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1. Introduction and inverse theorem. Let f(x) be an integrable function,
with period 27 and let its Fourier series be

(1) S[f]EiAk(x)E%)-+i(akcoskx—#bksinkx).

k=1

If the positivity of f(x) implies the positivity of a linear operator L,(f, x),
the operator is called a linear positive operator.

Let pi® (£=0,1,2,--.,pi"=1) be the “summating” function and consider
a family of linear positive operators

( 2 ) 1‘/!(,/“) *T') = Z P/(n:") AI»(‘T) .
k=0
Let us suppose that for a positive constant C, we have

(3) lim 1=P _ cpe (B=1,2+++).

n—roo 1——PE") -

The purpose of the present paper lies in considering local saturation by
linear positive operators. Throughout the paper the norms should be taken
with respect to the variable x and the subscript p (1= p= o) to L’-norm
will be generally omitted. Another convention is that the space (C) is meant
by the notation L=, and the interval [a,b] is an arbitrary subinterval of
[0,27]. Thus the class Lip(a, p) with p = oo reduces to Lipa. Also, let us
write

ILAF2) = @ o = ( [ 1L, 0) = fr) 7 )
and

Lip (L, $; 4,8) = (@) sup | Az+h) = f@ler = O®)
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THEOREM 1. (1°) If |IL,(f,x) — fl@)lw@sn = OQ—p™), then f(x) is a
linear function in [c,d), where [c,d] is any fixed subinterval of (a,b].

2°) If ILf, x) — f(©ln = OQ—p{™), then f'(x) belongs to the class
Lip(1, p; ¢, d).

THEOREM A. (G.Sunouchi [5]). A necessary and sufficient condition for
[ (x) to exist and belong to the class B over (a,b) is the uniform bounded-
ness of awlx,S’] over [a,bl, where oklx,S’] means the (C,2)-means of the
second derived series of (1).

THEOREM B. (G. Sunouchi [5]). A necessary and sufficient condition for
f7(x) to exsist and belong to the class L (p> 1) over (a,b) is

flafn[:c,S"]l" dr = 0O(1).

THEOREM C. (G.Sunouchi [5]). A necessary and sufficient condition for
f(x) to exsist and belong to the class BV over (a,b) is

f“"}n, |>x, ‘g//] l dl‘ = O(l) .

PROOF OF THEOREM 1. (1°) The proofs of the proposition (1°) and (2°)
are almost the same. So we shall only give the proof of the proposition (2°)
with respect to (C)-norm. The proofs of the propositions (1°) and (2°) in
LP-space are analogous to the case (C)-space.

(2°) Since

L,(f,x) — f(x) = O(1—p{”) uniformly over (a,b),
we have

o] 2 1w (F@) = L@ | = 0)

for every m and uniformly in x in any fixed interval subinterval of [a, ],
because

o (L) = f@) ~ 755 A,

(see Zygmund [6, p. 367, Th. 9.20]). Letting n — oo, we get by (3)
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& [ 3k A2)| = 0,

Hence we have f(x)€ B in [c,d] from Theorem A.

REMARK 1. We have only to apply Theorem B or C in order to verify
the facts (1°) and (2°) in L”-space (p=1).

2. Direct theorem. Let us suppose that the linear positive operator (2)
can be represented in the following form :

L(f0) =+ [farouwar,
where

(4) Ut) = 5+ 3 pi coskt = 0.
k=1

THEOREM 2. If f(x) belongs to the class Lip(1, p; a,b) and

(*) L,@#,0) = O1—p{")
then

I La(f, 2) = f(2) ety = OL—p{™) .

REMARK 2. If the constant in (3) is 1, the condition (¥) can be omitted
(see, [1]).

PROOF OF THEOREM 2. Let us write 8=min(c—a, b—d). By generalized
Minkowski inequality, we have

([{Ln(f, 2) — flD)]* d1>71’
= 2'}”«{‘/:1
=

[ trarn = 2@+ a0 el aaf”

(f f)[f(x+t)+f(x t)—2f(x)]Un(t)dt] dx}
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II/\

a tf U [fa+0) + fle—t) = 2f@IU(e) de | dx}

1
+ '27;{ ‘
=1, + I,, say
Then

fs ”[ Fx+1t) + fla—t) — 2R U 1) dt | dx}';'

o f U.(0) dt ( f | fa+8) + fla—t) — 2f ()] dx) ’

1)
%{ fthn(t)(lt

I

IA

M (" 2 M 2 <
2; -/if“ U,L(t) dt = TZ" L/l(t': 0) (‘-)) .

