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Introduction. The asymptotic equivalence between a linear system and

its perturbed system has been discussed by many authors (for references, see

[10]). Two systems

( 1 ) x = X(t,x)

and

(2) x = Y(t,x)

are said to be asymptotically equivalent, if the following condition is satisfied:

For any solution x(t; x0, t0) of one of the systems (1) and (2), we can find a

solution of the other system, which tends to x(t; x0, t0) as t —> oo. However,

for example, the systems

x = 0

and

x — x2 e~ι

are not asymptotically equivalent in the sense above. Clearly, in the condition

above, if we take t0 suitably large according to the norm of x09 then we can

have the same conclusion. In the case, we shall say that they are eventually

asymptotically equivalent.

In the previous papers, we have discussed the eventually asymptotic

equivalence between more general systems and their perturbed systems, under

the assumption that perturbation terms satisfy a special type of Lipschitz

conditions [8,9] or some type of integrabilities [10].

In this article, under much weaker condition, we shall discuss the eventually

asymptotic equivalence between systems of functional differential equations and

*) This work was partly supported by Sakko-kai Foundations.
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their perturbed systems, by applying a kind of boundary value problem, which
Hukuhara considered in studying the behaviors of solutions of ordinary differential
equations [7]. In Section 2, we shall discuss this boundary value problem for
a system of functional differential equations.

As an application, we shall obtain a result for the case where the unperturbed
system is linear (in Section 4).

In [3], Hale has discussed the stability with an asymptotic amplitude and
an asymptotic phase near an integral manifold of periodic solutions of an
autonomous system. As another application of our results, we shall consider a
converse of Hale's result in some sense, under the same assumptions as given
by Hale (in Section 6).

1. Notations and definitions. The following notations will be used
throughout this paper: Ep is the Euclidean />-space, and for x £ Ep \x\ is the
Euclidean norm. For a given constant h^O, C(EP) denotes the space of
continuous functions mapping the interval [ — h, 0] into £ p , and for φzC(Ep)

\\φ\\ =Sup{\φ(θ)\\~h^θ^0}.

In the case where h = 0, C(EP) is identical with Ep and ||<p|| = \φ(0)\. Ca(Ep)
and Ca(Ep) will denote the sets of φ^ C(EP) for which we have \\<p\\ < a and
\φ\ t=ί OL, respectively, while if a is infinite, both Ca(Ep) and Ca(Ep) are
identical with C(EP). For any Unvalued continuous function x(s) defined on
a^s^b, b — a^ h, and for any t, a + h^t ^b, the symbol xt will denote
the function such that

for all θe[-h,0],

and hence xt <s C(EP). Here, we shall call xt the segment of x(s) at s = t.
Similarly, the segment of x(s; ξ), with a parameter | , at s = t will be represented

by χt(ξ).
For the convenience, we shall use the following notations : For a subset

S C C(EP) and a continuous function T\φ) mapping S into [0, 00), let G(T'; S)
be defined by

G[Γ;S)= {(t,φ)\φζS, t > T'{φ)} C [0, 00) X C(EP) .

Specially, if S in G(T';S) is Ca(En) (orCa{En)) and T\φ) = T ( b | ) , we shall

denote it by Δ«(T) (or Δα(T)). Moreover, let
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Ωβ(T, H) = {(ί, <?, ψ) |(ί, <?) € Δβ(T), (φ, ψ) ̂  Ωβ(H)}
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(1.1)

for a continuous function ί ί ( r) > 0. Here, it is note that Da(T) = G(T"; S')

with S' = Cβ(£») x Ca{En) c C(£2*), T'(φ19φt) = max {Td^J) , T(||^2 | |)} and

O(T,H) = G(T";5") with 5" = Ωβ(ίί) c C(En+m),T"(φ ,ψ) = T(| |^ | |). In the

case where α is infinite, we shall omit the suffix a in the above. If Δα(T),

Cα(£n) etc. in the right-hand sides of (1.1) are replaced by Δα(Γ), Ca(En) etc.,

then we shall denote them by DJT), Ω«(H) and βΛ(T, H). F o r a g e C(£n),

>̂ is said to be constant, if φ(θ) is constant on [ — h, 0], and for any x e Ep we

shall denote the constant function with the value x on [ — h,0] by <Cx>, that

is, <x> ^ C{EV) is the function such that

<x> (θ) = x for all θ € [ - A, 0].

Let f(t9φ) be a function mapping G(T;S) c [0, oo) x C(£ p) into £ p , and

let i ( ί ) denote the right-hand derivative of the function x(s) at s = t. Consider

a system of functional differential equations

(1.2) ±(t)=f(t,xt).

DEFINITION 1. For a given point (to,φo)^G(T;S) a continuous function

x(t; <p0, tQ) of t is said to be a solution of (1. 2) through <p0 at t = ί0 (or through

(to,<Po)), if there is a number δ > 0 such that

( i ) for each t, t0 ^ t < tQ + 8, (ί, Λ:£(^0 ί0)) belongs to G(T; S),

( ϋ ) Xto(<Po,to) = ̂ o ,
(iii) x(ί; ^ 0 > £o) has the right-hand derivative for any t, t0 ^t < t0 + δ, and

#(*; 9>o> ίo) satisfies (1. 2) for all ί, ί0 ^ ί < ί0 + δ .

For functional differential equations, we can see the following proposition.

PROPOSITION 1. / / f(t, φ) in the system (1.2) is continuous and if

(to,<Po) is an interior point of G(T;S), then there exists a solution of (1.2)

through φ0 at t — t0.

Furthermore, if G(T;S) = [To, oo) x C(EP) for a constant T o ̂  0 and if

f(t, φ) is bounded there, then all solutions of (1. 2) exist in the future.

For the system (1. 2) and another system

(i 3)
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defined on G{T; S), we shall give the following definitions: Let SQ be a
subset S.

DEFINITION 2. The systems (1. 2) and (1. 3) are said to be asymptotically
equivalent on So, if the following conditions are satisfied

( i ) all solutions of both (1. 2) and (1. 3) starting from G{T; So) exist in
the future,

(ii) for any bounded closed subset 5* of *S0, there exists a T*(S*) 2^ 0
such that for any given solution of (1.2) or (1.3) starting from
G(T; 5*), we can find a solution of (1. 3) or (1. 2), respectively, starting
at t = t0, t0 ^ T*(S*), which tends to the given solution of (1. 2) or
(1.3) as t-^oo,

DEFINITION 3. The systems (1. 2) and (1. 3) are said to be eventually
asymptotically equivalent on So, if for any bounded closed subset *S* of *S0,
there exists a T*(S*) ^ 0 such that

( i ) all solutions of both (1. 2) and (1. 3) starting from [T*(S*)> oo) x S*
exist in the future

and that
( ii) for any given solution of (1. 2) or (1. 3) starting from [T*(S*), oo) x S*,

we can find a solution of (1. 3) or (1.2), respectively, starting at
* = ô? to = T*(S*), which tends to the given solution of (1. 2) or
(1. 3) as ί->oo.

The following proposition will show an interesting property of the eventually
asymptotic equivalence.

PROPOSITION 2. If the systems (1. 2) and (1. 3) are eventually asympto-
tically equivalent on S, then for any bounded solution of the system (1. 2)
{or (1. 3)) we can find a solution of the system (1. 3) {or (1. 2)), which tends
to the bounded solution as t—> oo.

Here, we say the solution x{t;φo,to) of (1.2) to be bounded, if there
exists a bounded closed subset S* of S such that xt{φ0, t0) e S* for all

PROOF. Let x{t) be bounded solution of (1.2) (or (1.3)). Then, as
mentioned above, we can find a bounded closed subset S* of S such that
xt remains in S* in the future. For this S* we choose T*{S*) § 0 as
in Definition 3. Since x{t) can be assumed to start from [T*(S*)9 oo) x S*,
we can find a solution y{t) of (1. 3) (or (1. 2)) such that x{t) — y{t) -> 0 as t —>
oo. Thus, the proof is completed.
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Since in this paper we use Liapunov functional^, we shall state here some

of their fundamental properties. Let V(t, φ) be a continuous functional

denned on G(T; *S)c[0, oo) x C{EV) and satisfying a Lipschitz condition with

respect to <p, that is, there exists a continuous function L(τ, cί) > 0, monotone

in a, such that if (ί,φ), (t,φ) € G(T; S) Π [0, T] X Ca{Ep) for any Λ > 0 and

any r > 0, then we have

(1. 4) I V(t, φ) - V(t, φ) I g L(τ, ά)\\φ- φ || .

We shall denote

A+i.2) V(t, φ) = lim -y- {V(t + 8, xί+δ(<p, ί)) ~ ^(ί, ̂ >)}

and

AΊ.2) V(ί, 9>) = lim -x- {V(ί + δ, Xt+δ(φ, t)) - V(t, φ)}

where x{s\ φ, t) is a solution of the system (1. 2) through £> at s — t. Namely,

Dti.2)V(t,φ) (or Da.2)V(t,φ)) denotes the upper (or lower) right-hand derivative

of V(t,φ) along a solution of the system (1.2). Here, we can see that D(L2)

V(t,φ) and D(i.2)V(t,φ) are determined independing of a particular solution

x(s; φ, t) in the right-hand sides of the equations above, even if the solution of

(1. 2) is not unique for the initial value problem. In general, for any continuous

real-valued function v{s) of s we shall denote the upper (or lower) right-hand

derivative of v(s) at s = t by D+v(t) (or D~v(t)). Moreover, we can verify

that for a perturbed system

(1.5) Mt)=f(t,xt)

of the system (1. 2) with a continuous perturbation term X(t, φ\ we have

+v(t) ̂  A U V(t9 xt)
(1. 6)

" "" " " " " - L ( i , | | ^ i | ) | X ( i , ^ ) | ,

where x(t) is a solution of (1. 5), v(t) = V(t, xt) and L(τ, a) is the one in the

relation (1. 4).

