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Introduction. The asymptotic equivalence between a linear system and
its perturbed system has been discussed by many authors (for references, see
[10]). Two systems

(1) = X(¢, x)
and
(2) = Y(t, )

are said to be asymptotically equivalent, if the following condition is satisfied:
For any solution x(¢; x,, ¢,) of one of the systems (1) and (2), we can find a
solution of the other system, which tends to x(#; x,, £,) as £ — co. However,
for example, the systems

and

are not asymptotically equivalent in the sense above. Clearly, in the condition
above, if we take ¢, suitably large according to the norm of x,, then we can
have the same conclusion. In the case, we shall say that they are eventually
asymptotically equivalent.

In the previous papers, we have discussed the eventually asymptotic
equivalence between more general systems and their perturbed systems, under
the assumption that perturbation terms satisfy a special type of Lipschitz
conditions [8,9] or some type of integrabilities [10].

In this article, under much weaker condition, we shall discuss the eventually
asymptotic equivalence between systems of functional differential equations and

*) This work was partly supported by Sakko-kai Foundations.
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their perturbed systems, by applying a kind of boundary value problem, which
Hukuhara considered in studying the behaviors of solutions of ordinary differential
equations [7]. In Section 2, we shall discuss this boundary value problem for
a system of functional differential equations.

As an application, we shall obtain a result for the case where the unperturbed
system is linear (in Section 4).

In [3], Hale has discussed the stability with an asymptotic amplitude and
an asymptotic phase near an integral manifold of periodic solutions of an
autonomous system. As another application of our results, we shall consider a

converse of Hale’s result in some sense, under the same assumptions as given
by Hale (in Section 6).

1. Notations and definitions. The following notations will be wused
throughout this paper: E” is the Euclidean p-space, and for x< E? |x| is the
Euclidean norm. For a given constant h =0, C(E”) denotes the space of
continuous functions mapping the interval [ —h,0] into E”, and for @ e C(E?)

l@ll =sup {|@(6)|| - h=6=0}.

In the case where A = 0, C(E?) is identical with E? and |@|l = |@(0)!. C.(EP)
and C,(E") will denote the sets of @< C(E?) for which we have |@| < a and
@] < a, respectively, while if a is infinite, both C.E?) and CJE?) are
identical with C(E®). For any E*-valued continuous function x(s) defined on
a=s=b,b—a=h, and for any ¢, a + h =t = b, the symbol x, will denote
the function such that

z(0) = x2(¢+6) for all 6e[—h,0],

and hence x, € C(E?). Here, we shall call x, the segment of x(s) at s=1¢.
Similarly, the segment of x(s; ), with a parameter §, at s = ¢ will be represented

by xz(&)

For the convenience, we shall use the following notations: For a subset
S C C(E?) and a continuous function 7"(¢) mapping S into [0, o), let G(1";S)
be defined by

G(T;S) = {t@)leesS, t>T (@)} C[0,00) x C(E”).

Specially, if S in G(T"; S) is C.(E™) (or CE™) and T (@) = T(||l@|), we shall
denote it by A(T) (or ALT)). Moreover, let
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DAT) = {(t, @, @) |(t, @1), (8, @2) € AT},
(1.1 Qu(H) = {(@,¥)|@ € CLE™), Y € Caqipr (E™)}
V(T H) = {(2, 2,9) (2, @) € AT), (@, V) € Qul H)}

for a continuous function H(r)>0. Here, it is note that D7) = G(T";S")
with S = C,(E") x Cu(E™) € C(E™), T (@1, @2) = max {T(|@:]), T(|l@.[)} and
QT,H) = G(T";S") with S = Q(H) c C(E**™), T (¢ ) = T(|l@|l). In the
case where « is infinite, we shall omit the suffix « in the above. If A(T),
C.(E") etc. in the right-hand sides of (1.1) are replaced by A7), C,(E") etc.,
then we shall denote them by Dy (T), Q. H) and Q.T, H). For a @« C(E"™),
@ is said to be constant, if @(f) is constant on [ —4,0], and for any x € E? we
shall denote the constant function with the value x on [—A,0] by <x>, that
is, <x> € C(E") is the function such that

<x>(#)=x forall 6e[—h0].

Let f(¢,9) be a function mapping G(T};S) C [0, ) x C(E?) into EP, and
let i(z) denote the right-hand derivative of the function x(s) at s =¢. Consider
a system of functional differential equations

(1.2) () = ft, z.).

DEFINITION 1. For a given point (¢,, @,) € G(T; S) a continuous function
x(t; @o, to) of ¢t is said to be a solution of (1.2) through ¢, at t = t, (or through
(20, @o)), if there is a number 8 > 0 such that

(i) for each t,t, =t <t, + 3, (¢, xp, t,)) belongs to G(T;.S),

( 11) xto(¢0’ tO) = P>

(iii)  x(¢; @9, t,) has the right-hand derivative for any ¢, ¢, =t <t¢, + §, and
x(t; o, t,) satisfies (1.2) for all ¢,¢2, =t <¢t, + 8.

For functional differential equations, we can see the following proposition.

PROPOSITION 1. If f(¢, ) in the system (1.2) is continuous and if
(to» @o) is an interior point of G(T;S), then there exists a solution of (1.2)
through @, at t = t,.

Furthermore, if G(T';S) =[T,, ) x C(E") for a constant T, =0 and if
f(t, @) is bounded there, then all solutions of (1.2) exist in the future.

For the system (1.2) and another system

(1. 3) W) = (L, y0)
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defined on G(T;S), we shall give the following definitions: Let S, be a
subset S.

DEFINITION 2. The systems (1.2) and (1. 3) are said to be asymptotically
equivalent on S,, if the following conditions are satisfied ;
(i) all solutions of both (1.2) and (1. 3) starting from G(T3;.S,) exist in
the future,
(ii) for any bounded closed subset S* of S,, there exists a T*(S*)=0
such that for any given solution of (1.2) or (1.3) starting from
G(T; S*), we can find a solution of (1. 3) or (1. 2), respectively, starting
at ¢t = t,, t, = T*(S*), which tends to the given solution of (1.2) or
(1.3) as £t — oo.

DEFINITION 3. The systems (1.2) and (1.3) are said to be eventually
asymptotically equivalent on S,, if for any bounded closed subset S* of S,,
there exists a 7%(S*) =0 such that

(i) all solutions of both (1.2) and (1.3) starting from [T#(S¥), c0) X S*
exist in the future
and that
(ii) for any given solution of (1.2) or (1. 3) starting from [T#(S%*), o) X S¥,
we can find a solution of (1.3) or (1l.2), respectively, starting at
t =t,, to = T*(S*), which tends to the given solution of (1.2) or
(1.3) as t—co.

The fcllowing proposition will show an interesting property of the eventually

asymptotic equivalence.

PROPOSITION 2. If the systems (1.2) and (1. 3) are eventually asym pto-
tically equivalent on S, then for any bounded solution of the system (1.2)
(or (1. 3)) we can find a solution of the system (1.3) (or (1.2)), which tends
to the bounded solution as t— co.

Here, we say the solution x(t; @y, t,) of (1.2) to be bounded, if there
exists a bounded closed subset S* of S such that x,(@,,t,)eS* for all
t =t

PROOF. Let x(¢) be bounded sclution of (1.2) (or (1.3)). Then, as
mentioned above, we can find a bounded closed subset S*¥ of S such that
x, remains in S* in the future. For this S* we choose T*(S¥)=0 as
in Definition 3. Since x(¢) can be assumed to start from [7%(5%),c0) x S¥%,
we can find a solution y(¢) of (1.3) (or (1.2)) such that x(¢) — y(¢£) >0 as ¢t —
oo, Thus, the proof is completed.
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Since in this paper we use Liapunov functionals, we shall state here some
of their fundamental properties. Let V(¢,9) be a continuous functional
defined on G(T;S)C[0, o0) X C(E?) and satisfying a Lipschitz condition with
respect to @, that is, there exists a continuous function L(7, &) > 0, monotone
in @, such that if (¢,9), (¢, @) < G(T;S) N [0,7] X C((E?) for any a >0 and
any 7> 0, then we have

(1. 4) IV, @) — Vit )| = L, @) |p — @] .

We shall denote

Dty Vit @) = Jim - (V(& + 8, 20a(@, 1) = V(& 9)
and

Divs Vit, ) = lim 5 (V¢ + 8, 2, 2) = Ve, 9))

where z(s; @,¢) is a solution of the system (1.2) through @ at s = £. Namely,
Do V(t, @) (or Dj.. V(t, ®)) denotes the upper (or lower) right-hand derivative
of V(¢,®) along a solution of the system (1.2). Here, we can see that D},
V(t, @) and Dg, V(t,p) are determined independing of a particular solution
x(s; @, t) in the right-hand sides of the equations above, even if the solution of
(1.2) is not unique for the initial value problem. In general, for any continuous
real-valued function v(s) of s we shall denote the upper (or lower) right-hand
derivative of v(s) at s =¢ by D'v(t) (or D v(¢)). Moreover, we can verify
that for a perturbed system

1.5) (t) = f(¢, =) + X(¢, x,)

of the system (1.2) with a continuous perturbation term X(z, ), we have

D*v(t) = Diyy V(t, ) + Lt |z )1 X (@ x|

(1.6)

D v(t) = Dioy V¢, x) — L@, 2D 1 X (@ 20
where x(¢) is a solution of (1.5), v(¢) = V(¢, x,) and L(7,«) is the one in the
relation (1. 4).

