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1. Introduction and inverse theorem. ~Letf(x) be an integrable function,
with period 2τr and let its Fourier series be

( 1) S[f] = Σ Ak(x) = ^ + Σ (ak cos kx + bk sin kx) .

If the positivity of /(.r) implies the positivity of a linear operator Ln(/, x),
the operator is called a linear positive operator.

Let pin) (k = 0,1,2, ,pjn )=l) be the "summating" function and consider
a family of linear positive operators

Let us suppose that for a positive constant C, we have

( 3 ) i^

The purpose of the present paper lies in considering local saturation by
linear positive operators. Throughout the paper the norms should be taken
with respect to the variable x and the subscript p (1 ^ p^ °°) to Z/-norm
will be generally omitted. Another convention is that the space (C) is meant
by the notation L°°, and the interval [a, b] is an arbitrary subinterval of
[0,2ττ]. Thus the class Lip(<2, p) with p—^o reduces to Lipα. Also, let us
write

II L,,(f, x) - f{x) || ( M ) = (JI LΛf, x) - fix) I' dx)"

and

Lip(l,^>; a, b) ΞΞ {/(.r)|sup \\f{χ + h) — f(x)\\(a,b) -
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T H E O R E M 1. (1°) // \\Ln(fx) -/(*)| | (« l 6 ) - O(l-P{»>), then f{χ) is a
linear function in [c, d], where [c, d] is any fixed subinterval of [a, b].

(2°) // \\Ln(fx) -/(*)| |(α l 6, - O(l-p{»>), then f\x) belongs to the class

L i p (1,/> * , < * ) •

THEOREM A. (G.Sunouchi [5]). A necessary and sufficient condition for
f"(x) to exist and belong to the class B over (α, b) is the uniform bounded-
ness of σlt[x, S"] over [a, b], where σlt[x, 5"'] means the (C, 2)-means of the
second derived series of (1).

THEOREM B. (G. Sunouchi [5]). A necessary a?ιd sufficient condition for
f"(x) to exsist and belong to the class Lp (p> 1) over (a,b) is

[\A[x,S"]\*dx=O(l).

THEOREM C. (G.Sunouchi [5]). A necessary and sufficient condition for
f\x) to exsist and belong to the class BV over (a, b) is

σ\Λ\x,S"]\dx=(Xϊ).

PROOF OF THEOREM 1. (1°) The proofs of the proposition (1°) and (2°)
are almost the same. So we shall only give the proof of the proposition (2°)
with respect to (C)-norm. The proofs of the propositions (1°) and (2°) in
Lp-space are analogous to the case (C)-space.

(2Q) Since

L.,U\x) -f\x) = O(l-p^) uniformly over (ιi,b),

we have

)-Ln(x,f)}

for every m and uniformly in x in any fixed interval subinterval of [a, b\,
because

_ ί T ( f ~Λ _ f (γ\\ ^ V 1 Pk Ά, (ΎΛ

(see Zygmund [6, p. 367, Th. 9.20]). Letting w->oo, W e get by (3)
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Hence we have f"(x) £ B in [c, d] from Theorem A.

REMARK 1. We have only to apply Theorem B or C in order to verify

the facts (1°) and (2°) in ZΛspace (p^ 1).

2. Direct theorem. Let us suppose that the linear positive operator (2)

can be represented in the following form :

Ln(f, χ) = ̂ r ff(*+t) un(t) dt,

where

(4) υn(t) = -i- + £>*»> cos kt^O.
Λ : = l

THEOREM 2. If f\x) belongs to the class Lip(l, p\ a,b) and

then

II W , Λ) -/ω lice, =

REMARK 2. If the constant in (3) is 1, the condition (*) can be omitted

(see, [1]).

PROOF OF THEOREM 2. Let us write B = min(c-a,b-d). By generalized

Minkowski inequality, we have

Ln(f\x)-f(x)\μdx

Γ)

d t

d t dx



LOCAL APPROXIMATION BY POSITIVE OPERATORS

2ττ i Jc Jo
[f(x + t) + f(χ-t) - 2fix)] UJt) dt dxV

213

Ix+t) +f(x~t) - 2f(x)] £7n(ί) dt

= Iy + h , say.