It should be noted that even if the system is defined on a domain [To, °°)

x Cao(Ep), where To and a0 are positive constants, the desired Liapunov

functional will not be necessarily constructed on [To, °o) X C^(EP), and, in
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general, the Liapunov functional will be constructed on such a domain as
G(T; S) (cf, see Proposition 4 in [10]).

Finally, for a convenience, a product system of the form

(ύ(t)=f(t,Ut)

will be represented by (1. 2)* corresponding to the system (1. 2).

2. A boundary value problem. In order to study behaviors of solutions
in a neighborhood of a singular point of ordinary differential equations,
Hukuhara has considered a special type of the boundary value problem [7].
For ordinary differential equations, Nagumo has obtained some results concerning
this boundary value problem [12]. By the same arguments as used by Nagumo,
we shall obtain a result for functional differential equations, which we shall
use in the proofs of theorems concerning the asymptotic equivalence.

First of all, we shall state the following lemmas. Lemma 1 is the well-
known Stone-Weierstrass Theorem. For the proof, refer to [6] or [11].

LEMMA 1. Let Ω be a compact topological space, and let (£(Ω) be the
algebra of all continuous Ep-valued functions on Ω. Then, a subalgebra S
of (£(Ω) is dense, if the unit function of (£(Ω) belongs to £ and if for any
pair of a, b e Ω, a ̂  b, there exists an fzZ such that f{a)

We shall consider the case where Ω is a compact subset of a Banach space
with a norm \\x\\ for an xzΩ. Let £ consist of all £p-valued functions
defined on Ω and satisfying a Lipschitz condition, that is,

(2. 1) for each fz £, there exists a constant L(f) g: 0 such that

\f{x)-f{y)\^L(f)\\x-y\\

for all x, y z Ω.

Now, we shall show that £ satisfies all assumptions in Lemma 1. In fact,
for any /, g £ £ and any real a, we can assume that

L(f+g) = L(f) + L(g), UJ g) = L(f) \\\ g III +L(g) \\\f\\\ ,

L(af)= \a\L(f), L(/o) = 0,

where each component of (f+g)(x) (or (f g)(x)) is the sum (or product) of
the corresponding components of f(x) and g(x\ f0 denotes the unit function
of (£(Ω) and
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HI/HI = sup [\f(x)\\xeΩ] {<<*>)

for any fz (£(Ω). From these, it follows that f0, f+g>f g and af belong to

2, that is, £ is a subalgebra of (£(Ω) with the unit function. Next, for

arbitrary pair a,b zΩ, a ^ b, we shall exhibit an / € 2 such that f(a) ±= f{b).
Obviously, we can assume that f(x) is a scalar function, that is, (£(Ω) is the

algebra of continuous real-valued functions. If we set

fa(x) = \\x-a\\ ,

we can easily see that fa € S with L(fa) = 1, /α(α) = 0 and /α(ft) v̂ 0, which

shows that fa is the required.

Thus, we have the following lemma.

LEMMA 2. Let Ω be a compact subset of a Banach space, and let & be

the subset of (£(Ώ) such that each element of S satisfies a Lipschitz condition

in the sense of (2.1). Then, 2 is dense in (£(Ώ). Namely, for any f z Q£(Ω)
there exists a sequence {fk}d 6£(ί2) such that fk(x) satisfies a Lipschitz

condition for any k and that the sequence {fk} converges uniformly to f

on Ω.

The following lemma is an immediate consequence of a result due to

Dugundji [2].

LEMMA 3. Let Ω be a closed subset of a Banach space 25, and let f be

a continuous function mapping Ω into a compact convex subset K of Ep.

Then, f has a continuous extension mapping 23 into K.

Now, we shall prove the foEowing theorem.

T H E O R E M 1. In a system

(2.2)
,y(t) = g(t,xt,yt),

where x, y are n, m-vectors, if f(t,φ,ψ) and g(t,φ,ψ) are continuous and
bounded on [a,b] x C{En) x C(Em), then for any given x0 £ En and any
Oo, ψ 0) € C(En) x C(Em) there exists a solution (x(t),y(t)) of (2.2) which
satisfies the condition

(2. 3) χ{b) = xo,ya — ψo and xa — <p0 is a constant.
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PROOF. Let Ao be a bound of both f(t,φ,ψ) and g(t,φ,ψ) on [a,b]
x C(E") x C(Em), let χ0 € £" and (<po,ψo)z C(En) x C(£m) be given, and let

a = \\φo\\ \χo\ + A{b-a),

a + A(b-a),

where A = Ao + 1. Let $ denote a family of such a continuous En X £m-valued
function (a (ί), y(t)) as is defined on [a — h,b] and satisfies the condition

\x(t)\ ^Aλ and \y(t)\ ^ A2 on [a,b];

\x(t) — x(s)\9 \y(t)—y(s)\ ^ A\t—s\ for any t, s£[a,b]

x{t — d) — φo(t — ά) + q and y(t — a) = ψo(t — a) for all £,

a — h^t = a> and for a gζ Sa(En) ,

(2-4)

where

We represent by ί2 the subset of C(£n) X C(Em) such that

^(5)) ^ 3 and ί € [α, &]

Then, it can be seen that the set Ω is a compact subset of the Banach space
Eι x C(En) x C(Em). Thus, by Lemma 2 we can find a sequence {(/*(ί, <p, -ψ ),
g^t.φ,^))} such that (fk(t,φ,ψ), gk(t,φ,ψ)) is defined on Ω and satisfies a
Lipschitz condition there for each £ and that the sequence {(/*&><p9ψ)> </*(*>
<P> 'Ψ'))} converges to (/(ί, φ, ψ ), ^(ί, ̂ >, Λ/Γ)) uniformly on Ω. Here, we can assume
that

\f(t, φ, ψ) -fk{t, φ,ψ)\, I g(t, φ, ψ) - gk(t, φ, ψ) \ ̂  1

for all k on Ω, which implies that for all k

\fk(t9 φ,ψ)\, I gk(t9 φ9ψ)\^A on Ω,

that is,

, Ψ), g*(t, φ, ψ))

for all (t,φ,ψ) €fl and all *. Since iC = x is closed and convex,
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(f/c(t,φ,ψ), gk(t,φ,ψ)) has a continuous extension mapping [a9b] X C(En)
x C{Em) into K by Lemma 3. We shall denote this extension by (fk(t, φ, ψ),
(jic(t,φ,ψ)) again.

Consider the system

\x(t) = fk(t,xt,yt)
(2. 5)

() — Qk{ty χt,yt)>

and let (x(t;q), y(t;q)) be a solution of (2. 5) through (φo + <q>,ψo) at t = a
for a q e En (for the notation <q>, see Section 1). By Proposition I9(x(t;q),
y(t; q)) exists for all t €[U,b]. Since we have

x(t; q) = φo(O) + q + I / t (τ, xr(qr), >
Ja

y(t; q) - ψo(O) + [ ^ ( T , ^ g ) , >(ςr))

. . _ . . . . . . . . _ _}dτ
Ja

(2.6)

for all t € [<z, δ], we can verify that if q € Sa(E
n), then (x(t; q), y(t; q)) satisfies

the condition (2. 4). Therefore, for any q € Sa(E
n), (x(t; q), y(t; q)) belongs to

the family $, or in other words, (t,xt(q), yt(q)) belongs to ίl for all tz[a,b],
and hence, since (fk(t,φ,ψ), gk(t,φ,ψ)) satisfies a Lipschitz condition on Ω,
(x(t; q), y(t; q)) is continuous in q € Sa(E

n). On the other hand, the first
equation of (2. 6) implies that we have

\xφ;q)-q\^\\φo\\ + A(b-a)

for all q £ En. From these, it follows that the function F(q) defined by

F(q) = q - x(b; q) + ^o

is a continuous function mapping Sa(En) into itself. Thus, by Brouwer's fixed
point theorem, we can find a q0 £ Sa(En) such that F(q0) — qQ, that is,

This proves the existence of a solution of (2. 5) satisfying the condition (2. 3),
which we shall denote by (xk(t), y\t)).

Since {xk(t\ y\t)) belongs to the family & the sequence {^(t),y\t))\k^l}
is normal, and hence, this sequence has a subsequence which converges
uniformly to a function (x(t), y(t)). It can be easily proved that (x{t)> y(t)) is
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a solution of the system (2. 2) satisfying the condition (2. 3). Thus, the theorem
is completely proved.

3. The case where the perturbation terms are integrable. In this
section, we shall discuss the asymptotic equivalence between a system

(3.1) |«0Λ.*>
(y(t) = g(t,χt,yt)

and its perturbed system

x(t)=f(t,xt) + X(t,xt,yt)
(3.2)

y(t) = g(t, Xty yt) + Y(t, Xu yt) ,

where x, y are n, m-vectors and all functions in the right-hand sides of (3. 1)
and (3.2) are completely continuous on Ω{TQ9HQ) for some continuous and
monotone functions T0(r) §r 0 and H0(r) > 0 (H0(r) may be infinite).