It should be noted that even if the system is defined on a domain [T, o)
X C.(E?), where T, and «, are positive constants, the desired Liapunov
functional will not be necessarily constructed on [T, o) X C,(E?), and, in
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general, the Liapunov functional will be constructed on such a domain as
G(T; S) (cf, see Proposition 4 in [10]).
Finally, for a convenience, a product system of the form

{ ‘l(t) = f(t’ x)
u(t) = f(t, u,)

will be represented by (1.2)* corresponding to the system (1. 2).

2. A boundary value problem. In order to study behaviors of solutions
in a neighborhood of a singular point of ordinary differential equations,
Hukuhara has considered a special type of the boundary value problem [7].
For ordinary differential equations, Nagumo has obtained some results concerning
this boundary value problem [12]. By the same arguments as used by Nagumo,
we shall obtain a result for functional differential equations, which we shall
use in the proofs of theorems concerning the asymptotic equivalence.

First of all, we shall state the following lemmas. Lemma 1 is the well-
known Stone-Weierstrass Theorem. For the proof, refer to [6] or [11].

LEMMA 1. Let Q be a compact topological space, and let E(Q) be the
algebra of all continuous EP-valued functions on Q. Then, a subalgebra
of €(Q) is dense, if the unit function of C(Q) belongs to & and if for any
pair of a, b € Q, a > b, there exists an f< & such that f(a) > f(b).

We shall consider the case where  is a compact subset of a Banach space
with a norm |xf for an x<eQ. Let & consist of all E?-valued functions
defined on Q and satisfying a Lipschitz condition, that is,

2.1 for each f &, there exists a constant L(f) =0 such that

f@) — fin)] = L(f) |= =yl
for all z, y Q.

Now, we shall show that & satisfies all assumptions in Lemma 1. In fact,
for any f, g<& and any real a, we can assume that

L(f+g) = L(f) + L(g), LS+ 9) = LD gl + L@ AN,
L(af) = la|L(f), L(f)=0,

where each component of (f+g)(x) (or (f-g)(x)) is the sum (or product) of
the corresponding components of f(x) and ¢(x), f, denotes the unit function

of €(Q) and
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AN = sup {|f(x)]|x e} (<o)

for any f € @(Q). From these, it follows that f;, f+ ¢, f+¢ and af belong to
g, that is, & is a subalgebra of €(Q) with the unit function. Next, for
arbitrary pair a,b €, a > b, we shall exhibit an f € 2 such that f(a) > f(b).
Obviously, we can assume that f(x) is a scalar function, that is, €(Q) is the
algebra of continuous real-valued functions. If we set

Jolx) = |z —al,

we can easily see that f, € & with L(f,) =1, fu.(a) =0 and f.(b) >0, which
shows that f, is the required.

Thus, we have the following lemma.

LEMMA 2. Let Q be a compact subset of a Banach space, and let & be
the subset of G(Q) such that each element of R satisfies a Lipschitz condition
in the sense of (2.1). Then, & is dense in Q). Namely, for any f< Q)
there exists a sequence {f,}C@(Q) such that fi(x) satisfies a Lipschitz
condition for any k and that the sequence { f.} converges uniformly to f
on .

The following lemma is an immediate consequence of a result due to

Dugundji [2].

LEMMA 3. Let Q be a closed subset of a Banach space B, and let f be
a continuous function mapping Q into a compact convex subset K of EP*.
Then, f has a continuous extension mapping B into K.

Now, we shall prove the following theorem.
THEOREM 1. In a system
a(t) = f(t, z1, 3.)
2.2) .
(@) = g, 24, 50) 5

where x, y are n, m-vectors, if f(t,p, V) and ¢, @,¥) are continuous and
bounded on [a,b] x C(E™) x C(E™), then for any given x,< E" and any
(@0, Y0) € C(E™) X C(E™) there exists a solution (x(t),y(t)) of (2.2) which
satisfies the condition

2.3 x2(b) = x4, ¥, =Y and x, — @, is a constant.



FUNCTIONAL DIFFERENTIAL EQUATIONS 181
PROOF. Let A, be a bound of both f{¢,,v) and ¢(t,9,v) on [a,b]
x C(E™) x C(E™), let x, € E™ and (@, V) € C(E™) x C(E™) be given, and let
a = || + |z | + A—a),
A, = |poll + a + Alb—a),
A, = Yol + A(b—-a),

where A = A, + 1. Let § denote a family of such a continuous E* X E™-valued
function (x(¢), y(¢)) as is defined on [a—h, b] and satisfies the condition

|z(®)| = A, and |y(2)| = A; on [a,b];

. 4 |z(t) — ()], |y(E)—y(s)| = Alt—s| for any ¢, s€[a,b];
x(t—a) = @(t—a) + q and y({t —a) = (t—a) for all ¢,
a—h=t=a, and for a g S(E"),

where

S,(E?) = {x|xec E?, (x| =7} .
We represent by Q the subset of C(E™) x C(E™) such that

Q= {@¢&, x, ) | (2(5), ¥(s)) €T and ¢ €[a,b]} .

Then, it can be seen that the set Q is a compact subset of the Banach space
E'x C(E") x C(E™). Thus, by Lemma 2 we can find a sequence {(fi(¢,®,V),
ge(t, @,¥))} such that (fi(Z, @,v), gi(t, @,)) is defined on Q and satisfies a
Lipschitz condition there for each %2 and that the sequence {(fi(t,®,¥), ¢z,
@,))} converges to (f(t, @, V), ¢(t, ®,¥)) uniformly on Q. Here, we can assume
that

If(t’ ¢"‘P‘) _fk(t’¢7"l")" |g(t, P ‘I") - ,(]Ic(t??"‘p)l =1

for all £ on Q, which implies that for all %

ifk(t’¢"l")l’ lf/k(t’¢7‘[’)l =A onQ,
that is,

(flt, @), gt @, ¥) € SAE") X Sa(E™)

for all (¢,,9)<cQ and all k. Since K = S,(E") X S4(E™) is closed and convex,
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(felt, @,v¥), gi(t, @,4¥)) has a continuous extension mapping [a,b] x C(E™)
x C(E™) into K by Lemma 3. We shall denote this extension by (fi(¢, @, V),

gu(t, 2,9) again.
Consider the system

{ x(t) = fk(t, Xy yt)
@.5)

y(t) = gk(t’ Xy yt) >
and let (x(¢; ¢), ¥(t;¢)) be a solution of (2.5) through (@, + <g>,y,) at t =a

for a g € E" (for the notation <g>, see Section 1). By Proposition 1, (x(¢; q),
y(t; q)) exists for all ¢ €[a,b]. Since we have

2(6.9) = 90 + g + [ fitr,50) 34) dr
2. 6)

WD) =4O + [ gur, xla), 34a) dr

for all ¢ €[a, b], we can verify that if g € S,(E"), then (x(¢;q), y(t; q)) satisfies
the condition (2.4). Therefore, for any g e S.(E"), (z(t; q), y(t; q)) belongs to
the family &, or in other words, (¢, 2, (9), v.(q)) belongs to Q for all ¢<[a,b],
and hence, since (fi(t, @, V), gi(t, @,4)) satisfies a Lipschitz condition on £,
(x(t;q), 3(t;q)) is continuous in g €S, E"). On the other hand, the first
equation of (2.6) imrlies that we have

|x(b; 9) — q| = @]l + Alb—a)
for all g< E". From these, it follows that the function F(q) defined by
Kg)=q— z(b;9) + x

is a continuous function mapping S.(E") into itself. Thus, by Brouwer’s fixed
point theorem, we can find a g, € So(E™) such that F(q,) = g,, that is,

x(b; q,) = x, .

This proves the existence of a solution of (2.5) satisfying the condition (2. 3),
which we shall denote by (x%(¢), ¥(¢)).

Since (xf(¢), y*(¢)) belongs to the family &, the sequence {(£*(¢), y*(¢))|k=1}
is normal, and hence, this sequence has a subsequence which converges
uniformly to a function (x(¢), y(¢)). It can be easily proved that (x(¢), y(¢)) is
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a solution of the system (2.2) satisfying the condition (2. 3). Thus, the theorem
is completely proved.

3. The case where the perturbation terms are integrable. In this
section, we shall discuss the asymptotic equivalence between a system

3.1) { a(t) = fi¢, z.)

y(t) = g(t5 xt: yt)
and its perturbed system
a(t) = f(t, x,) + X(t, 1, y0)

(3.2) {
y(t) = _(](t: Xy yt) + Y(t’ Xy yt) >

where z, y are n, m-vectors and all functions in the right-hand sides of (3.1)
and (3.2) are completely continuous on (7, H,) for some continuous and
monotone functions T(r) = 0 and Hy(r) > 0 (H,(») may be infinite).
Throughout this section, let H(r) be a given continuous and non-increasing
function such that Hy(r) > H(r) > 0. The following assumption will be made :

(3.3)  There exists a continuous function A(¢,7) > 0 such that

f)\,(t, r)dt < oo
and that
[ X @9, (Y, @9) | =Nt )
for any a > 0 and any (¢, @,V) € Qu(To, H).

