac{1}{n^2}\right).$$

THEOREM 3. (R. G. Mamedov [2]). For space L^p $(1 \le p \le \infty)$, the method of de la Vallée Poussin $V_n(x)$ is saturated locally; its order of saturation is n^{-1} , its class of saturation is the class of functions f(x) for which

$$f''(x) \in B[c,d] \qquad (p = \cdots)$$

$$f''(x) \in L^p[c,d] \quad (1
$$f'(x) \in BV[c,d] \quad (p = 1).$$$$

PROOF. The proofs of inverse problem are easily verified, and so we may confine ourselves to the proof of direct problem. But, from the fact

$$\lim_{n\to\infty} \frac{1-\rho_k^{(n)}}{1-\rho_1^{(n)}} = k^2$$

we have the proof of the direct theorem by Theorem 2.

We may write this result by the notation

L.Sat.
$$[V_n] = [\{f | f' \in \text{Lip}(1, p; a, b)\}, n^{-1}, \text{linear function}\}].$$

3.2 The integral of Jackson-de la Vallée Poussin is defined by

$$I_n(x) = \frac{1}{2\pi\tau_4} \int_{-\infty}^{\infty} f\left(x + \frac{2t}{n}\right) \left(\frac{\sin t}{t}\right)^4 dt \quad \left(\tau_4 = \frac{1}{2\pi} \int_{-\infty}^{\infty} \left(\frac{\sin t}{t}\right)^4 dt\right)$$
$$= \sum_{k=0}^{2n-1} h\left(\frac{k}{n}\right) A_k(x) ,$$

$$h(x) = egin{cases} 1 - rac{3}{2} \, x^2 + rac{3}{4} \, |x|^3 & if \quad |x| \leqq 1 \, , \ \ rac{1}{4} \, (2 - |x|)^3 & if \quad 1 \leqq |x| \leqq 2 \, , \ \ 0 & if \quad |x| \geqq 2 \, . \end{cases}$$

THEOREM 4. (R. G. Mamedov [2]).

L. Sat.
$$[I_n] = [\{f | f' \in \text{Lip}(1, p; a, b)\}, n^{-2}, linear function].$$

PROOF. We have only to consider

$$\lim_{n\to\infty}\frac{1-\rho_k^{(n)}}{1-\rho_1^{(n)}}=k^2.$$

REMARK 3. M. G. Mamedov states that in Theorem 3 and 4

$$||L_n(f,x)-f(x)||_{(a,b)}=O(1-\rho_1^{(n)})$$

implies f(x) = constant, but a careful inspection of his method will tell that f(x) is linear.

3.3 The Gauss-Weierstrass integral of f(x) is

$$egin{aligned} W(x,oldsymbol{\xi}) &= \sum_{k=0}^{\infty} \exp(-k^2 oldsymbol{\xi}/4) \, A_k(x) \ &= \sqrt{rac{\pi}{oldsymbol{\xi}}} \int_{-\pi}^{\pi} \!\! f(x\!+\!t) \exp(-t^2/oldsymbol{\xi}) \, dt \, , \end{aligned}$$

 $\rho_k^{(\xi)} = \exp(-k^2 \xi/4),$ the parameter ξ tending to zero.

We have

THEOREM 5.

L. Sat.
$$[W_{\xi}] = [\{f | f' \in \text{Lip}(1, p; a, b), \xi, \text{linear function}].$$

PROOF. Since

$$\lim_{\xi \to 0} \frac{1 - \rho_k^{(\xi)}}{1 - \rho_1^{(\xi)}} = k^2 ,$$

the proof is trivial.

4. Local saturation by generalized Jackson operators. P. P. Korovkin proved that the order of approximation by linear positive operators $L_n(f, x)$ was not better than n^{-2} in the following theorem.