Throughout this section, let H(r) be a given continuous and non-increasing
function such that H0(r) > H(r) > 0. The following assumption will be made :

(3. 3) There exists a continuous function λ(ί, r) > 0 such that

ί, r)dt < ooJ
and that

IX(t,<p,ψ)\, IY(t,φ,ψ)\^λ(ί,a)

for any a > 0 and any (ί, >̂, ψ ) € π^TΌ, H).

Here, λ(ί, r) can be assumed to be non-decreasing in r.

First of all, we shall prove the following lemmas.

LEMMA 4. In addition to assumption (3. 3), we assume that there exists
a continuous Lίapunov functional W(t,<p,ψ) defined on Ω(T0,H0) and
satisfying the following conditions :

(3.4)

on Ω,a(T0,H0) for any a > 0, where αx(r), bγ(r,s) are continuous and
non-decreasing function of (r, s), ax(r) > 0 for r > 0 and b(0, s) = 0
for all s ^ O .
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(3. 5) For any a>0, on the domain Π*(T0, H), we have

\W(t,φ,ψ)-W(t,φ',ψ)\ ^L^iWφ-φ'W + Wψ-ψW]

and

All) W(t, φ,ψ)^~ C(μ) W(t, φ, ψ) ,

where Lx(r) > 0 and c(r) > 0 are continuous and monotone functions
ofr>0.

Then, there exist continuous and monotone functions 7\ (r) §^ 0 and
Hi(r) > 0 of r > 0 as follows: For any a > 0, let (x(t), y(t)) be a solution
of the system (3.1) or (3.2) starting at t = t0, t0 Ξg Tλ{ά), such that \\yh\\
^Hλ{a). Then, so long as \\xt\\ <OL, the segment (xt,yt) remains in Ω,(H)
in the future and y(t) tends to zero as t —> oo uniformly with respect to xto.

PROOF. For any solution (x(t), y{t)) of the system (3.2) (or (3. 1)), so
long as (t,xuyt)zfia(T0,H)9 we have

(3.6) Z)+ w(t) ^ - c(ά) w(t) + 2Lι(a) \(t, a),

by (1. 6), (3. 3) and (3. 5), where

w(t) = W(t,xt,yt).

Choose functions Hx(r) and Tλ(r) so that

(3.7)

Let (x(t), y{t)) be a solution of the system (3. 2) (or (3.1)) through (t0, <p0, ψQ)
such that t0 ^ Tλ{ά) and ||ψ 0|| g H^ά) for a given tf > 0, and suppose that
f or a T > 0

(t, xt, yt) € Ω α ( T 0 , H) for all t , t o ^ t < τ .

Then, from (3. 6), it follows that

(3. 8) w(τ) ̂  b^Wψola) e-'W-u + 2LX(Λ) f e-«**T-* X(t, a) dt,
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the right-hand side of which is less than ax (//(#)) by (3. 7), and consequently,

by (3. 4), we have

This and the fact that (φo,ψo) * Ω(-Hi) c Ω(H) imply that so long as \\xt\\ < a,

(χt>yt) €Ω(H) in the future. Moreover, since the right-hand side of (3. 8) tends

to zero as T —> oo and aλ(\y(τ)\) rg w(τ), we can see that y(t) —» 0 as t —> oo, so

long as llxJI < a.

LEMMA 5. Suppose that all assumptions in Lemma 4 are satisfied.

Moreover, for the system

(3.9) άit)=f(t,xθ,

we assume that

(3.10) (3. 9) has a bounded solution u(t) = aft; φf, tf) with a bound B0^0

and that there exists a continuous Liapunov functional V(t,<p1,φ2) defined

on D(TQ) (see Section 1) and satisfying the following conditions

(3. 11)

on Da(T0) for any a > 0, where a2(r) > 0 and b2(r, s) > 0 are conti-

nuous and non-decreasing functions of r > 0, s^O and a2(r)-+oo as

(3.12)

on Da(T0) for any a > 0, where L2(r) > 0 is continuous and non-
decreasing,

(3.13) Dΐm*V(t,φi,φ2)^0

(for the notation (3.9)*, see Section 1).

Then, there exist continuous and monotone functions Bx(r) > 0, T2(r) ^ 0

and H2(r) > 0 of r > 0 such that for any a > 0, all solutions of the systems

(3.1) and (3. 2) starting from βα(T2, H2) remain in ί2βl(α)(H) in the future

and their y-components tend to zero as t-* oo.



186 J KATO

PROOF. Let B^r), H2(r) and T2(r) be chosen so that

0, max {r, £„]),

( 3 ) Γ w R Mλ ,t
( ( ) } dI Λ«π ( ' l(

( 2 ( )
(3.15)

I T 2(r)i: max { T ^

where //[(r) and Tj(r) are those given in Lemma 4.

Let {t^φ^ ^ ^ζςϊJT^H^), and let (:r(/),j)(ί)) be a solution of the system

(3.2) or (3.1) through (φ0, ψ0) at t = t0. Obviously, by (3.15) we have

(3.16) \\ψ0|| g H2(\\φ0\\) = H^QφA)), t0 ^

Suppose that

(3.17) ( * ι , ^ ) € β ( H ) on

for a T > t0, and suppose that \\xt\\ < B^a) on [ί0, r') for a r', τ^τ'^>t0. Then,

for v(t) — V(t, ut, xt), we have

on [to,τ)

by (1. 6), (3. 3), (3.12) and (3.13), which implies that

alIφ')-u(τ)\) ^ t<τ') ̂ b 2 ( a + B0,max {a,β0}) + L2(Bλ(a)) ί Mt,Bγ{a))dt

and hence by (3.14), ||Λ:T,|| < Bλ{ά). From this and | |^J| = | |^ 0 | | ^ Λ < -Bi(a

it follows that \\xt\\ <Bλ{ά) on [ίo»τ] or that

(3.18) under the assumption (3.17), we have

II^IKftdl^oll) on [ίo,τ].

Now, we shall show that

(xt,yt)s Ω,(H) for all t^t0.

If not, there exists a r > t0 such that
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(xt,yt)eΩ(H) for all t €[ίβ,τ) and \\yτ\\ = H(\\xr\\).

Since we have (3.17), by (3.18) we have

\\xt\\ < BάWoW) on [ ί β ,τ] .

Therefore, by using Lemma 4, this and (3.16) imply that

(xt,yt)zΩ(H) on [to,τ],

which contradicts with \\yτ\\ = H(||Xr||). Thus, we have that

(xt,yt)zΩ(H) for all t ^ t0

and that y(t) —> 0 as £-* oo. On the other hand, we have

WxAKBMφoΌ^BM for aU ί ^ t0

by (3. 18). From these, it follows that

(xt,yt) ^ ΩΛl(β)(H) for aU ί ^ ί0

LEMMA 6. In addition to all assumptions in Lemma 4 and the condition

(3.10), zve assume that there exists a continuous Lίapunov functional

V(t,φlyφ2) defined on D(T0) and satisfying the condition (3.12) and the

following conditions

(3.19) al 1 ^ ( 0 ) - φ,{ϋ) I) rg V(t, φ19 <p2) ̂  b2( \ ^ ( 0 ) - <p2(0) |, a)

on Da(T0) for any ot>0, where a2(r) and b2(r,s) satisfy the same

conditions as in (3.11),

(3.20) A~s.9)*Vr(f,9>1,0>2)^O

and that

(3. 21) there exist functions η(r) > 0 and T'(r) ^ 0 such that for any aί> 0

we have

Fit, a + η(a))h ^ η{a) for all t ^ T(a),

where
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for f(t, φ) in the system (3.1).

Then, for given φo€ C(En) there exist continuous and monotone functions
B2(r) > 0, H3(r) > 0 and Ts(r) ^ 0 of r > 0, which may depend on φ0, such

that for any a > 0, any (t0, <xo>>ψo) £ Ωa(T39H3) and any tλ^tQ, we can

find a solution (x(t), y(t)) of the system (3.1) {or (3. 2)), which satisfies

(3.22) (χt9yt) € Ω*(β)(H) on [t0 ,ίj

and

(3.23) x(t\) — &09 yt0 — ψo and xto — φ0 is a constant.

PROOF. First of all, let functions B\r) > 0, B"(r) > 0 and B(r) > 0 be
chosen so that

a2(B\?ή-Bΰ) > blr + Bo, max {r, Bo}),

B"(r)>BXr)+ \\φQ - <φM>h

B{r) = B"(r) + η{B"(r)),

where Bo is the one given in (3.10), and let B2(r) be a continuous and non-
decreasing function such that

(3.24) 5 2 ( r ) ^ 5 ( r ) .

Moreover, let H3(r) and T3(r) be such that

f H s(r) -
(3. 25)

( 7 » ^ max {Tx(52(r)), T\B"(r)\

and

o,max{r,.

(3.26)
•/ϊ«(r) L2{B(r)

f Mt, B(r)) dt < B"{r) - B'{r) - \\φQ -

where t0* is the one given in (3.10), T"(r) is the one given in (3. 21), which
can be assumed to be continuous and non-decreasing in r, and Hx(r), Tλ(r) are
those given in Lemma 4.

Now, for a given (t0, <xo>,ψo) e Qa(T3, H3) we shall define f*(t,φ), g*(t,

<p,ψ),X*(t,(p,ψ) and Y*(t,φfψ) by replacing (t,φ9ψ) in fit, φ), g(t,<p,ψ), X(t,
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φ, ΊJΓ) and Y(t, φ, ψ), respectively, with

(t,φmin {l,B(\xo\)/\\φ\\}, ψmin {l,H(min {\\<p\\, B(\xo\)})/\\ψ\\}).

