ON BOREL-TYPE METHODS, II

David Borwein and Bruce L. R. Shawyer

(Received February 6, 1967)

1. Introduction. In this paper, we define, and investigate the properties of the strong Borel-type methods $\left[B^{\prime}, \alpha, \beta\right]_{p},[B, \alpha, \beta]_{p}$, which, when the index $p=1$, reduce to the methods $\left[B^{\prime}, \alpha, \beta\right],[B, \alpha, \beta]$ considered in [1]. We use * to designate generalization of theorems, lemmas and definitions of [1]:
e.g. Theorem 3* is a generalization of Theorem 3 of [1].

Suppose that $\sigma, a_{n}(n=0,1, \cdots)$ are arbitrary complex numbers, that $\alpha>0$, that β is real and that N is a positive integer greater than $-\beta / \alpha$. Whenever $q>1, q^{\prime}$ denotes the number conjugate to q, so that

$$
\frac{1}{q}+\frac{1}{q^{\prime}}=1
$$

Let x be a real variable in the range $[0, \infty)$: in all limits and order relations involving x, it is to be understood that $x \rightarrow \infty$.

Let

$$
s_{n}=\sum_{\nu=0}^{n} a_{\nu}, \quad s_{-1}=0, \quad \sigma_{N}=\sigma-s_{N-1}
$$

and define Borel-type sums

$$
a_{\alpha, \beta}(x)=\sum_{n=N}^{\infty} \frac{a_{n} x^{\alpha n+\beta-1}}{\Gamma(\alpha n+\beta)} ; \quad s_{\alpha, \beta}(x)=\sum_{n=N}^{\infty} \frac{s_{n} x^{\alpha n+\beta-1}}{\Gamma(\alpha n+\beta)} .
$$

It is known that the convergence of either series for all $x \geqq 0$ implies the convergence, for all $x \geqq 0$, of the other.

Borel-type means are defined by

$$
A_{\alpha, \beta}(x)=\int_{0}^{x} e^{-t} a_{\alpha, \beta}(t) d t ; \quad S_{\alpha, \beta}(x)=\alpha e^{-x} s_{\alpha, \beta}(x)
$$

Borel-type methods are defined as follows:

1. Summability :
(i) If $A_{\alpha, \beta}(x) \rightarrow \sigma_{N}$, we say that $s_{n} \rightarrow \boldsymbol{\sigma}\left(B^{\prime}, \alpha, \beta\right)$,
(ii) If $S_{\alpha, \beta}(x) \rightarrow \sigma$, we say that $s_{n} \rightarrow \sigma(B, \alpha, \beta)$.

3*. Strong summability with index p :
(i) If

$$
\int_{0}^{x} e^{t}\left|A_{\alpha, \beta-1}(t)-\sigma_{N}\right|^{p} d t=o\left(e^{x}\right)
$$

we say that $s_{n} \rightarrow \sigma\left[B^{\prime}, \alpha, \beta\right]_{p}$.
(ii) If

$$
\int_{0}^{x} e^{t}\left|S_{\alpha, \beta-1}(t)-\sigma\right|^{p} d t=o\left(e^{x}\right)
$$

we say that $s_{n} \rightarrow \sigma[B, \alpha, \beta]_{p}$.
We assume henceforth that the series defining $a_{\alpha, \beta}(x), s_{\alpha, \beta}(x)$ are convergent for all $x \geqq 0$, and, since the actual choice of N in the definitions is clearly immaterial, that $\alpha N+\beta \geqq 2$. The functions $a_{\alpha, \beta}(x), a_{\alpha, \beta-1}(x), s_{\alpha, \beta}(x)$ and $s_{\alpha, \beta-1}(x)$ are then all continuous for $x \geqq 0$. Further, we assume, without loss of generality, that $a_{0}=a_{1}=\cdots=a_{N-1}=0$, so that $\sigma_{N}=\sigma$.

Given a function $f(x)$, we write for $\delta>0$

$$
f_{\delta}(x)=\{\Gamma(\delta)\}^{-1} \int_{0}^{x}(x-t)^{\delta-1} f(t) d t
$$

whenever the integral exists in the Lebesgue sense.