L= {f \fjﬂxm + fla—1t) = 2/ U.@0) ‘”’f'}‘”}';

IA

72177 Ujdx <ﬁf(x+t) + fla—t) — 2f(2)| U0 dt)p _}.;,
= _21; {f;ix<£\tf(x+t)| U'n(t) dt + _/jf(x_t)i U (0) dt

42 fs " A UL dt)” }"’
Since

[[faroiv.@ae= =t [a-cosrr v ssol @,

we get

L= (1_61088)2 {ﬁdx(j;(l—cost)z U() | fla+1)| de

n ]:(zl-—cos U (0| fla—2) dt + 2 fgl—cos ) U, ()] fla)] dt>v }T
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IA

_2,1; (chl—osaT H f iz ( j; (1—cos £ U,(®)| fl+ )| dt>” ] h
+1 f dx ( fs (1—cos £ U@)| f(z—1)| dt)" fl
+ { f dz ( fs (1—cos £ U(&)| A2 dt>ﬂ H

= o e [ffl— cos £ U, (2) d (jjf(ert)i . d.z:)%
+ f (1= cos ) U () dt ( f | Kemt)|? dx)lT

v focomirtsa(fLpor s

M 1 L ,
= (1=cosd)’ j;(]. cost)* U, (t) dtL
M7 .
= o (1— cos ) f_(ll—cos 1)U, (¢)dt
_ MQA-p") [, 1—p )\ —aw
~ 4w (1— cos ) 4 1—pm | ~ O(1—pi") 6),

where we apply the condition (3) and the fact that

L, 0) = Tlr f (1—cos k) U (&) dt =1—pi |
Vo= 1— coskx (k=1,2-+).
Hence, by (5) and (6), for any function f'(x)< Lip(1, p; a,b) we have
ILof 3 2) = @l = B Lt 0+ O0—pi)

That is,
H Ln(fy x) _—f(x)”(c,d) = O(l—Pgm) q.E.d.



LOCAL APPROXIMATION BY POSITIVE OPERATORS 215

3. Determination of the class of local saturation by some linear positive
operators.

3.1 The integral of de la Vallée Poussin is defined by

Vi) = e [ fartycosn L di

_5 (n!)? _ 2n@2n—2)---4:2
= L ek (k) D B = (o, G5y 51

, (n!)? k? 1
)y . \"*-/] —_ -
P = =) (it k) 1= O( n >

THEOREM 3. (R. G. Mamedov [2]). For space L’ (1 = p= o), the method
of de la Vallée Poussin V ,(x) is saturated locally; its order of saturation
is n™', its class of saturation is the class of functions f(x) for which

S Ble,dl (pe= )
j"'(‘):) e L IC, CZJ (l < /) < u))
f(x)eBV|c,d]l (p=1).

PROOF. The proofs of inverse problem are easily verified, and so we
may confine ourselves to the proof of direct problem. But, from the fact

we have the proof of the direct theorem by Theorem 2.
We may write this result by the notation

L.Sat. [V, =[{f|f e LipQ, p; a,b)}, n!, linear function}].

3.2 The integral of Jackson-de la Vallée Poussin is defined by

o= g [rlee ) (5 e rom o [(5) 4
2n -1

= > aw,

k=0
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’1—%x2+%|x|3 if Izl =1,
MO L ay i 15lals2,
0 if lzl=2.

THEOREM 4. (R. G. Mamedov [2]).
L.Sat. (1,1 = [{f|f € LipQ1, p; a, b)},n?, linear function].

PROOF. We have only to consider

REMARK 3. M. G. Mamedov states that in Theorem 3 and 4

L.(f, x) = floll@n = O(1—p1?)

implies f(x)= constant, but a careful inspection of his method will tell that
f(x) is linear.

3.3 The Gauss-Weierstrass integral of f(x) is
Wi(x, & = 3_ exp(—k*E/4) Ay(x)
k=0

=5 [Farves-epar,
pif) = exp(—k*E/4), the parameter ¢ tending to zero.
We have
THEOREM 5.
L.Sat. [W,] = [{f|f € Lip(Q, p; a, b), & linear function].
PROOF. Since

— p®
lim L= P _ pe
£-0 1——p§§)

3
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the proof is trivial.

4. Local saturation by generalized Jackson operators. P.P. Korovkin
proved that the order of approximation by linear positive operators L.(f,x)
was not better than »#~? in the following theorem.

THEOREM D (P. P. Korovkin [1]). If L.f,x) is a sequence of linear
positive polynomial operators defined on the set of continuous and 2w-periodic
Sunctions, then at least one of the two sequences of numbers

n*max L, {sin2 L_Z—x , x} ,

—r=T=7

nmax |L,(1,2) — 1|, n=1,2,---)

B % = 4

does not tend to zero.

The purpose of this section is determining the class and order of local
saturation by generalized Jackson operators.
Let us write

st ol )

27T, t
1 sin ¢
Tm = 5 ( p ) dt

If, especially, m is even, the operator is a positive operator. From the view
point of asymptotic approximation, Y. Matsuoka [3] and F. Schurer [4] studied
the case of m=4,6; m=8, 10, 12, respectively. We prove the following theorem.
For the sake of simplicity, we state only the uniform norm.

THEOREM 6. If m=6,
then

L. Sat. [L,.(f, )] = [{f|f € Lip(1, o ; a, b), n72, linear function].

For the proof of Theorem 6, we need a lemma.