Then, we can easily see that these functions are continuous on [t0, oo) x C(En)
X C(Em) and are bounded on /' x C{En) x C(Em) for any compact subinterval
7' of [t0, oo), because fit, φ) etc. are completely continuous. Moreover, we have

ί \f*(t,Ψ)\^F(t,B(\x0\)),
(3.27)

( \X*(t,φ,ψ)\ ^X(t,B(\xo\))

on [t0, oo) x C(En) x C(Em).
By applying Theorem 1, for any tx Ξ£ ί0 there exists a solution (.x(ί), y(ί)) of

the system

(3.28)

which satisfies the condition (3.23). Then, (x(t), y(t)) is a solution of the
system (3.2) on [ίo>^i] satisfying the conditions (3.22) and (3.23), if (xt,yt)
e Ω,BiM)(H) for aU t, ta g t ^ ί, (note that β ( | x , | ) g ΰ 2 ( | x , | ) g J3,(α)). Now,

we shall prove that (xt,yt) € Os(W)(jfi) on [ίo,ί,].
First of all, we shall show that

(3.29) if I x(t) I < £'( I *01) for some t,^^^ to + h, then

In fact, since

x(s) = x(t) - [ {f*(τ, xτ) + X*(τ, xτ,yτ)} dτ

for any s, t^s^t0, we have

\x(s)\ ̂  \x{t)\ + fs{\f*(r,xT)\ + \X*(τ,xτ,yτ)\}dτ

< B'(\xo\) + maxF(τ, B(\xo\))(t-s)+ f λ(τ, B(\x0 \)) dτ

by (3. 27). From this, (3. 21) and (3. 26), it follows that



190 J KATO

\x(s)\ <B(\xo\)- \\<Po - <Ψo(O)>\\

for any s,t^ s^ t — h, and hence

Suppose that

\x{t)\ <B'(\xo\) for all t,τ<t^t19

for a T ̂  t0 + Λ, and let

v(t) = V(t, xu ut),

where u(t) is the one given in the condition (3. 10). Then, by (3. 29) and (1. 6),

DMt) ^ - L2(5( I xo I)) λ(ί, B( I Λτ01)) on (r, ί J ,

and hence

v(r) ^ τ<ί,) + L2(B( \xo\))

which implies

\φ)\ <B'(\xo\).

Therefore, we can prove

(3.30) \x(t)\ <B'(\xo\) on [f0 + M J ,

because ^(ίJI = \xo\<B'(\xo\).
Since we have | ^ 0 + /ι)| <B\\xo\), (3.29) implies that

(3. 31) Ix(t0)\ ^ | |* ί i + A | | <B(\xo\)- \\φ0 - <<po(θ)>II .

By (3. 23), xto — <p0 is a constant, and hence, we have

xu =

Thus, by (3. 31) we have

\\xd<B{\x*\).

From this, (3. 29) and (3. 30), it follows that
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(3.32) ||^||<5(]xo|) for all t.t^t^t,.

Finally, since (t0, <xo>,ψo) z Π(T3, H3), we have

(see (3. 25)), which implies that

{xu yt) € Ω{H) for all t,t^t^t,

by (3. 32) and Lemma 4. From this and (3. 32), it follows that

(xt,yt)eΩB{]Xo])(H) o n [to,tλ].

Thus, we prove completely this lemma.

REMARK 1. In the case where h = 0 or f(t, φ) is bounded on Ω(T0, Ho),
the condition (3. 21) is always satisfied.

Now, we shall prove the following theorem concerning the eventually
asymptotic equivalence between the systems (3.1) and (3. 2).

THEOREM 2. In addition to all assumptions given in Lemma 5 and the

condition (3. 21), we suppose that there exists a continuous Liapunov functional

V{t,φιyφ2) which satisfies the conditions given in Lemma 6.

Then, there exists a function H*(r) > 0 of r > 0 such that the systems
(3.1) and (3.2) are eventually asymptotically equivalent on Ω(H*). More

precisely, for a fixed φ0 € C(En) and any a > 0, there exist an H\ά) > 0 and

T*(a) ^ 0 such that for any solution of (3.1) {or (3. 2)) starting from Ω,a(H*)

at t — t0, t0 §: T*(oί)> and for any ψ0 e Cw{a)(Em)9 we can find a solution of

(3.2) {or (3.1), respectively) which passes through {<p0 + <^o>>'ψ%o) at t = t0

for some x0 e En and which tends to the given solution of (3.1) {or (3. 2))
as t-+ oo, where H'{a) and T*{a) may depend on φQ.

PROOF. Clearly, all conditions in Lemma 6 are satisfied. Let H*(r)

- H2{r), and let H'{ά) > 0 and T*(ά) ̂  0 be

( H\a) - min
(3.33)

( T*(a) = max

with B*{ά) — B2(B1(ά)), where {H27 T2? Bx) is the one given in Lemma 5 and
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(HS9 T3, B2) is the one in Lemma 6 for a given φ0 ζ C(En).
Now, let (x(t), y(t)) be a given solution of the system (3. 1) (or (3.2))

starting from Ωa(H*) at t = t0, t0 §: T*(a). Then, by Lemma 5, we can see

that (x(t)9 y{t)) exists and remains in ΩBι{a)(H) in the future and y{t) —> 0 as

t —> oo. By applying Lemma 6 under the consideration of (3.33), for a fixed

ψo € CH,(a)(Em) and for any s^t0 we can find a solution (x(t; s), y(t; s)) of the
system (3. 2) (or (3.1)) such that

x(s; s) = χ(s), yt£s) = ψ0 and xίo(s) — <p0 is a constant

and that we have

Moreover, by Lemma 5, we have

(xt(s), yt(s)) € ΩΛ ( β )(H) for aU ί ^

where B(Λ) = Bλ(B*(a)). Therefore, the family {(x(t; s), y(t; s))\s^ t0} is
uniformly bounded and equi-continuous on any compact subinterval of [ί0, °°)
From this, it follows that there exists a divergent sequence {sk}, sk € [t09 oo),
such that the sequence {(x(t;sk)9 y(t;sk))} converges to an (x(t),y(t)) uniformly
on any compact subinterval of [£<>> °°) Then, obviously (x(t)9y(t)) is a solution
of the system (3. 2) (or (3.1), respectively) which satisfies the condition

(3. 34) xto - φ0 is a constant and (t0, xto,yto) € Ω^(«)(T2, Ha).

Moreover, 3/(2) tends to zero as t —> 00 by Lemma 5 and (3. 34).

Let V(t9φ19φ2) be the Liapunov functional satisfying the conditions in
Lemma 6. For any £ > 0, if τ(£, a) is chosen so that

Lλ(ί, B(a)) dt <

we have

I x(t; s) — χ(t) I < S for all

because we have

^ λ(τ,

for all ί, ί0 g ί ^ 5. Hence, we have
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\x(t) - x(t) I ̂  S for all t ^ τ(£, ά) ,

that is, x(t) tends to x{t) as ί —> 00. Thus, the proof is completed.

If all functions in the right-hand sides of the systems (3.1) and (3. 2) and
the Liapunov functional W(t, <p, ψ) in Lemma 4 are defined on Δ(T0) X C(Em)
for some continuous and non-decreasing function T0(r) §r 0 of r > 0 and if
ax{r) in (3. 4) in Lemma 4 tends to infinity with r, then corresponding to the
conditions (3. 3), (3. 4) and (3. 5) we assume the following conditions :

(3. 35) There is a continuous function X(t, a, β) > 0 such that

J λ(ί, a, β)dt < 00

and that

I X(t, φ,ψ)\, ί Y(t9 φ9ψ)\^ Mf, ^ β)

on Δ«(T0) x Q(£ m ) for any a > 0 and /9 > 0.

(3. 36) *i( lψ{0) I) g W(t, φ, ψ) ^ δ.dlψ U, a)

on Δα(T0) x C(Em) for any tf > 0, where ax{r)y bλ(r,s) are continuous
and non-decreasing in (r,5), ^(r)—>oo as r-^00 and α1(r)>0 for r > 0 .

(3.37) |W(ί,^,ψ) - W(t9φ',ψ')\ ^

and

,ψ)^- c(α,β) W(t,φ,ψ)

on Δα(T0) x Cβ(Em) for any α > 0 and £ > 0, where L(μ9 β)>0 and
c(α, β)>0.

In this case, by choosing a X(#, β) > 0 so that

we can replace Hx(ά), H(r) in the proof of Lemma 4 by β, K(oί, β), respectively,
and H2(d), H(r) in the proof of Lemma 5 by β, K{Bλ{α), β), respectively,
where Bx{ά) is determined by the first inequality in (3. 14), if Tx etc. in Lemmas
4, 5 and 6 are chosen depending on oί and β.

Thus, we can prove the following corollary.

COROLLARY. Let all functions in the right-hand sides of the systems
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(3.1) and (3. 2) be defined on Δ(T0) x C(Em) for some continuous and non-
decreasing function T0(r). Suppose that there exist two continuous Liapunov
functionals V(t,φlyφ2) in Lemmas 5 and 6, and moreover, suppose that there
exists a continuous Liapunov functional W(t, φ, ψ) defined on Δ(T0) X C{Em)
and satisfying the conditions (3. 36) and (3. 37).

