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1. Introduction. In [2] R.Salem and A. Zygmund have proved the
central limit theorem of the theory of probability for lacunary trigonometric
series. Recently, P. Erdos attempted to weaken the lacunarity assumption in
their result. In fact he proved the

N
THEOREM [1]. Let Sy(t) = 3 cos2mwn,(t+¢i), where {¢.} be an arbi-
k=1

trary sequence of real numbers and {n,} a sequence of positive integers
satisfying the following gap condition;

1. 1) n>nl+ca/VE), for k=1, where lkim Cp = +o0.

Then we have, for any real number zx,

T

L2 lim|{0=2=1 SxO)=2/N2} = 2m)7" fe"‘” du ® .

~o00

In that paper he pointed out that his theorem is also best possible in the
following sense: To every positive constant ¢ there exists a sequence of
integers {n,} for which n,.,>n,(1+c¢// %) but (1.2) is not true.

The purpose of the present note is to prove the

N

THEOREM. Let Sy(t) = > a,cos2mni(t+¢,), where {n.} be a sequence

k=1
of positive integers satisfying the gap condition (1.1) and {a,}, {¢:} arbitrary
sequences of real numbers for which

i 1/2
k=1

*) For any measurable set E, |E| denotes its Lebesgue measure.

oo
**) For example the conditions are satisfied when {ax} is non-increasing and 3, o =+oo.
k=1
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Then we have, for any set EC[0,1] of positive measure and any real x,

lim|(¢;2€ E, Sx(6) < 2As}|/|E| = @m" [e du

-0

From the above theorem we can easily obtain the

COROLLARY. Under the hypotheses of the preceding theorem it is seen

N
> arcos2mn(t+¢,)| = +oo, almost everywhere in t.
k=1

that Tim

N—roo

Our proof of the theorem is due to the following version of the central
limit theorem for trigonometric series not necessarily lacunary.

THEOREM [3]. Let Sx(t) be the N-th partial sum of a trigonometric

. » 142
series Y a, cos2mk(t+¢,) and Ay = (2“ > aZ) , then we put
k=1

k=1
Ak(t) = Szk-l—l(t) - Szk(t), Clnd BN=A2N+1 .
Suppose if
Ay— + oo, mle|AN(t)I= o(By), as N— oo,

and, for some function ¢(t),
lim [ [B# 3 (AK0) + 2840) Aces®)} — g®)]dt = 0,
e k=1

then the function g(t) is non-negative and we have, for any set E C [0,1] of
positive measure and any real number x=¢0,

Az, t)

lim|{¢; < B, S(t)/Av = 2}|/|E| = (2m) | E| fdt fe"“du,

—oo

where Mz t)=x/a/ g(t) and x/0 denotes +oo (or —oo0) if >0 (or x <0).

In this theorem if g(#)=1 on some set of positive measure, then the values
of {Sy(t)/Ax} are distributed asymptotically normally on this set.
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2. Proof of the Theorem. To simplify the computations we will work
out the proof of the theorem only for cosine series, the proof of the general
case follows the same lines. Further without loss of generality, we may assume
that the sequence of positive numbers {¢;} in (1.1) is non-decreasing®. That

N
is, we prove the theorem for trigonometric series Sx(t) = >_ a,cos2mn,¢ under
k=1

the conditions:

P]

N 1/
(2. 1) Ay= (2“‘Za}€> — 400, and |ay|= O(Ay/"/ N), as N—+oco,
k=1

and

2.1) e >nl+c/A/ k), for k=1, and ¢, T +o0, as k— + oo,

I. First let us put, for £=1,2,---,

2. 2) p(k) = max{m ; n, = 2"},
and
P(k+1)
A@®)= > ancos2mn,t, and B = Ay P
m=p(k)+1

If p(k)+1 < p(k+1), then (2.1") implies that

pk+1)-1

2> I A+en/v/'m)>1+{plk+1) — p(k)—1}com/~/ plk+1) -

m=p(k)+1
By (2.1") and the above relation, we have always
2. 3)  plk+1)—p(k) = o/ p(k) and p(k+1)/p(k) —1, as k— +oo.