Here, M¢,7) can be assumed to be non-decreasing in 7.

First of all, we shall prove the following lemmas.

LEMMA 4. In addition to assumption (3. 3), we assume that there exists
a continuous Liapunov functional W(t,@,v) defined on NT,, H,) and
satisfying the following conditions :

3.4) a ([P 0)) =W, @.¥) =by(¥l, @)

on QT,, Hy) for any a >0, where a,(r), b\(r,s) are continuous and
non-decreasing function of (r,s), a,(r) >0 for r >0 and b(0,s) =0
for all s=0.
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(8.5)  For any a >0, on the domain Q.T,, H), we have
(W, @,4) — W(t, o', 4)| = Li@){le—@' |+ v —y|}
and
Dy Wit @, ) = — c(@W(t, @, ),

where L,(r) >0 and c(r) > 0 are continuous and monotone functions
of r>0.

Then, there exist continuous and monotone functions T,(r)=0 and
H(r)>0 of >0 as follows: For any a >0, let (x(t), y(t)) be a solution
of the system (3.1) or (3.2) starting at t =t,, t, = T\(a), such that |y,
= H\(a). Then, so long as |z,| < a, the segment (x,y,) remains in Q(H)
in the future and y(t) tends to zero as t — oo uniformly with respect to i,

PROOF. For any solution (x(¢), y(t)) of the system (3.2) (or (3.1)), so
long as (¢, x, y.) € Qu(To, H), we have

(3.6) D w(t) = — c(a) w(t) + 2L, (a) Mt, a) ,
by (1.6), (3.3) and (3.5), where
w(t) = W, x,,y,) .
Choose functions H,(r) and T,(r) so that

b.(H\(r),r) < ay(H(r)) ,

3.7 i
- [ ey ae < AHDZ PO

Ty

Let (x(¢), y(¢)) be a solution of the system (3.2) (or (3.1)) through (¢o, @0, V%)
such that £, = T(a) and |y»| = Hy(a) for a given a >0, and suppose that
forart>0

(t, 2, v) € Qu(To, H) for all ¢, =t <.

Then, from (3.6), it follows that

(38w S byl @ e 1 2L,(a) [N, a) d,
to



FUNCTIONAL DIFFERENTIAL EQUATIONS 185

the right-hand side of which is less than a,(H(a)) by (3.7), and consequently,
by (3.4), we have

el << H(e)) = H(jz]) .
This and the fact that (@o> o) € Q(H,) € Q(H) imply that so long as [z,]| < a,
(x, y,) € Q(H) in the future. Moreover, since the right-hand side of (3. 8) tends

to zero as T — oo and a,(|y(7)|) = w(r), we can see that y(t) >0 as £ — oo, so
long as |z, <a.

LEMMA 5. Suppose that all assumptions in Lemma 4 are satisfied.
Moreover, for the system

3.9 a(t) = f{t, x,),
we assume that
(3.10) (3.9) has a bounded solution u(t) = x(t; pf,t§) with a bound B, =0

and that there exists a continuous Liapunov functional V(t, @, @,) defined
on D(T,) (see Section 1) and satisfying the following conditions

(3.11) ax(|9,(0) — @:,(0)|) = V(t, @1, ) = by(|p1 — @all,0)

on DT,) for any a >0, where axr) >0 and by(r,s) >0 are conti-
nuous and non-decreasing functions of r >0, s=0 and a,(r)—o as

rr— o0,

(3.12) |V, @1, 92) — V(t, @1 @) | = Ly(@){ o, — @il + |@.— @2}

on D(T,) for any a >0, where Lyr)>0 is continuous and non-
decreasing,

(8.13) Do*Vit, @1, 9:) =0
(for the notation (3.9)*, see Section 1).

Then, there exist continuous and monotone functions B,(r) > 0, Ty(r) =0
and Hyr) >0 of r >0 such that for any a >0, all solutions of the systems
(3.1) and (3.2) starting from QuT,, H,) remdin in Qpu(H) in the future
and their y-components tend to zero as t — oo.
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PROOF. Let B\(r), Hy(r) and T,(r) be chosen so that

ay(B,(r)— B,) > by(r+ B,, max {r, B,}),

3.14 oo
(¢ ) j;( ),(t,Bl(r)) dt < dz(Bl(T)_Bo) '_L_b_(gg‘;go, max {7, B,}) ,
(3 15) { HQ(r) = Hl(Bl(r)) >

‘ Ty(r) = max {T\(B,(r)), t51 ,

where H\(r) and T,(r) are those given in Lemma 4.
Let (2o, @0, ¥0) € Qu(Ts, H,), and let (x(2), y(t)) be a solution of the system
(3.2) or (3.1) through (@,,,) at £ = ¢,. Obviously, by (3.15) we have

3.16) |l = H(llo 1) = Hi(By(ll@o ), 20 = Ti(llpoll) = Tu(Bi(llo ) -
Suppose that

3.17) (x5, 3) € QUH) on [ty 7]

for a = > ¢t,, and suppose that |x,| < B,(a) on [¢,, 7) for a 7', 7==7">¢,. Then,
for v(t) = V(¢, u,, x,), we have

Dru(t) = Ly(B(@)) Mz, Bi(@)) on  [t,, 7')

by (1.6), (3.3), (3.12) and (3.13), which implies that
ay(|2(t)—u(*)]) < v(r') = by(a+ B, max {a&, B,}) + Ly(B,(@) [ Tl)»(t, Bi(a)) dt

and hence by (3.14), || < Bi(a). From this and |z|| = |@.] = a < B,(a),
it follows that |x,|| < B,(a) on [¢,, 7] or that

(3.18) under the assumption (3.17), we have
|zl < Bi(ll@ol) on [z 7].
Now, we shall show that
(2, y)e UH) for al =¢,.

If not, there exists a = > ¢, such that
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(x4, y.) € UH) for all z€[z,,7) and |y-|| = H(||z]).
Since we have (3.17), by (3.18) we have
|z < Bi(l@ol) on [£,7].
Therefore, by using Lemma 4, this and (3.16) imply that
(i, 3) € UH) on [t,7],
which contradicts with |y.| = H(||x.|). Thus, we have that
(x,y)e UH) for all t=¢,
and that y(z) >0 as £ — oo, On the other hand, we have
|zl < Bi(lel) = Bi(a) for all t=¢,
by (3.18). From these, it follows that
(4, ¥0) € Quyey(H) for all t=1¢,.
LEMMA 6. In addition to all assumptions in Lemma 4 and the condition
(3.10), we assume that there exists a continuous Liapunov functional

V&, @, p,) defined on D(T,) and satisfying the condition (3.12) and the
Sfollowing conditions ;

(3' 19) as( .¢1(O) - ‘Pz(o)l) = V(t’ P Py) = bz( l‘Pl(O) - ¢2(0) l, a)

on Du(T,) for any a >0, where axr) and by(r,s) satisfy the same
conditions as in (3.11),

(3. 20) Do V(t, @, ) =0
and that

(8.21) there exist functions w(r) >0 and T'(r) =0 such that for any a >0
we have
Fit,a + nla)h =nla) for all t=T(a),
where

F@,7) = sup {| ¢, )| [@< C(EM}
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Sfor f(t, @) in the system (3.1).

Then, for given @,< C(E") there exist continuous and monotone functions
By(7) >0, Hy(r) >0 and Ty(r)=0 of r >0, which may depend on @,, such
that for any a >0, any (ty, <x,>,V0) € Qu(Ts, H;) and any t, =t,, we can
find a solution (z(t), y(t)) of the system (3.1) (or (3.2)), which satisfies

(3 22) (xn yt) € ‘Qlfz(a)(H) on [to ’t1]
and
(3.23) x(t,) = Xy, yi, = Yo and x, — @, is a constant.

PROOF. First of all, let functions B'(r) >0, B’(r)>0 and B(r) >0 be
chosen so that

(L_,(BI(T)‘—BO) > bg(r + Bo, max {7’, Bo}) ’
B'(r)> B(r) + llgo — <e0)>1,
B(r) = B"(r) + #(B"(r)) ,

where B, is the one given in (3.10), and let B,(r) be a continuous and non-
decreasing function such that

(3.24) B,(r) = B(r) .

Moreover, let Hy(r) and T'5(r) be such that

(3.25) { H3<r) = HI(BQ(r)) ’
' T(r) = max {T(Bo(r), T'(B (7)), t:'}
and
- a,(B'(r)— B,) — by(r+ B,, max{r, B,})
j; mx(t, B(r)) dt < LB
(3.26)

[ e By de < B) — B ~ gy — <pui0>1,

where ¢,* is the one given in (3.10), 7"(r) is the one given in (3. 21), which
can be assumed to be continuous and non-decreasing in », and H,(r), T\(r) are
those given in Lemma 4.