// the conditions (3. 10), (3. 21) and (3. 35) hold good, then the systems
(3. 1) and (3. 2) are eventually asymptotically equivalent on C(En) X C(Em).

4. Linear system and its perturbed system. By using the same argu-
ments as used in Section 3, we s^all discuss the asymptotic equivalence between
a linear system

(4.1) z(t) = G(zt)

and its perturbed system

(4.2) z(t) = G(zt) + G*(t,zt),

where z is an /-vector, G(ξ) is a continuous linear function mapping C(Eι) into
Eι and G*(ί,£) is continuous on [0, oo) x C(EL).

When G(ξ) has just n eigenvalues with non-negative real parts (n may be
zero), we can transform the systems (4. 1) and (4. 2) into the systems

f x(t) = Ax(t)
(4.3)

(y(t) = G(yt)

and

x(t) = Ax(t) + X(t,xt,yt)

(4.4)
yt = I Zt-r Y(τ, xτ,yτ) dr

Js

respectively, by a suitable transformation which preserves asymptotic equivalence
properties and which transforms £ £ C(EL) into (x, ψ) € En X C, where (5, ψ) e
[0, 00) x C is a parameter and C is a subspace of C(Eι) such that all eigenvalues
of the restriction of G(ξ) to C have negative real parts. For the transformation,
see [4] and [9]. Here, A, X(t, φ, ψ), Y(t,<p,ψ), z(t;ξ) and Z(t) satisfy the following
conditions : A is a constant (n, ??)-matrix whose characteristic roots are zero or
the eigenvalues of G(ξ) with positive real parts. X(t,<p,ψ) and Y(t,φ,ψ) are
continuous on [0, 00) x C(En) x C and, actually, are functions of (t,φ(0),ψ).
z(t;ξ) is a solution of (4. 1) through £ at t = 0. Z(t) is an (/,Z)-matrix solution
of (4.1) through Γ at t = 0, where Γ is an (Z,Z)-matrix? components of which are
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piecewise continuous functions defined on[ — h, 0]. Moreover, zt(ξ) and Zt denote
the segments of the functions z(s; ξ) and Z(s), respectively, at s = t.

Furthermore, we recall the following lemmas (cf. [4], [9]).

LEMMA 7. For any continuous function Y(t) and any (s, ψ) e [0, oo)χC

belongs to the space C for all t ^ s.

LEMMA 8. Let C be any subspace of C(Eι). If all eigenvalues of the
restriction of G(ξ) to C have negative real parts, then there exist two positive
constants c and L such that

IWf, Oil ^ L\\ξ\\ exp ί-<t-tQ)] for all t^t0,

so long as zt(ξ,tQ) belongs to C, where z(t;ξ,t0) is a solution of {A. 1) through

ξ at t = t0.

LEMMA 9. The conditions

(4. 5) all solutions of (4.1) are bounded,

(4. 6) there exists a continuous function λ*(£, cί) > 0 such that

I λ*(ί, a) dt < oo (for any a>0)

Jo

and that

on [0, oo) x CJfi1) for any a>0

imply that we have

(4. 7) A is the zero matrix,

(4. 8) there exists a continuous function \{t, a, β) > 0 such that

I Λ(t, a, β) dt < oo (for any a > 0, β > 0)

and that
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\X(t,φ9ψ)\, \Y(t,φ,ψ)\^X(t,Ct,β)

for all (ί, φ, ψ) € [0, oo) X Ca(E
n) x C, | |γ || < /?>

respectively.

Since each eigenvalue of the restriction of the function G(|) to C has a
negative real part, by Lemmas 7 and 8 we have that if (to,ψ) e [0, oo) x C,
then

(4. 9) \\zt(ψ, OH ̂  W i l exp [-c(t-t0)] for all ί ^ ί0,

where c and L are positive constants. Furthermore, the above implies the
following lemma.

LEMMA 10. There exists a continuous Liapunov functional W(t, ψ)

defined on [0, oo) x C and satisfying the conditions

where c and L are those in (4. 9).

For a special system of (4. 4)

(4.10)
yt = zt-sι I Zt-τY(τ,xr,yτ)dτ,

we can prove the following theorem by the same arguments as used in the
proof of Theorem 1.

THEOREM 3. If X(t9φ9ψ) and Y(t,φ,ψ) are continuous and bounded
on [a,b] X C(En) X C, then for any {xQ,ψQ) £ En X C there exists a solution
(x(t), yt) of the system (4.10), with (s, ψ) = (a, ψ 0), such that xφ) = x0 and
ya = Ψo.

Here, for the definition of solutions of the system (4. 4) or (4.10), see [9].
Thus, by the same arguments used in Section 3, we can prove the eventually

asymptotic equivalence between the systems (4.3) and (4.4) under the assumptions
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(4. 7) and (4. 8), which implies the eventually asymptotic equivalence between
the systems (4.1) and (4. 2) under the assumptions (4 .5) and (4. 6). However,
we should recall Lemma 9, and the folio wings should be noted here: By the
condition (4. 7), corresponding to the system (3. 9), we have

Therefore, both Liapunov functionals V(tyφ1,φ2) in Lemmas 5 and 6 can be
denned by

V(t,φlyφ2)= |^(0) - φ2(0)\ >

and moreover, clearly the condition (3.21) is satisfied. Corresponding to the
Liapunov functional W(t,φ, ψ) in Lemma 4, we use the Liapunov functional
W(t, ψ) given in Lemma 10. In this case, corresponding to the relation (1. 6),
we have

(4.11) D+ w{t) ^ - cw(t) + L||Γ|| \Y(t9xt,yt)\

for any solution (x(t),yt) of the system (4.4), where w(t) = W(t,yt) (note
Lemma 7) and ||Γ|| denotes a suitable norm of the matrix Γ.

Now, we shall prove the relation (4.11). Let (x(t), yt) be a solution of
the system (4. 4) through (φ0, ψ0) € C(En) X C at t = t0. zt(g) is linear in
ξ € C{Eι\ st+β(5, t) = zδ(ξ) and **(*,(£)) - zt+δ(ξ) for any t ^ 0, δ ̂  0, ξ <= C(E%
and hence we have

= zδ(yt) = Zt+s-tlΨo) + / Zt+8-τ Y(τ, xτ,yτ) dr,

where z(t; ξ, t0) is a solution of the system (4.1) through ξ at t — t0. From
this and

rf+6

I 2i+a-τ ^ ( T " . ΛV> ^ T ) ^ ,
t/ίo

it fellows that

M+8

yt+8 - zt+s (yt, t) = I Z ί + δ _ τ Y(τ, xτy yτ) dr,

which implies that
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(4.12) M4" ILy«+«-**+a(yι.OII ̂  PΊH

On the other hand, Lemma 7 implies zt+8(yt, t) € C, and moreover, we have

Therefore, since

D+w(t) - lim - J - [W(t + 8,3>ί
δ^+o o

^ lϊm 4 " {W(t + 8, «i+ίCy(, ί)) -

+ fiS" 4 " ί^(ί + δ>^+δ) - W(ί + 8, a«+ί(yt, *))}

^ -cΨ(ί ,^) + L HE" 4 " ||yt+ί - «(+ϊ(yι,ί)ll.

we have the relation (4.11) by (4.12).
Thus, we have the following theorem.

THEOREM 4. Under the assumptions (4. 5) and (4. 6), the systems (4.1)
ατ?ίi (4. 2) are eventually asymptotically equivalent on C{Eι).

COROLLARY 1. If, in addition to the assumptions (4. 5) and (4. 6), we
assume that λ*(£, oί) in (4. 6) satisfies the condition

(4. 13) ίΛere exist continuous functions \{(t) > 0 and M(ά) > 0 such that

systems (4.1) #/?*/ (4. 2) are asymptotically equivalent on C(EL).

This corollary follows immediately from Theorem 4 and Proposition 2,
because under all assumptions of Corollary 1, all solutions of the system (4,2)
are bounded in the future (for the proof of this, see p.331 in [9]).
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COROLLARY 2. Consider a system

(4.14) z(t) = G(zt) + pit)

and its perturbed system

(4.15) z(t) = G(zt) + pit) + G*(*, * , ) ,

where G(ξ), G*(t, ξ) are the same ones in the systems (4.1) and (4. 2) and pit)
is continuous on [0,oo). In addition to the condition (4. 6), if we assume that

(4.16) all solutions of the system (4.14) are bounded,

then the systems (4. 14) and (4. 15) are eventually asymptotically equivalent
on C(Eι).

Furthermore, if λ*(ί, a) in (4. 6) satisfies the condition (4.13), then the
systems (4. 14) and (4. 15) are asymptotically equivalent on C(Eι).

PROOF. Let z(t) be a solution of (4.14). Then, z(t) is bounded by a
constant Bo. Transform z(t) in the systems (4.14) and (4. 15) into z*(t) by z(t)
= z(t) + z*(t). Then, the systems (4. 14) and (4.15) are transformed into
systems of the forms of the systems (4. 1) and (4. 2), respectively. In this case,
from the condition (4. 16), we have the condition (4. 5), and the perturbation
terms satisfies the condition (4. 6), where λ*(£, cί) must be replaced by λ*(ί, oi
+ Bo). Thus, the first part of this corollary can be proved by Theorem 4, and
the second part by Corollary 1 of Theorem 4.