THEOREM D (P. P. Korovkin [1]). If $L_n(f,x)$ is a sequence of linear positive polynomial operators defined on the set of continuous and 2π -periodic functions, then at least one of the two sequences of numbers

$$n^2 \max_{-\pi \le x \le \pi} L_n \left\{ \sin^2 \frac{t-x}{2}, x \right\},$$
 $n \max_{-\pi \le x \le \pi} |L_n(1,x)-1|, (n=1,2,\cdots)$

does not tend to zero.

The purpose of this section is determining the class and order of local saturation by generalized Jackson operators.

Let us write

$$L_{n,m}(f,x) = rac{1}{2\pi au_m} \int_{-\infty}^{\infty} f\left(x + rac{2t}{n}
ight) \left(rac{\sin t}{t}
ight)^m dt ,$$
 $au_m = rac{1}{2\pi} \int_{-\infty}^{\infty} \left(rac{\sin t}{t}
ight)^m dt$

If, especially, m is even, the operator is a positive operator. From the view point of asymptotic approximation, Y. Matsuoka [3] and F. Schurer [4] studied the case of m=4,6; m=8,10,12, respectively. We prove the following theorem. For the sake of simplicity, we state only the uniform norm.

Theorem 6. If $m \ge 6$, then

L. Sat.
$$[L_{n,m}(f,x)] = [\{f | f' \in \text{Lip}(1,\infty;a,b), n^{-2}, linear function}].$$

For the proof of Theorem 6, we need a lemma.

LEMMA. If we denote by $C_0^{(4)}[a,b]$, the class of functions g(x) such that g(x)=0 outside of [a,b] and its 4-th derivative $g^{(4)}(x)$ is continuous in $[0,2\pi]$. For any function $f(x) \in C_0^{(4)}[a,b]$ and for any point $x \in [a,b]$, we have

$$L_{n,m}(f,x)-f(x)=M\cdot\frac{f''(x)}{n^2}+o\left(\frac{1}{n^2}\right),$$

where the order $o(n^{-2})$ is independent of the point x.

PROOF. Let M_i^n $(i=1,\dots,4)$ be absolute constants. By Taylor's formula, for any point $x \in [a,b]$, we have

$$\begin{split} L_{n,m}(f,x) - f(x) &= \frac{n}{2\pi\tau_m} \int_0^\infty [f(x+2t) + f(x-2t) - 2f(x)] \left(\frac{\sin nt}{nt}\right)^m dt \\ &= \frac{n}{2\pi\tau_m} \left(\int_0^\delta + \int_\delta^\infty\right) = I_1 + I_2, \text{ say,} \end{split}$$

where $\delta \equiv \min\left(\frac{a}{2}, \frac{2\pi - b}{2}\right)$.

$$\begin{split} I_{1} & \leqq \frac{2nf^{''}(x)}{\pi \tau_{m}} \int_{0}^{\delta} t^{2} \left(\frac{\sin nt}{nt} \right)^{m} dt + \frac{M_{1}}{2\pi} \cdot \frac{n}{\tau_{m}} \int_{0}^{\delta} t^{4} \left(\frac{\sin nt}{nt} \right)^{m} dt \\ & = \frac{M_{2}f^{''}(x)}{n^{m-1}} \int_{0}^{\delta} \left(\frac{\sin nt}{t} \right)^{m-2} \sin^{2} nt \, dt + \frac{M_{3}}{n^{m-1}} \int_{0}^{\delta} \left(\frac{\sin nt}{t} \right)^{m-4} \sin^{4} nt \, dt \\ & \leqq \frac{M_{2}f^{''}(x)n^{m-2}}{n^{m-1} \cdot n} \int_{0}^{\infty} \left(\frac{\sin t}{t} \right)^{m-2} dt + \frac{M_{3}n^{m-4}}{n^{m-1} \cdot n} \int_{0}^{\infty} \left(\frac{\sin t}{t} \right)^{m-4} dt \\ & = Mf^{''}(x) \cdot \frac{1}{n^{2}} + M_{4} \cdot \frac{1}{n^{4}} = M \frac{f^{''}(x)}{n^{2}} + o \left(\frac{1}{n^{2}} \right). \end{split}$$