2. Preliminary Results.

Lemma A. Suppose that $f(t)$ is a non-negative function, integrable L in every finite interval $(0, x)$, that $\alpha>0$ and that $\alpha+\beta>0$. Then

$$
\int_{0}^{x} f(t) d t=o\left(e^{\alpha x}\right)
$$

if and only if

$$
\int_{0}^{x} e^{\beta t} f(t) d t=o\left(e^{(\alpha+\beta) x}\right)
$$

This can readily be proved by integration by parts.
Lemma B. If $f(t)$ is non-negative and integrable L^{p} in every finite interval $(0, x)$, where $p>1$, then, for $0<\delta<1 / p$ and $q=p /(1-\delta p), f_{\delta}(t)$ is integrable L^{q} in every finite interval $(0, x)$ and

$$
\left(\int_{0}^{x}\left\{f_{\delta}(t)\right\}^{q} d t\right)^{1 / q} \leqq K\left(\int_{0}^{x}\{f(t)\}^{p} d t\right)^{1 / p}
$$

where K is a constant independent of x.
For a proof, see [2], page 290, Theorem 393.
Lemma 5*. If $f(t)$ is integrable L^{p} in every finite interval $(0, x)$, where $p \geqq 1$, and

$$
\int_{0}^{x}|f(t)|^{p} d t=o\left(e^{p x}\right)
$$

then, for $q \geqq p$ and $\delta>\frac{1}{p}-\frac{1}{q}, f_{\delta}(x)$ is integrable L^{q} in every finite interval $(0, x)$, and

$$
\int_{0}^{x}\left|f_{\delta}(t)\right|^{q} d t=o\left(e^{q x}\right)
$$

Proof. Let $0<\mu<1, \frac{1}{\lambda}=1-\frac{1}{p}+\frac{1}{q}$, so that $(\delta-1) \lambda>-1$. Using Hölder's inequality twice, we obtain that

$$
\begin{aligned}
& \left|f_{\delta}(x)\right|^{p} \leqq\left(\int_{0}^{x}|f(u)|(x-u)^{\delta-1} d u\right)^{p} \\
& \quad \leqq e^{p u x} \int_{0}^{x}|f(u)|^{p}(x-u)^{(\delta-1) \lambda p / q} e^{-p \mu u} d u\left(\int_{0}^{x}(x-u)^{(\delta-1) \lambda} e^{-p \mu(x-u) /(p-1)} d u\right)^{p-11)} \\
& \quad \leqq K e^{p \mu x}\left(\int_{0}^{x}|f(u)|^{p}(x-u)^{(\delta-1) \lambda} e^{-p \mu u} d u\right)^{p / q}\left(\int_{0}^{x}|f(u)|^{p} e^{-p \mu u} d u\right)^{1-p / q}
\end{aligned}
$$

[^0]where, since $(\delta-1) \lambda>-1, K$ is finite and independent of x; whence in view of Lemma A with $\alpha=q, \beta=-\mu q$,
$$
\left|f_{\delta}(x)\right|^{q}=o\left(e^{a \mu x} e^{(q-p)(1-\mu) x} \int_{0}^{x}|f(u)|^{p}(x-u)^{(\delta-1) \lambda} e^{-p \mu u} d u\right)
$$

Thus

$$
\begin{aligned}
\int_{0}^{x}\left|f_{\delta}(t)\right|^{q} e^{-(p-q) t} d t & =o\left(\int_{0}^{x}|f(u)|^{p} e^{-p p u} d u \int_{u}^{x}(t-u)^{(\delta-1) \lambda} e^{p \mu t} d t\right) \\
& =o\left(\int_{0}^{x}|f(u)|^{p} d u\right)=o\left(e^{p x}\right)
\end{aligned}
$$

since $(\delta-1) \lambda>-1$, and so, in view of Lemma A with $\alpha=p, \beta=q-p$,

$$
\int_{0}^{x}\left|f_{\delta}(t)\right|^{a} d t=o\left(e^{q x}\right)
$$

This completes the proof of Lemma 5^{*}.
3. Theorems. This section is divided into two parts. The first contains theorems concerning relations between methods of the same type : that is between " B " methods or between " B " methods. The second contains theorems giving interrelations between " B " and " B '" methods.
3.1. To each " B " theorem stated in this section, there corresponds an exactly analogous " B '" theorem which can be proved by replacing " B " by " B ", " σ " by " σ_{N} " and " $S_{\alpha, \beta}(x)$ " by " $A_{\alpha, \beta}(x)$ " respectively in the appropriate proof outlined below.