REMARK 2. In the case where h = 0, that is, the systems (4.14) and (4. 15)
are systems of ordinary differential equations, Corollary 2 is an extension of
Theorem 2 in [1], where we should note that if h=0, under all assumptions of
Corollary 2, all solutions of the system (4. 15) are defined on [0, oo).

5. Systems with more general perturbations. In this section, by applying
the same idea in Section 3, we shall discuss the eventually asymptotic equivalence
between a system

(5.1)

±(t)=f(t,xt)

y(t) = g(t,xt,yt,zt)

z(t) = ω(t,xt,zt)

and its perturbed system
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Mt) = f(t, χt) + Xλ(t9 χ%9y%9 zt) + X2(t, χt>yt> zt)

(5.2) y(t) = g(t,xt9yt9zt) + IΓ^ί, * „ # , * , ) + 72(ί, ̂ J ^ , s

= ω(t9xt9zt) + Zλ(t9xt9yt9zt) + Z2(t, xt,yt,zt)9

where .r,^, 2 are 2̂, m,/-vectors and all functions in the right-hand sides of the
systems (5.1) and (5.2) are completely continuous on Ω(T0, Ho) X C(E^) for some
continuous and monotone functions T0(r) ̂  0 and Ho(r) > 0.

Let H(r) be a given continuous and non-increasing function of r > 0 such
that H0(r) > H(r) > 0. Now, we assume the following conditions :

(5.3) There exist continuous functions K(r) > 0 and σ(ί,r) > 0 such that

J σ(t, r) dt < 00 (for any r > 0)

and that

\ω(t9φ9ξ) — o>(t9φ\ξ/)\ t==iK.(θί)\φ — φ\ + σ(t9 ά)\\ξ—ξ'\\

on Δα(T0) X C(Eι) for any Λ > 0.

(5. 4) For any a > 0 and any £ > 0 there exist M(a) > 0 and N(oί, β)>0
such that N(a, β) -> 0 as /8 -> 0 and that

for any (ί,^, ψ, f) € Ω«CΓ0, H) X QE1), | | f || ^ /S.

(5. 5) There exists a continuous function λ(ί, r) > 0 such that

J J λ(τ, r) dr dt< 00 (for any r > 0)

and that X2(£> 9?> Ψ, f)> ^ ( i ? ^ ^ © and Z2(t,φ,ψ,£) are bounded by
λ(ί, αe) on f2a(^o, ί θ x C(££) for any Λ > 0.

Here, we can assume that K(r), σ(t, r), M(r), N(r9 s) and λ(ί, r) are continuous
and non-decreasing in (r, 5).

The following lemma corresponds to Lemma 4.

LEMMA 11. In addition to the conditions (5.3), (5. 4) and (5. 5), we
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assume that there exists a continuous Liapunov functional W(t, φ, ψ, £) defined
on ίl(T0, HQ) X C(Eι) and satisfying the following conditions

(5. 6) |ψ(0) I ̂  W(t, φ, ψ, ξ) ̂  b(\\ψ\\, a)

on aa(T0, Ho) X C(Eι) for any a>0,

(5. 7) I W(t, φ, ψ , ξ) - W(t, φ, ψ', £') I

/or all (t, v, ψ, f), (ί, <?', ψ ', //) 6 Qa(T09 H) x
/or any a>0y β> 0,

(5. 8) Ali) W(ί, ̂ , ψ , © ̂  -C(Λ) T^(ί, <?>, ψ , ©

on rϊα(T0, H) x C(Eι) for any a>0,

where b(s, r), P(r), Q(r,s) and c(r) are positive, continuous and monotone in
r > 0, s > 0 αrcd δ(0, r) = 0, Q(r, 0) = 0 /or α/Z r > 0.

T/zerc, /or any Λ > 0 there exist an Hγ{a) > 0 and a Tx{a) ^ 0 and,
moreover, for any β > 0, β 5g H^ά), and any Ί > 0 £/ιm? e m ί ΛW AX(5, t, a, β, 7)
> 0 and a Cx(s, t, a> β) > 0 s«c/ι that if (x(t), y(t), z(t)) is a solution of the
system (5.1) or (5. 2) starting from C(En) x QΈ™) x C r(£') aί ί = t0, t0 ^ T ^ Λ ) ,
ί/ẑ n we have

\\yλ\<Cι{t0,t,a,β) and \\zt\\ < Ax{t0,t,a, β,Ί) for all t^t0, so long as
ll^ίll^Λ. Here, we can assume that Aλ(s,t,a, β,Ί) and Cx{s,t,a^) satisfy
the following conditions: They are continuous in all their arguments and
monotone in (t, a, β, 7). Cx(s, t, a, β) —• 0 as t —> oo,

Cλ(s, T, a, β) drdt<oo

and Q(sf t9 a, β) < H(ά) for any a>0, any β>0 (β ^ Hx{a)\ any s ^ Tx{a)
and any t^s. Furthermore, for any a > 0 and any 8 > 0 we can find an
H(S, a)>0 and a T{8, a) ^ 0 such that for any β>0, β^ H(β, a), and any
s Ξg T(S, a) we have

I C^s, t, a, β) dt< 8 and \ \ Q(s, r, ay β) dr dt < 8.

PROOF. Let (x(t\ y(t), z(t)) be a solution of the system (5.1) or (5.2),
and let
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w{t) = W{t,xt,yt,zt).

Then, by (1. 6), (5. 4), (5. 5), (5. 6), (5.7) and (5. 8), we have

D+w(t) ^ - {c(a)-P(ά)N(a, β)-2Q(a, β)M(a)} w(t) + L*(a, β)\(t, a),

so long as

(5.9) (t,xt,yt,zt)sQ.(Te,H)xC(E) and \\yt\\^β

for any a > 0 and any β > 0, where

L*(a, β) = P(a) + 2Q{a, β).

Therefore, if we choose H*(ά) > 0, H,(«) > 0 and T^a) ̂  0 so that

P(ά) N(a, H*(α)) + 2Q(a, H*(ά)) M(ά) g c(ά)/2,

H*(a) ^ H(a),

b(Hλ{a), a) < H*(ct)/R for some constant R>1,

fί a) dt -
L*{a,H*{ά))

and if ||3>ίo|| ̂  β ^ Hi(ά) for a ί0 ̂  T^a), then by the same arguments as used
in the proof of Lemma 4, we have that

\y(t)\^w(t)<H*(ά)

and

(5.10) \y(t) I ̂  w(*) < Q^o, t, a, β) for all t^ t0,

so long as (xt,zt) € Ca(E
n) x α £ z ) ,

because

^ w(t) + L*(Λ, H*(a))\{t, a),

if (5. 9) holds good with /9 = H * ( Λ ) , where

Cλ(sy t, ay β) = i?K/3, Λ) exp [ -
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+ L*(a, H*(a)) j λ(τ, a) exp [ - ^ψ- (t - r)] dτ.

Easily, it can be verified that Cγ(s, ty a, β) satisfies all conditions required in
this lemma.

Now, we shall show that if \\ytΰ\\ ^ β ^ Hλ{ά) and t0 ^ T^d), then z(t)
exists in the future, so long as | |.rj fg Λ. Let z(t) be a solution of the system

z(t) = ω(ί, < 0 > , ^ )

through < 0 > at t — t0 (for the notation < 0 > , see Section 1). By the
condition (5. 3), we have

12(5) I ̂  / I ω(τ, <0>, < 0 » I dτ + f σ(τ, 0)||2T|| dτ
to t0

for any s,t^s^t0, that is,

P ί l l ^ / |ω(τ, <0>, <0>)|Jr + / σ(τ,0)||2τ||ίiτ

for any t ^ ί0, which implies that

||2ί || ^ 0̂(̂ 0, t) for all ί ^ t0,

where

J 1 ωfr, <0>, <0>) 1 dr\ exp [J σ(τ, 0) dτj ,

and hence, z(t) exists in the future. Therefore, by the conditions (5. 3), (5. 4),
(5. 5) and the assertion (5.10), we have

\\zt-zt\\ ^ ||sίβ|| + K(a)a{t-tQ) + \ σ(τ,Λ)||2:τ-2τl| dτ
Jt0

+ M(a) I Q(ί0, T, a, β)dτ + I λ(τ, Λ) dτ,

which implies that if | |z j | < 7,

| |^ || < Λ(ί 0, t9 a, β9 y) for all t^t0,

so long as \\xt\\ ^a, where
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AO, t, a, β, 7) = 7 + K(ά) a(t-s) + M(a) / Q(s, r, a, β)dr
( Js

+ / λ(τ, a) dr exp I I σ(τ, a) dτ\ + 70(>, ί),
Js J L J 5 J

and hence, z(t) exists in the future, so long as H r J ^ cί. Thus, the proof of
this lemma is completed.

LEMMA 12. In addition to all assumptions of Lemma 11, we assume
that there exists a continuous Liapunov functional V(t,φι,φ2) in Lemma 5
and that the condition (3.10) holds good, where f(ty φ) in the system (3. 9)
mentioned in (3.10) is the one in the system (5. 1).

Then, there exists a continuous and non-increasing function H2(r) > 0,
and for any a>0 and any 7 > 0 there exist Bx{a) > 0, T2(ά) ^ 0, C2(s> ty a)
> 0 and A2(s, ty ay 7) > 0 such that if (x(t), y(t), z(t)) is a solution of the
system (5.1) or (5. 2) staining from Sϊa(H2) x C7(Eι) at t = t0, t0 ^ T2(a), then
we have

\\χt || < B^ά), \\yt || < C2(tQy t, a), \\zt || < A2(t0y t, a, 7)

for all t 2^ tOy where C2(s, ty a) and A2(s, t, a, 7) are continuous in (sy ty a, 7)
and monotone in (tyay

rY). Moreover, C2{s,t,ά) satisfies the following
conditions : C2(s, t, a) tends to zero as t —> °o and

j J C2(s, T, a) dτ dt < oo .