Now, for a given (¢, <x,>,v) € Qu(Ts, H;) we shall define f*(, ), g*(¢,
?,v), X*(¢, @, ¥) and Y*(¢, @,y) by replacing (¢, @,¥) in f(Z, 9), g(t, P, V), X(t,
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@,Y) and Y (¢, @, ), respectively, with

(¢, @ min {1, B(|z[)/ @[}, ¥ min {1, H(min {|@{, B(|z,)})/I¥]1)

Then, we can easily see that these functions are continuous on [£,, o) X C(E™)
X C(E™) and are bounded on I’ x C(E™) x C(E™) for any compact subinterval
I of [£,, o), because f(¢, @) etc. are completely continuous. Moreover, we have

{ |f*@ @) = F(¢, B(|x 1))
(3.27)
| X*(t, @, 9)| = N2, B(l 1))

on [ty,o0) X C(E™) x C(E™).

By applying Theorem 1, for any ¢, = ¢, there exists a solution (x(2), y(¢)) of
the system

a(t) = f*@t, x,) + X*@¢, x,,y,)
(3.28) {

W) = g*(t, ) +Y*(E, 205 90)
which satisfies the condition (3.23). Then, (x(¢),y(t)) is a solution of the
system (3.2) on [#,,¢,] satisfying the conditions (3.22) and (3.23), if (x,,¥,)
€ Qpep(H) for all 2,2, =t =¢, (note that B(|x,|) = By(|x,|) = By(a)). Now,
we shall prove that (z,, ¥,) € Qaqzp(H) on [, ¢,].
First of all, we shall show that
(3.29) if |x(@)| < B(|z,|) for some ¢,¢, = t= t,+h, then

Izl < B(12]) — llpo — <@o(0)>] .

In fact, since

x(s) = x(t) — _’: {f*¥(t, ) + X*(7, Zr, y2)} dT

for any s, t =s=t, we have

lz(9)| = |z(®)] +f:{|f*(’r,xr)| + [ X*(7, 0 y2) |} dr

< B(l2,) + max F(r, B(| 2, ) (¢ —s)+ _[7»(7’ B(|x,)) dr

by (3.27). From this, (3.21) and (3.26), it follows that
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lx(s)| < B(lxo]) — @ — <@o(0)>|

for any s, =s=1t — h, and hence

Iz < B(ly]) — @0 — <@u(0)>] .
Suppose that

lx(t)| < B(lx,]) for all t,v<t=t¢,,
for a T=1t¢, + h, and let
v(t) =V, z, w,),
where %(t) is the one given in the condition (3.10). Then, by (3.29) and (1. 6),
D v(t) = — L(B(1zo| ) Mt, B(1x])) on (7, 2.],

and hence

o) S ot + LBl ) [ M6 Bz ),

which implies
lz()| < B(|z]).

Therefore, we can prove
(3.30) l2(t)| < B(|z,]) on [t + h,ti],

because |x(t,)| = |x,| <B'(|x,!).
Since we have |x(¢,+h)| < B'(|x,!), (3.29) implies that

(3.31) \x(to)} = thwh“ < B(lxo‘) - H?’o - <¢0(0)> [l .
By (3.23), x;,, — @, is a constant, and hence, we have

Z, = <x(t)> + @y — <@o(0)> .
Thus, by (3.31) we have

|| < B(1 7, [) -

From this, (3.29) and (3. 30), it follows that
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(3.32) x| < B(|x,!) for all ¢,t,=¢t=t¢,.
Finally, since (¢,, <x,>,v) € Q(T3, H;), we have

ol = Hy(lxo|) = H(By(1x])) = H(B(|x, 1)),
to= Ty(12,)) = Ty(Ba1,1) Z Tu(B( | 21)

(see (3.25)), which implies that
(xp, ) e QUH) for all t,t,=t=t,
by (3.32) and Lemma 4. From this and (3. 32), it follows that

(xuyt) 6‘(-219(116.,1)(1-1) on [to, t]] .

Thus, we prove completely this lemma.

REMARK 1. In the case where & =0 or f(¢, @) is bounded on Q(T,, H,),
the condition (3.21) is always satisfied.

Now, we shall prove the fcllowing theorem concerning the eventually
asymptotic equivalence between the systems (3.1) and (3. 2).

THEOREM 2. In addition to all assumptions given in Lemma 5 and the
condition (3. 21), we suppose that there exists a continuous Liapunov functional
V(t, @, @,) which satisfies the conditions given in Lemma 6.

Then, there exists a function H*(r) >0 of r >0 such that the systems
(3.1) and (3.2) are eventually asymptotically equivalent on Q(H¥*). More
precisely, for a fixed @, C(E™) and any a > 0, there exist an H'(a) > 0 and
T*a) = 0 such that for any solution of (3.1) (or (3.2)) starting from Q.(H¥*)
at t =t,, t, = T*(a), and for any V¥, € Cyw(E™), we can find a solution of
(3.2) (or (8.1), respectively) which passes through (p, + <x,>,V,) at t =t,
for some x,€ E® and which tends to the given solution of (3.1) (or (3.2))
as t — oo, where H'(a) and T%(at) may depend on @,.

PROOF. Clearly, all conditions in Lemma 6 are satisfied. Let H¥(r)
= Hy(r), and let H'(a) > 0 and T*(a) =0 be

{H (@) = min {Hy(B*(a)), Hy(B,(@))} ,
(3.33)

T*(at) = max {T(B*(a)), Ty(B(a))}

with B*(a) = By(B,(a)), where (H,, T, B;) is the one given in Lemma 5 and
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(H;, Ty, B,) is the one in Lemma 6 for a given @, € C(E™).

Now, let (z(¢),¥(¢)) be a given sclution of the system (3.1) (or (3.2))
starting from Q.(H*) at ¢ = £,, ¢, = T*(a). Then, by Lemma 5, we can see
that (z(¢), y(t)) exists and remains in Qp(H) in the future and 3(z)— 0 as
t — oo. By applying Lemma 6 under the consideration of (3.33), for a fixed
VYo € Cpy(E™) and for any s = ¢, we can find a solution (x(¢;s), y(;s)) of the
system (3.2) (or (3.1)) such that

x(s;5) = Z(s), yu(s) =¥, and x,(s) — @, is a constant
and that we have
(B0, 21,(5), 91(5)) € Qiria(T5 H,) -

Moreover, by Lemma 5, we have
(2(8), ¥,(5)) € Qpey(H) for all t =¢,,

where B(a) = B,(B*(a)). Therefore, the family {(x(&s), y(& s)|s=t,} is
uniformly bounded and equi-continuous on any compact subinterval of [z, ).
From this, it follows that there exists a divergent sequence {s.}, s; €[£o, o),
such that the sequence {(x(Z;s.), y(;s,))} converges to an (x(£), y(¢)) uniformly
on any compact subinterval of [£,, o). Then, obviously (z(2), y(¢)) is a solution
of the system (3.2) (or (3. 1), respectively) which satisfies the condition

(3.34) X, — @ is a constant and (£, L1, Y1) € Qe La, Hy) .
Moreover, y(t) tends to zero as t — co by Lemma 5 and (3. 34).

Let V(t, ., @) be the Liapunov functional satisfying the conditions in
Lemma 6. For any &> 0, if 7(§, @) is chosen so that

~ a(€)
fT (s,a,h(t’ Bla))dt < L(B@) ’

we have

lz(t;s) — z2(@)] <& foral ¢s=t=7Ea),

because we have

Vit 249, 50 = L(B@) [ Nr, Ba) dr

for all ¢, t, =t =35 Hence, we have
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lz(t) — z()| =& for all t=(E ),
that is, 2(¢) tends to z(¢) as ¢ — oo. Thus, the proof is completed.

If all functions in the right-hand sides of the systems (3.1) and (3.2) and
the Liapunov functional W(¢, @,4) in Lemma 4 are defined on A(7T,) x C(E™)
for some continuous and non-decreasing function To(#)=0 of >0 and if
a,(r) in (3.4) in Lemma 4 tends to infinity with 7, then corresponding to the
conditions (3.3), (3.4) and (3.5) we assume the following conditions :

)
(3.35) There is a continuous function A%, a, 8) > 0 such that

f w)»(t, a,B)dt < oo

and that
| X @, 91, 1YE @9 =02 a, 6)
on KQ(TO) x Cy(E™) for any a >0 and 8 > 0.

(3. 36) a (V) =W, @, 9) =b.(|¥], @)
on ALT,) x C(E™) for any a > 0, where a,(r), b,(r,s) are continuous
and non-decreasing in (7, s), a,(r)—occ as r—oo and a,(+) >0 for »>0.
(3.37) (W, p,4) — W(t, @', ¥)| = La, B) {lo—@||+ ¥ —y'[} .

and

Dy W(t, ,9) = — o(a, B W(t, @, %)

on AT,) x C(E™) for any a >0 and 8 > 0, where L(a,8) >0 and
c(a, B) > 0.

In this case, by choosing a K(a, 8) > 0 so that

al(K(a7 B)) = bl(ﬁ) a) ’

we can replace H,(a), H(r) in the proof of Lemma 4 by 8, K(a, B8), respectively,
and Hya), H(r) in the proof of Lemma 5 by B8, K(B(a),B), respectively,
where Bj(a) is determined by the first inequality in (3. 14), if T, etc. in Lemmas
4,5 and 6 are chosen depending on a and 5.

Thus, we can prove the following corollary.

COROLLARY. Let all functions in the right-hand sides of the systems
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(3.1) and (3.2) be defined on A(T,) x C(E™) for some continuous and non-
decreasing function Ty(r). Suppose that there exist two continuous Liapunov
Sfunctionals V (¢, @\, @,) in Lemmas 5 and 6, and moreover, suppose that there
exists a continuous Liapunov functional W(t,@,V¥) defined on A(T,)x C(E™)
and satisfying the conditions (3.36) and (3.37).