LEMMA. If we denote by C{[a, b, the class of functions ¢(x) such that
g(x)=0 outside of [a,b] and its 4-th derivative ¢¥(x) is continuous in [0, 2w].
For any function f(x) € Ci¥[a, b] and for any point x<[a,b), we have
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Loalfi2) = fla) = M- L 10 (-5),

where the order o(n™?) is independent of the point x.

PROOF. Let M} (i=1,---,4) be absolute constants. By Taylor’s formula,
for any point x¢< [a,b], we have

Lon(f, 2) — flz) = Z:Tm f w[ fla+2t) + fla—2t) — 2f(2)] (%)mdt

Zvr'r,n (f f ) =1+ 1, say,

where &= min(

a_ Zvr—b)
2’ 2 )

» 0 . m 5 . m
I = 2nf’ (x) tz(m:tnt) dt + %ﬁ._ngft‘;(smnt) dt
0 0

T 2w T, nt

Y -2
= M2{_1\1) (smnt) sin?ntdt + 75\43 f
0

m-—1
n t 0

m-—2 m—4 %0 . m—4
]\lzfm(.lr)n f (smt) dt + ]\74:1 f (smt) dt
n n o 13 n nJ, t

" 1 1 " 1
=Mf (x)-712—+M47=Mi;(;’£)—+0(?).

nt
(SH; ) sin nt dt

- f | flx+2t) + fx—22) — 2f(x)| (Slnnt) dt

2 =
2mwT,

n 1 ) —-m
= Ee | flx+2t) + fle—2¢) — 2f(x) |t dt
1 1
=0 (F) =0 (;ﬂ)
Hence IL+1,= Mf_n(zﬁ + o0 (;12_) )

Thus we complete the proof of Lemma.
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PROOF OF THEOREM 6. (i) If
}LLIB n*{ L, .(f, 2) — flx)} = 0 uniformly in [a, b],

then, for any ¢(x)< Ci*, we have

lim [ n*{L(f, ) ~ fl@)} g(a) dx = 0.

Since L, .(f, z) has a symmetric kernel, we can interchange f(x) and ¢(x),
that is

2T

[, 2) = 20} @) dz = [ 0#1L g, 20 gla)) fi) i

On the other hand, Lemma gives
h_g} n*{L, x(g, x) — g(x)} = My"'(x), boundedly.

Thus we get

27

Ax) g’ (a)dxz =0

Hence by the well-known lemma, f{x) is a polynomial of the first degree over
[e,d].

Gi) I n{L..(f,2) — flx)} = OQ) uniformly in [a,bd], by the weak*
compactness of the unit ball of the space Bla,b], we can take a subsequence
n, and a function A(x)< Bla, b] such that

27

tim [ (Lol f, ) — A2} gla)dx = [ (e gla) d

0

But the left-hand side is equal to

27

M| flx) g’ (x)dx
0
and the right hand side is equal to

2ng(ac) g (x)dx

0
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where H,(z) is a second integral of A(x). Hence H,(x)— Mf{(x) is at most
a polynomial of the first degree in [c, d] and f'(x) is bounded in [c, d].
c—a b—d

(iii) Let us set 8 = min (—~2—~ , —2-—> For any x<[a, b], we have

m

t) dt

o= g [ e )

- f w20~ flay) (S224Y e

27r'r
= 27” f [f(z+28) + fla—2¢) — 2f(a )](Sm”t) dt
= 2':7-.,,, (j:+j:)=ll+12, say .
Then
I = 5 f [flz+20) + flz—20) - 2f(x )](S‘“"t) dt
S e f | fla+22) + fla—20)— 2f(x )I(S“‘”’> dt

27T,

=2 nimf” | fla+2t) + fla—2t) — 2f(x) |t dt

(7)

I
Qo
—
Y
Elv—l
N

1, = flf(1+2t)+f(x 26) — 2f(x )](S”‘”t) dt

Z'n' T

IA

Sl f | Ra+20) + fla—26) - 20@) | (S0) as

27T,

<< 1 1 ’ 2(qipym—2 -m
= kel ML (sin™2nt)t~™ dt
m 0

S . m-2
— 1 . 1 <smnt) di
0

2T, n"! t
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— ‘_,71_* ,__];_._ " m-—3 SiIl t "
- 277'7," ) nm—l fo " < t ) dt
— 1 m-3 f°° Sin t >7""2
- o(nm_, | ( : dt
= O(n™). (8)

Hence, by (7) and (8), for any function f'(x)e Lip(1; a,b) we have

Lowf®,2) = fla) = I + I = O( =) + O(r)

nm—l

:o(%) if m=4.

Thus we get the complete proof of the Theorem 6.

REMARK 4. From the Theorem 4, Theorem 6 and P. P. Korovkin’s

theorem, if follows that if m(=4) is even, the method of generalized Jackson

operators attains to the order of local best approximation by linear positive
polynomial operators.
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