For any s ^ T2(ά) and any t^s, we have

This lemma can be proved by Lemma 11 and by using the same arguments
as used in the proof of Lemma 5 and by choosing H2y B19 T2, C2 and A2 as
follows : Let H^r), T^a), C^s, t, a, β\ Aλ{sy ty ay θ, 7), H(β, a) and T(β, a) are
those given in Lemma 11, and let t0* and Bo are those given in the condition
(3.10). J5χ(r) and H2(r) are chosen so that

(5.11) a2(Bx(r) - Bo) > b2(r + Bo> max [r, Bo})

and

H2(r) ^ min {H^B^r)), H(S(r), BJ
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with

*M - aϊ(Bι(r)-Bo) - b2(r+B0, max {r,B0})
t { r ) - 2U{Bι{r))M{Bι{r))

T2(ά) are determined so as to satisfy

ί X(t, BM) dt < S(a) M(Bx{a)) >

T2(a) ^ max ft*, T^B^a)), T(8(a), Bx{a))

Finally, C2(s, t, a) and A2(s9t, a, Ύ) are defined by '

C2(s, ί, a) = Q(5, t, Bx(a\ H2(a)),

A2(s, t, a, 7) .= A 0 , ί, BI(Λ), H2(ά), Ύ).

LEMMA 13. In addition to all assumptions given in Lemma 11, w£
assume that fit, φ) in the system (5.1) satisfies the condition (3. 21) αn<i that
there exists a continuous Liapunov functional V(t,φ1,φ2) in Lemma 6 with
a2{r) = r and b2(0y s) = 0.

Let (x(t), y(t), z(t)) be a given solution of the system (5.1) (or (5. 2)) such
that \xt\ ^oί for all t^tΌ, where t'o Ξg 0 is a constant. In the case where
(x(t), y(t), Έ(t)) is a solution of the system (5. 2), we add the assumption that
we have

||yJ<C*(f,a) for all t^t'o,

where C*(t, a) > 0 is continuous in (t, a), non-decreasing in a, C*(t, a) ̂  H(a)
for all t^t'o and

f j C*(τ,ά)dτdt <oo.

Then, for a given (<p0, £0) £ C(En) x C(Eι) and for any a>0 there exist a
Ί\{a) ^ 0, an Hz(ά) > 0, a B2(a) > 0 and an A{a) > 0 such that for any
(to,ψo) € [TS(OL)9 OO) x Cπ3{a)(Em) a?ιd any tι §: tQ, we can find a solution (x(t),
y(t),z(t)) of the system (5.2) (or (5.1), respectively) defined on [ίo^i] and
which satisfies the conditions;

ί x(tx) = x(tλ), yu = ψ0, z(tλ) = z(tλ),
(5.12)

I χu — <Po and zu — ξ0 are constants,
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(5.13) \\xt || < B2(ά) and \\zt -zt \\ < A(a) for all t . t ^ t ^ t , .

Moreover, we can find continuous functions B*(t, a) > 0 and A*(t, a) > 0
such that

\x(t)-x(t)\ ^B*(t,a) and \z(t)-z(t)\ ^A*(t,a)

for all t, to + hf^t tίtίy and that B*(t,a) and A*(t9a) are non-decreasing in
oί and tend to zero as t —> oo.

PROOF. We choose E(a) > 0, B"(ά) > 0, B2(a) > 0, A (a) > 0 and A(a)
> 0 so that

( E{a) > a, B\a) > B\a) + ||<p0-<<?>0

(5.14)

( B2(a) = B'(a) + η(B"(a))

and

A'(α) > K(B2(a)){B2(ά) + a}h,

Letting

~Ma) = A (a) - K(B2(a)){B2(a) + a}h,

B{a) = E'(a) - B\a) - | | ^ , -

and

2 ' 5

we choose H3(ά) so that

] ) }

g min

Finaly, let T3(α;) be so large that

λ(ί, B.2(ά)) dt, [ ί λ(τ, 5,(Λ)) J r Λ < fi(α) M(B2(a))
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f C*(f, a) dt, [ f C*(τ, a) dτ dt < s(a)

T,(a) ̂  max {4 T\E\a)\ T^BJa)), T(€(ά), BΛ(ά))} .
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and that

Here, Tx{a)9 H^ά), H(β9ά)9 T{Syά) are those given in Lemma 11 and η(a),
T\ά) are those given in the condition (3. 21).

Replacing φ, ψ and ξ in fit, φ), g(t, <p, ψ, ff), ω(t, φ, £), Xt(t, φ, ψ, ξ), Yt(t9 φ, ψ,
&,Zt(t9φ9ψ,ξ) (ί = l,2) by

and

{l,B.2(a)/\\φ\\}, ψmin {l,C(ί,

in {1, A(a)/\\ξ-zt\

we denote them hy f*(t,φ)9 g*(t9φ9ψ9ξ)9 ω*(t9φ9ξ)9 Xf(t9φ9ψ9ξ)9 Y*(t9 <p,ψ,ξ),
Zt(t,φ,ψ,ξ)(i — 1,2), respectively. Here, for a fixed to^T3(a)

C(t9a) - C^t.

where Q(5, ί, Λ, /β) is the one in the Lemma 11.
Consider the systems

(5.15)

and

(5.16)

(ά(t)=f*(t9xt)

[z(t) = ω*(t9xt9zt)

= /*(*, xt) 4- Xf(t9 xt9yt9 zt) + Xf(t9 xt9yt9 zt)

= (f(t,xt,yt,zt) + YfCί,^,^,^) + YfCί,^,^,^)

'έ(ί) = ω*(ί, xt9 zt) H- Zf(ί, ̂ , yt, zt) + Z?(ί, ̂ ί ,^ , zt).

Obviously, all functions in the right-hand sides of the systems (5. 15) and
(5.16) are continuous and bounded on / x C(En) x C(Em) x C(Eι) for any
compact subinterval / of [tQ9 oo). Moreover, especially we have
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(5.17) \ \X*(t,φ,ψ,ξ)\, IZ;(t9φ,ψ,401 ^ M{B2{a))C(t,a),

( \Xi(t, φ, ψ , f) I, |Z?(ί, ?, ψ,f) I ̂  λ(ί,

on [t0, oo) x C(£w) x C(£m) x C(£4) and

(5. 18) I α>*(*, ̂ , f) - ω(ί, ̂ , 2β) | ^ σ(ί, B2

Therefore, for any (t19ψQ)e[t09oo) x C(Em) there exists a solution (x(t)9

y(t)9 z(t)) of (5.16) (or (5.15), respectively) satisfying the condition (5.12) by

Theorem 1.

Now, we shall show that if ||ψ 0|j < H3(oί), then

lί^lί < B2(ά), \\yt\\ < Qt9ά), \\zt-zt\\ < A(a)

for all t, t0 ^ t ^ t19 which implies that (x(t)9 y(t), z(t)) is a solution of the

system (5.2) (or (5.1), respectively) on [tQ, ί j . This will be proved by the same

idea as in the proof of Lemma 6.

Since we have the condition (5.17) and t0 ^ T3(ά), by the same manner

as in Section 3, we can prove the assertion (3.29), where B(|xQ\) and B(\xQ\)

in (3.29) are replaced by B\a) and B2(a) given in (5.14). Therefore, con-

sidering the function

v(t) = V(t9xt9xt)9

we can see that

(5.19) \\xt || < B2(a) for all t.t^t^t,,

and that

1 x(t) - χ(t) I ̂  JB*(ί, a) for all t , t ^ t ^ t09

where

, Λ) - L2(B2{a)) M(B2{a)) j C(τ, Λ) ̂ T + L2(B2(a)) £ λ(τ, B2(α)) J r .

Here, if (x(t),y(t),z(t)) is a solution of the system (5.1), then C(t9ά) = C(t,ά)9

and if (T(ί), y(t)9 z(t)) is a solution of the system (5.2), then C(ί, tf)

=max{C(ί, Λ), O(ί, Λ)}. Obviously, B*(t9 a) tends to zero as ί->oo and we have
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I B*(t, a) dt < 2£(a) L2(B2(ά)),
J Tz{cc)
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I
II χt - χ% II dt ̂  {Bid)+a)h+ \ B*(t, a) dt,

Γ || ̂  - ^\ B*(β-h, a) dt for all s,t1^s^t0 + h

Next, we shall show that

\\zt -zt II < A(ά) for all t , t ι ^ t ^ t 0 .

Since for a n y t , t ι ^ t ^ tOi

z(t) - z(t) = 5, x9, zs) - ω(s, xs, zs) - Z^s, xs, ys, zs)

— Z2(s, xsy ys, zs) \ ds

or

z(t) - z(t) = ί I ω*(s9 xs, zs) - ω(s, xs, zs) + Zt{s, xs, yS9 zs)

+ Zζ(s, xs,ys, zs)\ ds

according as (x(t), y(t), z(t)) is a solution of the system (5.15) or (5.16), we have

(5. 22) \z(t)-z{t)\ ^ Πκ(B2(a))\\xs-χs\\ + σ(s, B2{ά)) A(a)

+ M(B2(a))C(sya) + λ(s,B2(a))\ ds

for all ί, tγ ^ t ̂  ί0, by the conditions (5.17), (5.18) and (5.19). By (5. 20),
we have

\\z(t)-z(t)\\ < A(a) - U& -

which implies that
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\\zt -zt || < A(ά) for all t.t^t^t,.