If the conditions (3.10), (3.21) and (3.35) hold good, then the systems
(8.1) and (3.2) are eventually asymptotically equivalent on C(E") x C(E™).

4. Linear system and its perturbed system. By using the same argu-
ments as used in Section 3, we sigall discuss the asymptotic equivalence between
a linear system

(4.1) (t) = G(z,)
and its perturbed system

(4.2) 2(t) = G(z,) + G*(t,z,),

where 2z is an /-vector, G(¢) is a continuous linear function mapping C(E') into
E' and G*(¢,§) is continuous on [0, o) x C(EY).

When G(§) has just n eigenvalues with non-negative real parts (n may be
zero), we can transform the systems (4.1) and (4.2) into the systems

() = Ax(t)
o |
() = G(y,)
and
(t) = Ax(t) + X, x,, v,)
(4. 4)

¢
o= z-(¥) + fZ,_, Y(r, 2 y:)dr t=s,

respectively, by a suitable transformation which preserves asymptotic equivalence
propertles and which transforms & ¢ C(E') into (x,¥) < E* x C, where (s, V) €
[0,00) x C is a parameter and C is a subspace of C(E') such that all eigenvalues
of the restriction of G(¢) to C have negative real parts. For the transformation,
see [4]and [9]. Here, 4, X(¢, @, V), Y (¢, 9,¥), 2(¢;€) and Z(¢) satisfy the following
conditions : A is a constant (n, n)-matrix whose characteristic roots are zero or
the eigenvalues of G(£) with positive real parts. X(¢,9,V¥) and Y(¢, @,Y) are
continuous on [0, 00) X C(E") x C and, actually, are functions of (¢, @(0),y).
2(t; £) is a solution of (4.1) through & at £ = 0. Z(¢) is an (/, )-matrix solution
of (4.1) through I' at ¢ = 0, where 1" is an (/,/)-matrix, components of which are
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piecewise continuous functions defined on [ —h,0]. Moreover, z,(¢) and Z, denote
the segments of the functions 2(s; &) and Z(s), respectively, at s = ¢.
Furthermore, we recall the following lemmas (cf. [4], [9]).

LEMMA 7. For any continuous function Y(t) and any (s,¥) € [0, 0)xC

i)+ [ 2o ¥ dr

belongs to the space C for all t =s.

LEMMA 8. Let C be any subspace of C(E'). If all eigenvalues of the

/\ ., .
restriction of G(§) to C have negative real parts, then there exist two positive
constants ¢ and L such that

Iz 20)| = LIE| exp[—c(t—20)] for all t=t,,

so long as z,(&,t,) belongs to (/Z\, where z(t;E,t,) is a solution of (4.1) through
Eatt=t,

LEMMA 9. The conditions
(4.5)  all solutions of (4.1) are bounded,
(4.6)  there exists a continuous function N*(t,a) >0 such that
f N, a)dt < oo (for any a>0)
0

and that
IG*(, &) =M, )
on [0, 0)x CE") for any a >0
imply that we have
4.7) A is the zero matrizx,

(4.8)  there exists a continuous function Nt,a, 8) >0 such that
f Mt,a, 8)dt < oo (for any a >0, 8>0)

and that
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| Xt 2, V)|, 1Y(E @) =02 a,B)
for all (t,@,%) <[0,00) x Cu(E™) x C, [¥]| < B

respectively.

Since each eigenvalue of the restriction of the function G(§) to C has a
negative real part, by Lemmas 7 and 8 we have that if (¢,v)<[0,0) X C,
then

(4.9) l2.(¥, 2)l| = LVl exp[—c(t—2,)] for all z=t,,

where ¢ and L are positive constants. Furthermore, the above implies the
following lemma.

LEMMA 10. There exists a continuous Liapunov functional W(t,Vr)
defined on [0, 00) X C and satisfying the conditions ;
Wl = W@, ¥) = Ll ,
\W(e,¥) —We,v)| =Liv—¥1l,
Dy Wt ) = — W),

where ¢ and L are those in (4.9).

For a special system of (4. 4)

.Z‘(t) = X(t’ X, yt)

(4.10) ¢
Y = zt—s(\l") + j; Zi_. Y('T, Xz, y'r) dr,

we can prove the following theorem by the same arguments as used in the
proof of Theorem 1.

THEOREM 3. ILf X, @,¥) and Y(¢, @, V) are_continuous and bounded
on [a,b] X C(E™) X C, then for any (x,,V,) € E* X C there exists a solution
(x(t), y.) of the system (4.10), with (s,V¥) = (a,V¥,), such that x(b)= x, and
Yo = ‘I’O-

Here, for the definition of solutions of the system (4.4) or (4.10), see [9].

Thus, by the same arguments used in Section 3, we can prove the eventually
asymptotic equivalence between the systems (4.3) and (4. 4) under the assumptions
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(4.7) and (4. 8), which implies the eventually asymptotic equivalence between
the systems (4.1) and (4.2) under the assumptions (4.5) and (4.6). However,
we should recall Lemma 9, and the followings should be noted here: By the
condition (4.7), corresponding to the system (3.9), we have

() = 0.

Therefore, both Liapunov functionals V(¢,®,,®,) in Lemmas 5 and 6 can be
defined by

V(t, @1, 9.) = |9.(0) — @:(0)] ,

and moreover, clearly the condition (3.21) is satisfied. Corresponding to the
Liapunov functional W(¢, @,4Y) in Lemma 4, we use the Liapunov functional
W(t,v) given in Lemma 10. In this case, corresponding to the relation (1.6),
we have

(4.11) D* w(t) = — cw(®) + LIT[[Y(E, 2, 3.)|

for any solution (x(¢),y,) of the system (4.4), where w(t) = W(t, vy, (note
Lemma 7) and || denotes a suitable norm of the matrix T

Now, we shall prove the relation (4.11). Let («(¢),y,) be a solution of
the system (4.4) through (@,,v,)< C(E™) X C at ¢ =t, 2,8 is linear in
EcC(EY), z.s(& 1) = z(€) and 2s(2,(8)) = 248(E) for any =0, 8 =0, < ((EY),
and hence we have

zt+8<yz’ t) = Za(yt) = zt+5—to(‘l"0) + [Zt+8—1’ Y('T> Xy y'r) dr »

where 2(¢; &, ¢,) is a solution of the system (4.1) through & at ¢ =¢,. From
this and

+8
Vevs = zt+8—tn('\,"o) + j: Zt+6—'r Y(T’ Try y'r) dr,

0

it follows that
+8
Nivs — Zit4d (yt’ t) = j: Zt+8—-r Y('T; Ty y'r) dr 5

which implies that
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(4.12) lim 5 o=zl O = P11 Y 20901

On the other hand, Lemma 7 implies z.5(y,, ) € 5’, and moreover, we have
D&.l) W(t) '4’) = D&.@W(t» ‘!’) .

Therefore, since

D*w(?) = lim S W+ 8,500 — Wt 30}

= fim %— (Wt + 8, 20as(yr 1) — Wt 3))

8-+0

+ im % (Wt + 8, yiss) — Wt + 8 2eus(y )]

8—+0

= — Wit 3) + L lim - s — 2000 »

we have the relation (4.11) by (4. 12).
Thus, we have the following theorem.

THEOREM 4. Under the assumptions (4.5) and (4.6), the systems (4.1)
and (4.2) are eventually asymptotically equivalent on C(E').

COROLLARY 1. If, in addition to the assumptions (4.5) and (4.6), we
assume that N*¥(t,a) in (4.6) satisfies the condition

(4.13) there exist continuous functions M) >0 and M(a) > 0 such that

fx,(t)dt<oo, %=°°
and
Mt a) = M(t) M(d) ’

then the systems (4.1) and (4.2) are asymptotically equivalent on C(E).

This corollary follows immediately from Theorem 4 and Proposition 2,
because under all assumptions of Corollary 1, all solutions of the system (4,2)
are bounded in the future (for the proof of this, see p.331 in [9]).
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COROLLARY 2. Consider a system
(4. 14) 2(t) = G(z,) + p(t)
and its perturbed system
(4.15) 2(t) = G(z,) + p(t) + G*(t, 2,) ,

where G(§), G*(¢, &) are the same ones in the systems (4.1) and (4.2) and p(t)
is continuous on [0,00). In addition to the condition (4.6), if we assume that

(4. 16) all solutions of the system (4.14) are bounded,

then the systems (4.14) and (4.15) are eventually asymptotically equivalent
on C(EY).

Furthermore, if N*(¢,a) in (4.6) satisfies the condition (4.13), then the
systems (4. 14) and (4.15) are asymptotically equivalent on C(E").

PROOF. Let z(¢) be a solution of (4.14). Then, Z({) is bounded by a
constant B,. Transform 2(¢) in the systems (4. 14) and (4. 15) into 2¥*(¢) by 2(¢)
= 2(¢) + 2*(¢). Then, the systems (4.14) and (4.15) are transformed into
systems of the forms of the systems (4.1) and (4. 2), respectively. In this case,
from the condition (4. 16), we have the condition (4.5), and the perturbation
terms satisfies the condition (4. 6), where A*(¢, @) must be replaced by Nt a
+ B,). Thus, the first part of this corollary can be proved by Theorem 4, and
the second part by Corollary 1 of Theorem 4.