Then

h ί u"(t) dt (Γ

^ - ~ ί ? Un(t) dt = ψ Llt\ 0) (5).

T _ J \f{x + t) +f(x-t) - 2f(x)] Un(t) dt dx

- ΐ " ίj/** (J? /( r+ί}' ̂  dt + ί /(;c~ί}'Un(t) dt

Since

Γ\f(x + t)\ Un{t) dt ^ ^ . v f(l-cosί)2 C/»(

we get

dt

J(l-cosί)2 C7n(ί)iy(Λ-ί)l dt + 2 f(l-costγ Un{t)\f{x)\ dtj \T
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\fdx (|α-cos tγ un(t)\/(x-t)\ dtj }-*

\fdx(f(l-costγUn(t)\f(x)\f ( f

w [fj1-cos ')• u»v dt

+ f(i- cos ty un(t) dt ( |" | fix-1) i"

+ 2 f(l - cos tγ Un{t) dt ( |" | fix) I" rf

Jn(t)dt

M
2τr( l-cosδ) 2 • j\l- cos tfUn{t)dt

where we apply the condition (3) and the fact that

Ln(ψk, 0) - - 1 - f (1-cos kt) Un{t) dt = l-p£»>,

^ f c = 1 — cos έx (k = 1,2, ) .

Hence, by (5) and (6), for any function f'{x) £ Lip(l,/>; a, b) we have

I I W , x) -/(x) ί i ( M ) = ^ Ln(i2,0)+ O(l-pί">).

That is,
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3. Determination of the class of local saturation by some linear positive
operators.

3.1 The integral of de la Vallee Poussin is defined by

Vn(x) = -%>- \f(x+t) cossn 4 " dt
ZTΓ J_π 2s

_ f (n]l A {OΛ h _ 2*(2*-2).--4-2
ίϊΛn-k)\(n + k)\ kKX)* n~(2w-l)(2w-3).. 3.1 '

(//. — ̂ ) ! (ri 4- Λ) ! /ί V rr

THEOREM 3. (R. G. Mamedov [2]). For space Lp (1 ̂  p^ oo), ίAe method
of de la Vallέe Poussin Vn(x) is saturated locally its order of saturation
is n~\ its class of saturation is the class of functions f{x) for which

f(x)*BV[c9d] (p=l).

PROOF. The proofs of inverse problem are easily verified, and so we
may confine ourselves to the proof of direct problem. But, from the fact

1 _ n(n)
lim -ί—Pf- = ¥
— 1 —pί->

we have the proof of the direct theorem by Theorem 2.
We may write this result by the notation

L.Sat. [Vn] = [{/!/ ' 6 Lip(l,/>; a,b)} , n~\ linear function}] .

3.2 The integral of Jackson-de la Vallee Poussin is defined by

^ Γ
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h(x) =

Y. SUZUKI

(2- x\y (f 1^

T H E O R E M 4. (R. G. Mamedov [2]).

L. Sat. [7n] = [{/!/' ^ Lip(l,/>; α, 6)},?7~2, linear function]

PROOF. We have only to consider

REMARK 3. M. G. Mamedov states that in Theorem 3 and 4

implies f(x)= constant, but a careful inspection of his method will tell that
f{x) is linear.

3.3 The Gauss-Weierstrass integral of f(x) is

W(x,ξ) - At(x)

= J~f [fix +1) exp(- t*/ξ) dt,

= exp( — k2ξ/4), the parameter ξ tending to zero.

We have

THEOREM 5.

L. Sat. [Wξ] = [{f\f € L i p ( l , / > ; α , 6 ) , ξ, linear function].

PROOF. Since

p\ξ
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the proof is trivial.

4. Local saturation by generalized Jackson operators. P. P. Korovkin
proved that the order of approximation by linear positive operators Ln(f,x)
was not better than n~2 in the following theorem.