Moreover, from (5. 21) and (5. 22), it follows that

I z(t)-z(t) I ̂  A*(ί, a) for all ht^t^t* + h>

where

[ B*(τ, α) Jr + A(rt) f σ(τ,

M(B2(ά)) f C(τ, a)dτ+ f λ(τ, βa(a))

and clearly, A^(ί, Λ) tends to zero as t—> oo.
Finally, we shall prove that if ||ψ 0 | | < Hs(μ) and ί0 ^ Γ 3 (Λ), then

||y« || < C(ί, rt) for all t9tλ^t^tQ.

Suppose that there exists a τ,to<Cτ ^ti9 such that

| |> | | = C{τ, a) and | |^ | | < C(ί, α) on [ί0, r ) .

As was seen above, \\xt\\ < B2(ά) and H^— zt\\ < A(a) on [ίo>τ]> a n d hence
(α:(ί), 3 (̂ί), 2:(ί)) is a solution of the system (5. 2) (or (5. 1)) on [t0, T]. Therefore,
Lemma 11 implies

\\yt\\<C(t,ά) on [ίo,τ],

which contradicts ||yr|| = C(τ,a). Thus, we prove completely this lemma.
Corresponding to Theorem 2, by applying Lemmas 12 and 13 instead of

Lemmas 5 and 6, we can prove the following theorem.

THEOREM 5. Suppose that the condition (3. 21) and all assumptions in
Lemma 12 are satisfied and that there exists a continuous Liapunoυ
functional V(t,φι,φ^) in Lemma 13.

Theriy there exists a continuous function H*(r) > 0 such that the systems
(5. 1) and (5. 2) are eventually asymptotically equivalent on Ω{H*) x C(EL).
More precisely, for a given (<p09 ξ0) € C(En) x C{Eι) and any a>0 there exist
an H (a) > 0 and a T*(a) i^ 0 such that for any solution of the system
(5. 1) (or (5. 2)) starting from Ω«(H*) X C(EL) at t = tQ, tQ g T*(a), and for
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any ψ0 € CB>(a)(E
m), we can find a solution of the system (5. 2) (or (5.1))

through (<p0 + Oo>>^o>i;o + <*o>) at t = t0, for some (xo,zo)^Em x E\
which tends to the given solution of (5. 1) (or (5. 2)) as t —> °o.

Actually, we can put

T*(a) = max

H\a) = min {H2(B2(Bλ(a)),

where (/f2, T2, JBJ) is the one given in Lemma 12 and (H3, T3, B2) is the one
in Lemma 13 for a given (<p0, ξ0) € C(En) x C(£;)

6. Asymptotic behaviors of solutions near an integral manifold. Con-
sider a system of ordinary differential equations

(6.1) w= G(w)

and its perturbed system

(6.2) '(t) = G(w(t)) + G*(t9wt),

where w is an (n+m + ϊ)-vector, G(w) is twice continuously differentiable on

En+m+i a n d G*(t9ζ) is a continuous function on [0, <χ>) x C(En+m+1). Suppose
that (6.1) has a continuous (n-hl)-parameter family of periodic solutions

(6. 3) w — wo(ω(x)t + 5, x)

with real parameter (s, x) € E1 X U, where U is an open set in En. In the
(t, t£;)-space, such a family of periodic solutions (6. 3) defines an (n + l)-dimensional
integral manifold 9JZ.

Furthermore, we suppose the following conditions:

(6.4) ω(x) is scalar and is continuous function of xeU, and wQ(z + m, x)
= wo(z9 x).

(6. 5) m of the characteristic exponents of the linear variational equations
of (6. 3) have negative real parts for each (s, x) e E1 x U.
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(6.6)
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= n + 1

for all (z, x) € Eι x U.

Here, by restricting our considerations in a neighborhood of a given point
xoeU and by replacing x in (6. 3) with x + x0, we can assume that U is an
open sphere with the center at the origin of En.

Under the assumptions (6. 4), (6. 5) and (6. 6), Hale and Stokes [5] have
introduced local coordinates (x9y9z)9 where x,y,z, are n, m, 1-vectors, in a
neighborhood of the manifold 3JΪ in such a way that SDΪ is given by

(6. 7) x — constant, y = 0, z — ω{x)t + s.

Systems (6. 1) and (6. 2) in the new variables have the forms given by

x(t) = X^Xu

y(t) = gixί9

z(t) = ω{xt) t, yt9 zt)

(6.8)

and

(6.9)

respectively, where ω(φ) = ω(̂ ?(0)), ρr(̂>> ψ ) is linear in ψ and, actually,
Xi(^ψ,fX i Ί ( ^ t ^ ) and Z ^ ψ f) a r e functions of (^(0), ψ(0), ξ(0)). Here,
it is noted that (6. 7) is a solution of

x(t) = Xλ{xt9yt9zt) + X2(t, xt, yt, zt)

y(t) = g(xt,yt) + Y^^, ^ , ^ ) + Y2(ί, Λ:^^, ^

έ(ί) = ω(ΛΓί) + ZX^,^, ^ ) + Z2(t9 xt9 yty zt) ,

(6.10)

x(t) = 0

y(t) = jf

By observing the systems (6. 8) and (6. 9), Hale has shown the following:
Under the assumptions (6. 4), (6. 5), (6. 6) and

(6.11) there exist continuous functions λ(ί) > 0, M(r) > 0 such that



FUNCTIONAL DIFFERENTIAL EQUATIONS 213

I I λ(τ) dτ dt < co

and that

on [0, oo) x Ca(En+m+1) for any a > 0,

if (ί0, w(ίo)) is sufficiently closed to the manifold 9JI and if tQ is sufficiently
large, then for any solution w(t) of the system (6. 1) or (6. 2) through (t09 zv(t0))
there exists a (s0, r0) € Eι x U such that

w(ί) — z ô(ω(α:o)ί + So> .r0) -> 0 as t —> oo ,

that is, the manifold 9)i is stable with an asymptotic amplitude and an asymptotic
phase (see [3]).

Now, by the same arguments as used in the previous section, we can
prove the following theorem, which is a converse of Hale's result in some
sense.

THEOREM 6. Under the assumptions (6. 4), (6. 5) and (6. 6), if G*(t9 ξ)
in the system (6. 2) satisfies the condition (6.11) or

(6.12) there exists a continuous function λ*(ί, r) > 0 such that

\ \ λ*(τ, r) dτ dt < oo

that

on [0, oo) x C α ( £ n + m + 1 ) / o r αrc y Λ > 0,

then for any (s0, x0) e E1 x U there exists a family of solutions of the
systems (6.1) and (6.2), which tend to wo(ω(xo)t + s0, x0) as ί->oo, that is,
there exists a family of solutions of the systems (6.1) and (6.2) with a
given asymptotic amplitude and a given asymptotic phase.

PROOF. By applying Hale and Stokes' transformation, we consider the
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systems (6.10) and (6. 9), which are of special forms of the systems (5. 1) and

(5. 2), respectively.

First of all, it should be noted that by the properties of Hale and Stokes'

transformation, we can see the followings : Letting aί0 > 0 be the radius of

the open sphere U, ω(φ\ ( X ^ ψ ,©, Y1(φ,ψyξ) Z^φ^ξ)) and (X2(tyφyψ,ξ)y

Y2(t, <p,ψ,ξ), Z2(t,φyψ,ξ)) are defined on [0, oo) x ί2αo(iίo) x C(Eι) (for some

continuous function H0(r) > 0) and satisfy the conditions (5. 3), (5. 4) and (5. 5),

respectively, where a in these conditions is restrained in [0, a0). Moreover,

there exists a continuous Liapunov functional *W(t9φ9yjr9ξ) defined on [0, oo)

x ίlαo(i?o) χ C(Eι) and satisfying all conditions in Lemma 11 for the system

(6.10). For the above, see [3] and [9].

Now, let V(t,φί,φ2) be defined by

V(t,φl9φ2)= | ^ ( 0 ) - ^ 2 ( 0 ) | .

Then, V(ty φly φ2) satisfies all conditions given in Lemmas 12 and 13 for the

system

(6.13) x(t) = 0,

which corresponds to the system (3. 9). Obviously, the condition (3. 21) holds

good with η(ά) = 0, and the system (6.13) has a bounded solution x{t) = 0.

Therefore, we can see that all assumptions in Theorem 5 are satisfied on

the domain [0, oo) x Ω,ao(Ho) x C{Eι). Moreover, if φ0 in Lemma 13 is given

so that \\φ0 — <φo(O)>\\ is suitably small, then Bx(ά) and B2{ά) in Lemmas

12 and 13 can be chosen to be less than a0 for any a > 0, a < aOy because Bx

and B2 were chosen so that the conditions (5. 11) and (5. 14) are satisfied.

Thus, the eventually asymptotic equivalence between the systems (6. 8) (or (6. 9))

and (6.10) on Ωββ(H*) x C(Eι) (for an H*(τ)>0) follows immediately from

Theorem 5. Since Hale and Stokes' transformation preserves the asymptotic

equivalence properties, we can complete the proof.

The author wishes to express his sincere gratitude to Professor T.

Yoshizawa for his constant encouragement and helpful comments.
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