REMARK 2. In the case where h = 0, that is, the systems (4. 14) and (4. 15)
are systems of ordinary differential equations, Corollary 2 is an extension of
Theorem 2 in [1], where we should note that if A=0, under all assumptions of
Corollary 2, all solutions of the system (4.15) are defined on [0, o).

5. Systems with more general perturbations. In this section, by applying
the same idea in Section 3, we shall discuss the eventually asymptotic equivalence
between a system

.l‘(t) = f(t» xt)
(5. 1) y(t) = g(t, Tts Yes zt)
#2) = olt, 2, 2,)

and its perturbed system
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(1(t) = ft, x) + Xi(t, x4, 30, 21) + Xo(E, 2o Vis 20)
(5.2) V(@) = g, i, y15 20) + Y8, X0 Yis 20) + Yot 45 Y15 21)
i () = o(t, 2y, 2,) + Zy(t, Tis Vi, 21) + Zo(Es Zis Y15 20)s

where x,y, 2 are n,m,l-vectors and all functions in the right-hand sides of the
systems (5.1) and (5.2) are completely continuous on (T, H,) x C(E") for some
continuous and monotone functions 7(7) = 0 and Hy(r) > 0.

Let H(r) be a given continuous and non-increasing function of » > 0 such
that Hy(r) > H(r) > 0. Now, we assume the following conditions :

(5.3)  There exist continuous functions K() > 0 and o(¢,7) > 0 such that
f o(t,r)dt < oo (for any r > 0)
and that
lo(t, @, &) — o(t, 9", &) = K(@)leg—¢'l| + ot, )|E—-F|
on AT,) x C(E') for any a > 0.

(5.4) For any a > 0 and any B > 0 there exist M(a) >0 and Na,B) >0
such that N{a,8) — 0 as 8 — 0 and that

1 Xt 2,9, 01, 12,8 2,4, ] = M)y,
Y5, @, ¥, 8)| = Na, B)[ ¥
for any (¢, @, ¥, &) € Qu(To, H) X ((E"), Y| = 8.

(5.5)  There exists a continuous function A, 7) > 0 such that
f f‘ Mr,r)dr dt<< oo (for any » > 0)

and that X,(¢, @, ¥, &), Y., @, V¥, &) and Zy(¢, @, Y, &) are bounded by
Mz, @) on 0T, H) x C(EY) for any a > 0.

Here, we can assume that K(r), o(¢,7), M(r), N(r, s) and ¢, 7) are continuous
and non-decreasing in (7, s).

The following lemma corresponds to Lemma 4.

LEMMA 11. In addition to the conditions (5.3), (5.4) and (5.5), we
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assume that there exists a continuous Liapunov functional W(t, @, ¥, §) defined
on UT,, Hy)) X C(E') and satisfying the following conditions ;

(5.6) [V(0)] =W, p,9, 8 = b(|¥ll, @)
on QT,, H,) X C(E") for any a >0,

5.7 W, @, 9,8 — W, @, ¥, &)
= P@ly—v¥'| + Qa, B){le—#'| + [E-£1}

Sfor all (¢, 9,9, &), (¢, 9, ¥, &) € Qu(To, H) x C(EY), ¥, ¥ € C(E™), and
for any a >0, 8 >0,

(5' 8) D (45 1) W(t> P ‘I” ’g) é —C(d) W(t7 P ‘P‘? ‘i')
on Q.T,, H)xC(E") for any a >0,

where b(s,r), P(r), Q(r,s) and c(r) are positive, continuous and monotone in
r>0,5s>0 and b(0,r) =0, Q(,0) =0 for all r > 0.

Then, for any o >0 there exist an H(a)>0 and a T,(@)=0 and,
moreover, for any 8 >0, 8= H,(a), and any ¥ >0 there exist an A(s,t,a, B, Y)
>0 and a C(s,t,a,B) >0 such that if (x(t), y(t), 2(t)) is a solution of the
system (5. 1) or (5. 2) starting from C(E™) X C{(E™) x C(E") at t = t,, to= T(a),
then we have

Iyl < Ci(tor 8, @, B) and ||z,|| < A,(to, t, @, B,Y) for all t =t,, so long as
x| = a. Here, we can assume that A(s,t,a, B,%) and C(s,t,a, B) satisfy
the following conditions: They are continuous in all their arguments and
monotone in (¢, a, B,7). C(s,t,a,8)—0 as t — oo,

[ [cenamara <o
t

and C(s,t,a, B) < H(a) for any a >0, any 8>0 (8 = H,(a)), any s = T\(a)
and any t = s. Furthermore, for any a >0 and any € >0 we can find an
H(E a) >0 and a T(E, a) =0 such that for any 8 >0, 8 = H(E, a), and any
s=T(&, a) we have

f C(s,t,a,B)dt< & and f f C(s,ma,B)drdt <&
s 8 t

PROOF. Let (x(t), y(¢), 2(¢)) be a solution of the system (5.1) or (5.2),
and let
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w(t) = Wz, xu, yis 20) -
Then, by (1.6), (5.4), (5.5), (5.6), (5.7) and (5. 8), we have
Drw(e) = — {c(e) ~ P@)N(a, 8)—2Q(e, B)M(@)) w(t) + L¥a, NG, @),
so long as
(5.9 (¢, x5 ¥, 2) €Qu(To, H) X C(EY) and |y =8
for any a >0 and any 8 > 0, where
L*(a’ /3) = P(a) + ZQ(a’ B) .
Therefore, if we choose H*(a) >0, H,(a) >0 and T,(a) =0 so that
P(a) N(a, H¥(a)) + 2Q(a, H*¥(a)) M(at) = c(a)/2,
H*(a) = H(a),
b(H,(a), a) < H¥(a)/R for some constant R >1,

" _ _H*a) — Rb(H\(a), @)
f M, ) dt < L*(a, H*(@)) )

Ti(a)

Ty(a) = Ti(a),

and if |y,] =B = H/(a) fora t, = T\(a), then by the same arguments as used
in the proof of Lemma 4, we have that

ly@®)| = w() < H¥a)

and

(5. 10) ly®)| = w(t) < Ci(ty,t,a,B) forall ¢t=t¢t,
so long as (z,,2,) € C,(E™) x ((E"),

because

Dru(t)y= — 48 w(t) + Li(a, H¥@)Mt, @),
if (5.9) holds good with 8 = H*(a), where

C(st,a,8) = Rb(B, ) exp[ =2 (1~
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’ c(a)
+ L¥(a, H*(a))f M7, @) exp [— 5 (t—-r)] dr.

Easily, it can be verified that C,(s, ¢, a, 8) satisfies all conditions required in
this lemma.

Now, we shall show that if |y, || =8 = H(a) and ¢, = T\(a), then =2(¢)
exists in the future, so long as ||x,|| = a. Let Z(¢) be a solution of the system

2(t) = o(t, <0>, 2,)

through <0> at ¢ =#, (for the notation <0>, see Section 1). By the
condition (5.3), we have

1Z(s)| = f lo(r, <0>, <0>)|dr + f o(7,0)|Z,| dr

to

for any s,¢t = s =t¢,, that is,
¢ 11
1= éf (7, <0>, <0>)|dr + f a(7,0)|Z|| dr
173 to

for any ¢ = ¢,, which implies that
12, = 7o(2p,2) for all t=¢,,

where
Vo(s, t) = {j: lo(T, <0>, <0>)ld’r} exp U}(T’ 0) d’?‘} ,

and hence, Z(¢) exists in the future. Therefore, by the conditions (5.3), (5. 4),
(5.5) and the assertion (5. 10), we have

lze—=%:] = |z + K(@) at—1,) + f«f(% a)|z.—%.| dr

t
4
+ M(a)f Cite, 7, B)dr + f M, a)dr,
to 123

which implies that if |z,] <1,
“zt “ < Al(t()’ t7 a, 18’ "Y) fOI’ an t Z to ’

so long as |x;|| = a, where
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As, t,a,B,7) = {'Y + K(a)a(t—s) + M(a) ft C(s, m, a, B)dr

+ jj N, a) d'r} exp U: a(r, @) d“':, +7o(s, )

and hence, 2(¢) exists in the future, so long as ||x,|| =a. Thus, the proof of
this lemma is completed.

LEMMA 12. In addition to all assumptions of Lemma 11, we assume
that there exists a continuous Liapunov functional V(t,@,, ®,) in Lemma 5
and that the condition (3.10) holds good, where f(t,p) in the system (3.9)
mentioned in (3.10) is the one in the system (5.1).

Then, there exists a continuous and non-increasing function H,(r) >0,
and for any a >0 and any Y >0 there exist B,(a) >0, Ty(a) =0, Cys, ¢, a)
>0 and Ay(s, t,a,Y) >0 such that if (x(t),y(t),2(t)) is a solution of the
system (5.1) or (5.2) starting from Q.(H,) X C(E") at t = t,, t, = Ty(at), then
we have

”xz | < Bl(a)’ [3vell < Colto, 8, ), lze] < A(tos 2, 2, )

for all t = t,, where Cys,t, ) and A,(s,t,a,V) are continuous in (s, t,a,")
and monotone in (t,a,Y). Moreover, C,(s,t,a) satisfies the following
conditions: Cy(s,t, Q) tends to zero as t — o and

f f Cys,m,a)drdt < .
t
For any s = Ty(a) and any t = s, we have
C2(S’ t) a) é H(Bl(a)) .