Therefore, we obtain

p(k+1)

@2 4 max|AQ)|= X lan|< max l)aml{P(k+1)—P(k)}

m=p(k)+1 p(k)<m=p(k+1

= OB, {p(k+1) — p(D)} {p(R)} ") = o(By), as k— +oo.

*) If {cx} is not non-decreasing, we use infk cn instead of c.
n=
*k) If p(k)=p(k+1), then we put Ax(z)=0.
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II. If we put
plk+1) m-1
Udty= 2 an > a;cos2m(n,—n;)t,
m=p(k)+2 J=pk)+1
2.9 plic+1) plk+1)
Vie)=2" 3" a, > ajcos2m(n,+n;)t,
m=p(k)+1 J=pk)+1
then we have
(2.5) AKE) — 1A = Ui®) + Vi(e) . ®

Then (2.5) and (2.4) imply that

p(k+1)

Vil = lal 22 lanl =oBulAl), as &2— +oo.

m=p(k)+1

Since {V.(¥)} is orthogonal, we have

|

Further we have, by (2.4) and the above relations,

2

N b N
> v. =znvknz=o(ZBimm):och, as N +oo.
k=1 k=1 k=1

WUl = 1A + Vil = max [ A 1AM + [Vill = o(Bell Axll), as k= +co.

Hence we have, by (2.5") and the above inequalities,

N 2 N 2 N 2
@6 |- lady =210 +2|2 v,
k=1 k=1 k=1
N k-1 1
— 4T [U@U@dt+oBY, as N too.
k=2 j=1

III. In this section let us assume that for fixed &> j,
2.7 () + 1< p(G+1) and p(k)+1 < p(k+1),

which means that both of U,(#) and U,(¢) are not empty-sums. Then for any

1 1/2
*) For any f(¢) € L2(0,1), ||f|| denotes {ffz(t)dt]» .
0
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fixed indexes ¢ and A such that

(2. 8) P <h=pG+1) and pk) <q= p(k+1),

we consider the number of solutions (n,, ;) of the equation

2.8) ng— Ny =0, — Ny,

where p(k) <r <q and p(j) <7 <h. From (2.8) and (2.8) it is seen that
n,=n, —(m—n)>n,— 2 >n,(1-2"%) = n,A+277F1)"1,

Therefore, the 7,’s in (2.8") must satisfy the following inequalities

n,(1+27 N1 < n. < n, arild pR) <r < p(k+1).

If m, (or m,) denotes the minimum (or maximum) index of #,’s satisfying
the above inequalities, then (2.1) implies that

(1+2j—k+1) > nmg+1/nm1 > ﬁ (1+cm/'\/_7—n—)

m=m,

> 1+ (my—m+1) cpn/A/ plk+1) .

By the above relation, we have (m,—m,+1) =< 2/ %+1¢c;4 ./ p(k+1). Therefore,
by (2.3) the number of »’s in (2.8) is at most 2'7*C./p(k), where C is a
positive constant. Further for any -given ¢, and & there exists at most one
n; satisfying (2.8). Hence we can conclude that

{ for any given q and h, the number of solutions

2.9
(n,, n;) of (2.8") is at most 227*Cy/p(k) -

IV. By (2.9) we have, for any given ¢ and & satisfying (2.8),

1 ¢-1 h-1
> a,cos2w(n,—mn,)t », a,cos2m(n,—n)tdt
0 r=py+1 i=p(j)+1

=C( max |a,|[)( max |a|) 27V p(k),

pk)y<r<p(k+1) P(NH<i<p(j+1)

and by (2.1) and (2.3), the last term is not greater than 2'"*C'B,B;/s/p()+1
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for some positive constant C’. Therefore by (2.5) we have, for £ > j,
1 p(k+1) p(+1)
[vovwaszcsipirn(E jal)(s 1al).
0 a=p(k) +2 h=p(j)+2
Since we have
pim+1) L
> lal =2 1Axl{pm+1) — p(m)}? = o(l Anll {p(m)}'), as m—+ o0,
l=p(m)+2 .
it is seen that
N k-1
22

k=2 J=1

fo UOU o) de |

— o(BY) S 1 Al [pB S 2741 Al {p()+1} 1, as N—> +oo .