$$I_{2} \leqq \frac{n}{2\pi\tau_{m}} \int_{\delta}^{\infty} |f(x+2t) + f(x-2t) - 2f(x)| \left(\frac{\sin nt}{nt} \right)^{m} dt \\ & \leqq \frac{n}{2\pi\tau_{m}} \cdot \frac{1}{n^{m}} \int_{\delta}^{\infty} |f(x+2t) + f(x-2t) - 2f(x)| t^{-m} dt \\ & = O\left(\frac{1}{n^{m-1}} \right) = o \left(\frac{1}{n^{4}} \right). \end{split}$$

$$\text{Hence} \qquad I_{1} + I_{2} = M \frac{f^{''}(x)}{n^{2}} + o \left(\frac{1}{n^{2}} \right). \end{split}$$

Thus we complete the proof of Lemma.

PROOF OF THEOREM 6. (i) If

$$\lim_{n\to\infty} n^2 \{L_{n,m}(f,x) - f(x)\} = 0 \text{ uniformly in } [a,b],$$

then, for any $g(x) \in C_0^{(4)}$, we have

$$\lim_{n\to\infty} \int_0^{2\pi} n^2 \{L_{n,m}(f,x) - f(x)\} g(x) dx = 0.$$

Since $L_{n,m}(f,x)$ has a symmetric kernel, we can interchange f(x) and g(x), that is

$$\int_0^{2\pi} n^2 \{L_{n,m}(f,x) - f(x)\} g(x) dx = \int_0^{2\pi} n^2 \{L_{n,m}(g,x) - g(x)\} f(x) dx.$$

On the other hand, Lemma gives

$$\lim_{n\to\infty} n^2\{L_{n,m}(g,x)-g(x)\}=Mg''(x), \text{ boundedly.}$$

Thus we get

$$\int_0^{2\pi} f(x) g''(x) dx = 0$$

Hence by the well-known lemma, f(x) is a polynomial of the first degree over [c,d].

(ii) If $n^2\{L_{n,m}(f,x)-f(x)\}=O(1)$ uniformly in [a,b], by the weak* compactness of the unit ball of the space B[a,b], we can take a subsequence n_{ν} and a function $h(x) \in B[a,b]$ such that

$$\lim_{\nu \to \infty} \int_{0}^{2\pi} n_{\nu}^{2} \{ L_{n_{\nu}, m}(f, x) - f(x) \} g(x) dx = \int_{0}^{2\pi} h(x) g(x) dx.$$

But the left-hand side is equal to

$$M \int_0^{2\pi} f(x) g''(x) dx$$

and the right hand side is equal to

$$\int_0^{2\pi} H_2(x) g''(x) dx$$

220 Y. SUZUKI

where $H_2(x)$ is a second integral of h(x). Hence $H_2(x)-Mf(x)$ is at most a polynomial of the first degree in [c,d] and f''(x) is bounded in [c,d].

(iii) Let us set $\delta \equiv \min\left(\frac{c-a}{2}, \frac{b-d}{2}\right)$. For any $x \in [a, b]$, we have

$$\begin{split} L_{n,m}(f(t),x) - f(x) &= \frac{1}{2\pi\tau_m} \int_{-\infty}^{\infty} \left[f\left(x + \frac{2t}{n}\right) - f(x) \right] \left(\frac{\sin t}{t}\right)^m dt \\ &= \frac{n}{2\pi\tau_m} \int_{-\infty}^{\infty} \left[f(x+2t) - f(x) \right] \left(\frac{\sin nt}{nt}\right)^m dt \\ &= \frac{n}{2\pi\tau_m} \int_{0}^{\infty} \left[f(x+2t) + f(x-2t) - 2f(x) \right] \left(\frac{\sin nt}{nt}\right)^m dt \\ &= \frac{n}{2\pi\tau_m} \left(\int_{0}^{\delta} + \int_{\delta}^{\infty} \right) = I_1 + I_2, \quad \text{say} \, . \end{split}$$