This lemma can be proved by Lemma 11 and by using the same arguments
as used in the proof of Lemma 5 and by choosing H,, B,, T,, C, and A, as
follows: Let H\(r), T\(a), C(s, t,a, B), Ai(s, ¢, a,B,7), H(E a) and T(&, a) are
those given in Lemma 11, and let £,* and B, are those given in the condition
(3.10). B\(r) and H,(r) are chosen so that

(5.11) ax(B\(r) — B,) > by(r + B,, max {r, B,})
and

Hy(r) = min {H,(B\(r)), H(&(r), B,(1))}
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with

a2(Bl(r)_B0) - bz(""'Bo» max {r, Bo})

&r) = 2Ly(B,(r)) M(B\(r))

T,(a) are determined so as to satisfy

f "Mt By(a)) dt < &(@) M(B,(a)),

Ty()
Ty(a) = max {t,*, Ty(By(a)), T(&(a), By(a))} .
Finally, Cy(s, t, &) and A(s,t, a, ) are defined by -
Cy(s, t,a) = C\(s, t, B,(a), Hy(a)),
Ay(s, 2, a,%) = A(s, ¢, Bi(a), Ha),7).

LEMMA 13. In addition to all assumptions given in Lemma 11, we
assume that f(t,®) in the system (5.1) satisfies the condition (3.21) and that
there exists a continuous Liapunov functional V(¢, ., @,) in Lemma 6 with
ay(r) = r and by(0,s) = 0.

Let (z(t), ¥(¢), Z(¢)) be a given solution of the system (5.1) (or (5.2)) such
that |Z,| = a for all t = t;, where ty=0 is a constant. In the case where
(Z(2), ¥(¢), 2(t)) is a solution of the system (5.2), we add the assum ption that
we have

[yl <C*t, ) for all  t=1,

where C¥(t,a) >0 is continuous in (¢, ), non-decreasing in a, C¥(t,a) = H(a)
for all t =t; and

f fC*('r,a)det<00.
t

Then, for a given (@, &) € C(E™) x C(EY) and for any a>0 there exist a
T{a)=0, an Hya)>0, a Bya)>0 and an A(a)>0 such that for any
(o, Yro) € [Ts(@), 0) X Cyyy(E™) and any t, = t,, we can find a solution (x(t),
y(t), 2(t)) of the system (5.2)(or (5.1), respectively) defined on [t,t,] and
which satisfies the conditions;

x(ty) = Z(t), Vi, = Yos 2(t) = Z(¢),

Z, — Po and z,, — & are constants,

(5.12)
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(.13) |zl < Bu(@) and |2~%,| < AlQ) for all ¢t t,=t=<¢,.

Moreover, we can find continuous functions B*(t,a) >0 and A¥*(,a) >0
such that

|z(@)—2(t)| = B¥(t,a) and [2(t)—=@)| = A*(, )

for all t, ty+ h =t =t,, and that B*(t,a) and A*(t,a) are non-decreasing in
a and tend to zero as t — oo.

PROOF. We choose B'(a) >0, B'(a) > 0, By(a) >0, A'(a) >0 and A(a)
> 0 so that

B(a) > a, B'(a@) > B'(@) + [, —<@0)>]

(5. 14)
By(a) = B'(a) + (B’ (a))
and
A(a) > K(By(a)){Bx(a) + a} I,
Ala) = A(a) + [& — <&0)>].
Letting
A(a) = A'(@) — K(B(@)){By(a) + a} I,
Ba) = B'(a) — B(a) — llgy—<@y(0)>]
and
£(@) = min B(a)—a Bl@) A(a)  A(a) M(By(a)) 1

2L(B@) 2 5  BKB(@)LuBia)) | * M(Bya))’
we choose H,(a) so that
Hy(a) = min {H,(B,(a)), H(&(a), By(@))} .

Finaly, let T',(a) be so large that

f i Mz, By()) dt, f i f w)\,(-r, By(a)) dr dt < &a) M(By(a)),

Ty(a) Ty(a)¥' e

s By())dt < %(% :

Ty(a)
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f C#(t,a) dt, f f C¥(r,a) dr dt < &)

Ty(@) Ts(a) ¥t

and that
T'y(a) = max {t,, T'(B"(a)), T\(By(@)), T(&(), By(@))} .

Here, T\(a), H\(a), H(E, a), T(&, a) are those given in Lemma 11 and p(a),
T"(a) are those given in the condition (3.21).

Replacing o, ¥ and £ in f(t’ P?), ,(](t’ @Y, &), o(t, @, £), Xi(t, @, v, £, Yit, o, ¥,
£, Z(t,p,¥,8) (i =1,2) by

@ min {1, B@)/|@ll}, ¥ min {1, (¢, @)/ [}

and
Z, + (¢—=%)min {1, A(@)/[[E-Z.} ,

we denote them by f*(t, (P), {/*(t: P> ‘P'a &), m*(t> P, é)’ Xz*(t, P, ’\P‘, &)’ Y?‘(t’ P, ‘P’ g)’
Z¥E, @, ¥, ) (i = 1,2), respectively. Here, for a fixed ¢, = T(a)

C(t,a) = C\(t, t, B(a), Hy())

where C(s, t, a, B) is the one in the Lemma 11.
Consider the systems

x(t) = f*(t> xt)
(5.15) } () = g*(t, 24> Ve 20)
2(t) = o*(t, 2y, zt)

and

x(t) = f*(t’ xt) + X?(.(t’ Lys Yes z,) + X;*(t, Zys Vi» zt)
(5. 16) i y(t) = !]*(t’ Zys Yir 20) + YT, 205 Y1 20) + Y, 20, 305 20)
z(t) = o¥(t, 24, 2,) + Zf(t’ s Veo zt) + Z;(ts Ly Yoo z).
Obviously, all functions in the right-hand sides of the systems (5.15) and

(5.16) are continuous and bounded on I x C(E") x C(E™) x C(E') for any
compact subinterval I of [¢,, ). Moreover, especially we have
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( |f*(t, )| = F(t, By() »
(6.17) | X2(@ @9, 015 [Z1E 2,9, 8)| = M(By(a)) (¢, a)
| X2, D) 125t ¥, 8)| = M2, By(@))

on [#,, «0) X C(E™) x C(E™)x C(E') and
(5.18) lo*(t, @, &) — o(t, 9, %)| = o(t, By(a)) A()

on [z, 00) X Cpu(E") X (K.

Therefore, for any (¢,,V,) € [£, 0) X C(E™) there exists a solution (x(z),
¥(), 2(2)) of (5.16) (or (5.15), respectively) satisfying the condition (5.12) by
Theorem 1.

Now, we shall show that if |yr,| < Hya), then

]l < Bo@), Iy, < Ct ), [2.—Z] < A@)

for all ¢, £, =t =#,, which implies that (x(¢), y(£),2(t)) is a solution of the
system (5.2) (or (5.1), respectively) on [Z,,¢,]. This will be proved by the same
idea as in the proof of Lemma 6.

Since we have the condition (5.17) and ¢, = Ty(a), by the same manner
as in Section 3, we can prove the assertion (3.29), where B (|x,|) and B(|z,|)
in (3.29) are replaced by B'(a) and B,(a) given in (5.14). Therefore, con-
sidering the function

o(t) =V, 2, )
we can see that
(5.19) .l < By(@) forall ¢t =t=t,
and that
|x(t) — 2(¢)| = B*¢t,a) for all ¢,t,=t=¢,

where

B*(t, a) = Ly(By(a)) M(Bs(a)) f m’(—3('1-, a)dr + Ly(Bxa)) j; m?\,('T, Biya)) dr.

Here, if (Z(¢), ¥(¢),Z(t)) is a solution of the system (5.1), then C(t, a)=C(t, @),
and if (7(t), ¥(¢), ¥t)) is a solution of the system (5.2), then C(¢, )
=max {C(¢, a), C¥(t, a)}. Obviously, B*(¢, &) tends to zero as t—oo and we have
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f " B, ) dt < 26(e) Ly(By@)) ,
(5. 20) e

i]xt—fctll dt = (Bz(a)-Fa)h + tl_B*(t, a)dt,

t t
f ty
(5.21) f |z, — 7, | dt_S_f B¥(t—h,a)dt for all s,t,=s=¢t,+h.

Next, we shall show that
lz,—%, | < A(a) for all ¢,t,=t=¢,.