j=1
On the other hand by (2.3), we can find a constant £, such that
201k p(j—1) + 1} 712 < (2/3) 2 *{p(j)+1} 2, for j>k,.

Hence we have

k-1 ko—1 k
T 2H (AN < T2+ T 2 [p()+ 1)
J=1 j=1 J=ko

< 207k 4 {p(R)+1} 712 %" (2/3).

.’=kn

Further from (2.1") and (2.2) it is easily seen that p(k) = O(k*), as k— +oo.
Therefore, we can find a constant K such that

k-1
227 {p(N+1} 7 < K{p(R)+1} 7, for all k.
=1
Hence by the Schwarz inequality and the above relation, we have

k-1 k-1 12
2 27MA{p(D+1} =K (Z 277F| A;Hz) {p(k)+1}71,

J=1 j=1

and this implies that
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" k-1

2100 2>

k=2 j=1

1 N k-1 1/2
fo U)Uyt)dt| = o(B%) > 1Al (Z 2]‘"‘11/;,4!2)

k=2 J=1

2 J=1

= o(B¥) (Z Z—: Zj_kilAjIP)’ = o(BY), as N—+oo,
ko2 3o

V. If we put
p(k+2) plk+1)
Gt)=2" > a, > a,cos2m(n,—n,)t,
a=p(k+1)+1 r=p(k)+1

p(k+2) p(k+1)

H@)=2" > a, > a,cos2m(n,+n)t,

a=p(k+1)+1 r=p(k)+1

then we have, by (2.4),
Gl = o(Be lAkll) and  ||Hll = o(BillAkl), as k— 400 %,

Since G(t)+H ()= A()Arvi:(t) and {H ()} is orthogonal, we have in the
same way as (2.6),

2 N k-2 1
— 42X [Gue) Gy dt + oBY), as N— +oo.
0

k=3 j=1

; Ak(t) AIc+1(t)

Further by the same arguments as we used to obtain (2.10), it is seen that

N k-2

k=3 j=1

fo GuO) G0)dt| = o(BY), as N— +eo.

Therefore, we have

@. 11) | By Z Ai(t) Ak+1(t) |l =0(1), as N— +oo.

k=1

V1. Combining (2.6), (2.10) and (2.11) we have

(2.12) 1 B#* 2- {AKD) + 2A84(8) Axa@®)} =1 = 0o(1), as N— +oo.

*) It is easily seen that Bxy1/By— 1, as N — +oo.
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By (24) and (2.12) we can apply the last theorem in §1 to this trigonometric
series for which we have obtained g(¢)=1. This completes the proof.

N
3. Proof of the Corollary. Let us put Sy() = 2 a; cos 2mn,(¢+¢,) and

k=1
assume that lim|Sy(z)] < +co0 on some set of positive measure. Then there
N>

exists a positive number M such that |{#;0=t=1, grﬁISN(t)]<M}I>O .
Since [£;0=¢=1, lim Sy <Mjc \J (\ 14 0=¢=1, | Sil< M},

n=1 N=n

there exist a positive integer N, and a set E C [0, 1] such that
|[E|>0 and |Sy®)| <M, if ¢€¢E and N> N,.
On the other hand from our theorem it is seen that

lim|{#;¢< E, | Sx(®)| < M}|=0.

This contradiction completes the proof.

Finally, the author thanks Professor P. Erdés for his kindness.
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