THEOREM D (P. P. Korovkin [1]). If Ln(f x) is a sequence of linear
positive polynomial operators defined on the set of continuous and 2τr-periodic
functions, then at least one of the two sequences of numbers

n2 max Ln \ sin2 - ^ - ^ , x\ ,
2

nmax^ |L n ( l ,Λ) - 11, (n= 1,2, )

does not tend to zero.

The purpose of this section is determining the class and order of local
saturation by generalized Jackson operators.

Let us write

If, especially, m is even, the operator is a positive operator. From the view
point of asymptotic approximation, Y. Matsuoka [3] and F. Schurer [4] studied
the case of m = 4,6 m=8,10,12, respectively. We prove the following theorem.
For the sake of simplicity, we state only the uniform norm.

T H E O R E M 6. If m^β,

then

L. Sat. [Ln,nι(f\ #)] = [{f\f £ Lip(l, co ; a, b), n~\ linear function].

For the proof of Theorem 6, we need a lemma.

LEMMA. If we denote by C^[a9b]9 the class of functions g(x) such that
g(x)=zθ outside of [a,b] and its 4-th derivative giO(x) is continuous in [0,27r].
For any function f(x) £ Cό4)[<z, b] and for any point x <Ξ [α, b], we have
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where the order o{n~2) is independent of the point x.

PROOF. Let Mΐ (i = 1, , 4) be absolute constants. By Taylor's formula,
for any point xz [a,b], we have

-fix) =

where N m i n ( | , 2 γ ) .

— τrτ m J o \ nt j 2τr τ r a J ora J o

. , \ wι-4

sin nt \ . 4— — J S l n
4

S l n

MJ"(x)tr-* Γ I sin ί Y ,2. , Man"1-1 Γ / sin ί \m ,4.

- Mf"(x) - \
^ v y n2

- iΐ^r' ̂  Γ r m d t

Hence /, + /, = M^-^- + o I

Thus we complete the proof of Lemma.
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P R O O F O F T H E O R E M 6. (i) If

lim n2{Ln}7n(f,x) - f(x)} = 0 uniformly in [a,b],

then, for any g(x)£ C<S4), we have

fOX

lim n*{Lntn(f, *) ~ Ax)} fa) dx = 0 .

Since LnιM(f,x) has a symmetric kernel, we can interchange/^) and g(x),
that is

On the other hand, Lemma gives

lim n2{Ln>m(g, x) — g(x)} — Mg"(x) , boundedly.

Thus we get

[*f(x)g"(x)dx=0

Hence by the well-known lemma, f(x) is a polynomial of the first degree over

[c,d].

(ii) If n*{Ln,m(f,x)-Λx)} =O(1) uniformly in [α, b], by the weak*

compactness of the unit ball of the space B[a, b], we can take a subsequence

nv and a function /ι(:r) ̂  B[a, b] such that

nl{LnvtJJ, x) - f(x)} g(x) dx = I Λ(α:) g(x) dx.

But the left-hand side is equal to

MΓf(x)g"(x)dx

and the right hand side is equal to

ΓHt(x)g\x)dx
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where H2(x) is a second integral of h(x). Hence H2(x)—Mf(x) is at most
a polynomial of the first degree in [c, d] and f"{x) is bounded in [c, d\

(iii) Let us set δ = min (-ί—^- ? _ Z — j . For any xz [a, b\ we have

Then

^^—'-^Γ [ \A* + 2t) +A*-2t) - 2f{x)\rmdt

( 7 )

i ( - ^

— 1 1 / / sin nt \
2τrτm ' nm~ι JΛ t )
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i i Γn8 / +

= O(n" 2). ( 8 )

Hence, by (7) and (8), for any function f'(x)€ Lip(l ; a, b) we have

Lntm(f(t\χ)-f(x) = /! + /, =

= °(~^τ) i f w ^ 4

Thus we get the complete proof of the Theorem 6.

REMARK 4. From the Theorem 4, Theorem 6 and P. P. Korovkin's
theorem, if follows that if ra(§=: 4) is even, the method of generalized Jackson
operators attains to the order of local best approximation by linear positive
polynomial operators.
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