Since for any ¢,¢, =t =¢,,
2(t) — Z(t) = f {m*(s, 5, 25) — (S, Ts, Zs) — Z,(S, Zs, Vs Zs)
t

- 2(5’ zs» ys, Es)f dS

or

) =50 = [ 10705, 502 = 006,70 ) + 2105 230 )
+ Z1(s, Ty 355 zs)} ds
according as (x(¢), y(¢), z(t)) is a solution of the Vsystem (5. 15) or (5. 16), we have
(5. 22) l=2(6)—2(1)| = ft l'{K(Bz(a))llxs—isll + ofs, By(a)) A(a)

+ M(By(a)) C(s, @) + A(s, Bg(a))]v ds

)

for all ¢,¢, =t =t,, by the conditions (5.17), (5.18) and (5.19). By (5. 20),
we have

I2()—=(t)|| < Aa) — & — <&O0)>|,

which imp].ies that
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lz,—%,| < A(a) for all ¢,2,=t=¢,.
Moreover, from (5. 21) and (5. 22), it follows that

2@)—2@)| = A*t,a) for all ¢, ¢, =t=¢t, + h,

where

A*t, a) = K(By(a)) f °QB*(q-, a)dr + A(a) f ma(fr, B,)) dr

+ M(By(a)) f Ctr, ) dr + f "\, By(a) dr,

and clearly, A*(¢, a) tends to zero as ¢ — oo.
Finally, we shall prove that if |y,| < Hy(@) and ¢, = Ty(a), then

|y <Ct, @) forall ¢,t,=t=t,.
Suppose that there exists a 7,¢, < 7 =¢,, such that
ly-ll = C(r, @) and [ly.[| <z, @) on [£, 7).

As was seen above, ||x,| << Byia) and |z,—%,|| < A(a) on [Z,, 7], and hence
(x(2), ¥(t), 2(¢)) is a solution of the system (5.2) (or (5.1)) on [£,, 7). Therefore,
Lemma 11 implies

”yt H < C(t’ a) on [tO, '1'] >

which contradicts ||y.|| = C(7, @). Thus, we prove completely this lemma.
Corresponding to Theorem 2, by applying Lemmas 12 and 13 instead of
Lemmas 5 and 6, we can prove the following theorem.

THEOREM 5. Suppose that the condition (3.21) and all assumptions in
Lemma 12 are satisfied and that there exists a continuous Liapunov
Sunctional V(t, p,, p,) in Lemma 13.

Then, there exists a continuous function H*(r) > 0 such that the systems
(5.1) and (5.2) are eventually asymptotically equivalent on Q(H*) x C(E").
More precisely, for a given (@, &,) € C(E™) x C(E') and any o > 0 there exist
an H(a)>0 and a T*(@)=0 such that for any solution of the system
(5.1) (or (5.2)) starting from Q.(H*) x C(E") at t = t, t,= T*a), and for
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any VYo € Cp(E™), we can find a solution of the system (5.2) (or (5.1))
through (@, + <x,>,Y0, &, + <2,>) at t =t,, for some (x,,%2,) € E™ x E',
which tends to the given solution of (5.1) (or (5.2)) as t — oo.

Actually, we can put
H*(r) = Hy(r)
T*(at) = max {Ty(By(B,(a)), Ty(Bi(a))}
H'(@) = min {Hy(By(B\(a)), Hy(B\(a))}

where (H,, T,, B,) is the one given in Lemma 12 and (H,, T, B,) is the one
in Lemma 13 for a given (¢, &) < C(E™) x C(E").

6. Asymptotic behaviors of solutions near an integral manifold. Con-
sider a system of ordinary differential equations

(6.1) w= G(w)

and its perturbed system

(6.2) (@) = G(w(@®) + G*¢, wy) ,

where w is an (n+m +1)-vector, G(w) is twice continuously differentiable on
Er+m*1 and G*(t,¢) is a continuous function on [0, o) X C(E"*™*'), Suppose
that (6.1) has a continuous (n+1)-parameter family of periodic solutions

(6.3) w = wy(@(x)t + 5, X)

with real parameter (s, x)€ E' X U, where U is an open set in E” In the
(¢, w)-space, such a family of periodic solutions (6. 3) defines an (n+1)-dimensional

integral manifold 9.
Furthermore, we suppose the following conditions :

(6.4)  @(x) is scalar and is continuous function of xeU, and wy(z+m,x)
= wy(z, ).

(6.5)  m of the characteristic exponents of the linear variational equations
of (6.3) have negative real parts for each (s, x)e E' x U.
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Qwy(z, ) w2, x)

oz > oz

(6. 6) rank[ ]=n+ 1

for all (2, x)e E' x U.

Here, by restricting our considerations in a neighborhood of a given point
x, €U and by replacing x in (6. 3) with £ + x,, we can assume that U is an
open sphere with the center at the origin of E™

Under the assumptions (6. 4), (6.5) and (6.6), Hale and Stokes [5] have
introduced local coordinates (z,y,z), where x,y,z, are n,m, l-vectors, in a
neighborhood of the manifold M in such a way that I is given by

6.7) x =constant, y =0, 2 = @(x)t + 5.

Systems (6. 1) and (6. 2) in the new variables have the forms given by

a(t) = Xu(xp, yi, 21)
(6.8) ¥8) = g(x, yo) + Yi(Ze Yo 21)
(t) = o(x,) + Z(Z0 Y1 21)
and
(2) = Xi(xw, Yo 20) + Xolt, 21, Y0 20)
(6.9) ¥(&) = g(z, y) + Yi(xi v 20) + Yt 20, 305 20)
2(t) = o(x,) + Zi(x, i, %) + Zo(t, 245 V15 20) s

respectively, where w(®) = @(®(0)), g(@,v) is linear in 4 and, actually, ¢(@, ),

X(p, ¥, &), Yo, ¥, &) and Z(@, ¥, £) are functions of (¢(0),v0),&0)). Here,
it is noted that (6.7) is a solution of

(2(t) =0
(6. 10) y(@) = g(x1, 1)
#(t) = o(xy).

By observing the systems (6. 8) and (6.9), Hale has shown the following :
Under the assumptions (6. 4), (6. 5), (6. 6) and

(6.11)  there exist continuous functions A(¢) > 0, M(r) > 0 such that
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fvmmwﬁ<m

and that
GH(6,8)| = M) Mi@)
on [0,00) X Cy(E*™*") for any a >0,
if (¢,, w(t,)) is sufficiently closed to the manifold M and if £, is sufficiently

large, then for any solution w(¢) of the system (6. 1) or (6. 2) through (¢,, w(%,))
there exists a (s,, x,) € E' X U such that

w(t) — wo(@(x)t + So, ) — 0 as  t— oo,
that is, the manifold M is stable with an asymptotic amplitude and an asymptotic
phase (see [3]).
Now, by the same arguments as used in the previous section, we can

prove the following theorem, which is a converse of Hale’s result in some
sense.

THEOREM 6. Under the assumptions (6.4), (6.5) and (6.6), if G*(,¢)
in the system (6.2) satisfies the condition (6.11) or

(6.12) there exists a continuous function N(t,r) > 0 such that

ffﬁ%ﬂhﬁ<w
¢

and that

IG*(, §)| =N (¢, @)

on [0, 00) X C(E™™") for any a >0,
then for anmy (So,x,)€ E' X U there exists a family of solutions of the
systems (6.1) and (6. 2), which tend to wy(@(x,)t + Sy, x,) as t— oo, that is,
there exists a family of solutions of the systems (6.1) and (6.2) with a

given asymptotic amplitude and a given asymptotic phase.

PROOF. By applying Hale and Stokes’ transformation, we consider the
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systems (6. 10) and (6.9), which are of special forms of the systems (5.1) and
(5. 2), respectively.

First of all, it should be noted that by the properties of Hale and Stokes’
transformation, we can see the followings: Letting a, > 0 be the radius of
the open sphere U, (@), (Xi(@,V,8), Yi(@, ¥, &) Zi(@, ¥, £)) and (X, @, &),
Y. (t, @, Y, &), Zi(t, @, Y, &) are defined on [0, ) X Q. (H,) X C(E") (for some
continuous function Hy(r) > 0) and satisfy the conditions (5. 3), (5. 4) and (5. 5),
respectively, where a in these conditions is restrained in [0, @,). Moreover,
there exists a continuous Liapunov functional W(¢, @, 4, &) defined on [0, =)
X Q.(H,) X C(E") and satisfying all conditions in Lemma 11 for the system
(6.10). For the above, see [3] and [9].

Now, let V(¢, @,, ;) be defined by

VL, @, @:) = |9:(0) — @5(0)] .

Then, V(t, @, ,) satisfies all conditions given in Lemmas 12 and 13 for the
system

(6.13) () =0,

which corresponds to the system (3.9). Obviously, the condition (3.21) holds
good with g(a) = 0, and the system (6. 13) has a bounded solution x(¢) = 0.

Therefore, we can see that all assumptions in Theorem 5 are satisfied on
the domain [0, o) X Q.,(H,) X C(E'). Moreover, if @, in Lemma 13 is given
so that |l@, — <<@,(0)>>| is suitably small, then B,(a@) and B,(@) in Lemmas
12 and 13 can be chosen to be less than a, for any @ > 0, a < a,, because B,
and B, were chosen so that the conditions (5.11) and (5.14) are satisfied.
Thus, the eventually asymptotic equivalence between the systems (6. 8) (or (6. 9))
and (6.10) on Q. (H*) x C(E') (for an H¥*(r) > 0) follows immediately from
Theorem 5. Since Hale and Stokes’ transformation preserves the asymptotic
equivalence properties, we can complete the proof.

The author wishes to express his sincere gratitude to Professor T.
Yoshizawa for his constant encouragement and helpful comments.
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