Then

$$I_{2} = \frac{n}{2\pi\tau_{m}} \int_{\delta}^{\infty} \left[f(x+2t) + f(x-2t) - 2f(x) \right] \left(\frac{\sin nt}{nt} \right)^{m} dt$$

$$\leq \frac{n}{2\pi\tau_{m}} \int_{\delta}^{\infty} |f(x+2t) + f(x-2t) - 2f(x)| \left(\frac{\sin nt}{nt} \right)^{m} dt$$

$$\leq \frac{n}{2\pi\tau_{m}} \cdot \frac{1}{n^{m}} \int_{\delta}^{\infty} |f(x+2t) + f(x-2t) - 2f(x)| t^{-m} dt$$

$$= O\left(\frac{1}{n^{m-1}}\right). \tag{7}$$

$$I_{1} = \frac{n}{2\pi\tau_{m}} \int_{0}^{\delta} [f(x+2t) + f(x-2t) - 2f(x)] \left(\frac{\sin nt}{nt} \right)^{m} dt$$

$$\leq \frac{1}{2\pi\tau_{m}} \cdot \frac{1}{n^{m-1}} \int_{0}^{\delta} |f(x+2t) + f(x-2t) - 2f(x)| \left(\frac{\sin nt}{nt} \right)^{m} dt$$

$$\leq \frac{1}{2\pi\tau_{m}} \cdot \frac{1}{n^{m-1}} \int_{0}^{\delta} t^{2} (\sin^{m-2}nt) t^{-m} dt$$

$$= \frac{1}{2\pi\tau_{m}} \cdot \frac{1}{n^{m-1}} \int_{0}^{\delta} \left(\frac{\sin nt}{t} \right)^{m-2} dt$$

$$= \frac{1}{2\pi\tau_{m}} \cdot \frac{1}{n^{m-1}} \int_{0}^{n\delta} n^{m-3} \left(\frac{\sin t}{t}\right)^{m-2} dt$$

$$= O\left(\frac{1}{n^{m-1}} n^{m-3} \cdot \int_{0}^{\infty} \left(\frac{\sin t}{t}\right)^{m-2} dt\right)$$

$$= O(n^{-2}). \tag{8}$$

Hence, by (7) and (8), for any function $f'(x) \in \text{Lip}(1; a, b)$ we have

$$L_{n,m}(f(t),x) - f(x) = I_1 + I_2 = O\left(\frac{1}{n^{m-1}}\right) + O\left(\frac{1}{n^2}\right)$$

= $O\left(\frac{1}{n^2}\right)$ if $m \ge 4$.

Thus we get the complete proof of the Theorem 6.

REMARK 4. From the Theorem 4, Theorem 6 and P. P. Korovkin's theorem, if follows that if $m(\ge 4)$ is even, the method of generalized Jackson operators attains to the order of local best approximation by linear positive polynomial operators.

BIBLIOGRAPHY

- [1] P. P. KOROVKIN, Linear operators and approximation theory, Delhi, 1960.
- [2] R. G. MAMEDOV, Local saturation of a family of linear positive operators, Doklady Akad. Nauk, 155(1964), 499-502.
- [3] Y. MATSUOKA, On the degree of approximation of functions by some positive linear operators, Science Reports of Kagoshima Univ., 10(1960), 11-19.
- [4] F. SCHURER, Some remarks on the approximation of functions by some positive operators, Monatshefte für Math., 67(1963), 353-358.
- [5] G. SUNOUCHI, Local operators on trigonometric series, Trans. Amer. Math. Soc., 104 (1962), 457-461.
- [6] A. ZYGMUND, Trigonometric series, I, Cambridge, 1959.

TÔHOKU UNIVERSITY.