ThEOREM 3*. If $s_{n} \rightarrow \sigma[B, \alpha, \beta]_{q}$ then $s_{n} \rightarrow \sigma(B, \alpha, \beta-\delta)$ where $q>1$ and $\delta<(q-1) / q$.

Proof. Assume without loss of generality, that $\sigma=0$. Let $0<\theta<1$. Using Lemma A with $\alpha=q, \beta=-\theta q$, we obtain that

$$
\begin{aligned}
\left|\Gamma(1-\delta) s_{\alpha, \beta-\delta}(x)\right| & =\left|\int_{0}^{x}(x-t)^{-\delta} s_{\alpha, \beta-1}(t) d t\right| \\
& \leqq\left\{\int_{0}^{x} e^{-\theta q t}\left|s_{\alpha, \beta-1}(t)\right|^{q} d t\right\}^{1 / q}\left\{\int_{0}^{x} e^{\theta q^{\prime} t}(x-t)^{-\delta q^{\prime}} d t\right\}^{1 / q^{\prime}} \\
& =o\left(e^{(1-\theta) x}\left\{\int_{0}^{x} e^{\theta q^{\prime}(x-u)} u^{-\delta q^{\prime}} d u\right\}^{1 / q^{\prime}}\right) \\
& =o\left(e^{x}\right)
\end{aligned}
$$

(since $\delta q^{\prime}<1, \int_{0}^{\infty} e^{-\theta q^{\prime} u} u^{-\delta q^{\prime}} d u<\infty$), and so it follows that $s_{n} \rightarrow 0(B, \alpha, \beta-\delta)$.
This completes the proof of Theorem 3*.
THEOREM 5^{*}. If $s_{n} \rightarrow \sigma(B, \alpha, \beta)$ then $s_{n} \rightarrow \sigma[B, \alpha, \beta+1]_{q}$ where $q>0$.
This follows immediately from the definitions.
THEOREM 9*. If $s_{n} \rightarrow \sigma[B, \alpha, \beta]_{p}$ then $s_{n} \rightarrow \sigma[B, \alpha, \beta+\delta]_{q}$ provided
i) $p>q>0, \delta=0$, or ii) $q \geqq p \geqq 1, \quad \delta>\frac{1}{p}-\frac{1}{q}$, or iii) $q>p>1, \quad \delta=\frac{1}{p}-\frac{1}{q}$.

Proof. Using Hölder's inequality, we obtain, for $p>q>0$, that

$$
\begin{aligned}
\int_{0}^{x} e^{t}\left|S_{\alpha, \beta-1}(t)-\sigma\right|^{q} d t & \leqq\left\{\int_{0}^{x} e^{t}\left|S_{\alpha, \beta-1}(t)-\sigma\right|^{p} d t\right\}^{q / p}\left\{\int_{0}^{x} e^{t} d t\right\}^{1-q / p} \\
& =o\left(e^{x}\right)
\end{aligned}
$$

from which case (i) follows.
Case (ii) can readily be proved by means of Lemmas A and 5^{*}, and case (iii) by means of Lemmas A and B . The final theorem in this section exhibits an exact relation between the strong and ordinary methods; it can be proved in a similar way to Theorem 11 of [1] by using Minkowski's inequality instead of the triangle inequality.

Theorem 11*. For $q>1, s_{n} \rightarrow \sigma[B, \alpha, \beta]_{q}$ if and only if $s_{n} \rightarrow \sigma(B, \alpha, \beta)$
and

$$
\int_{0}^{x} e^{t}\left|S_{\alpha, \beta}^{\alpha}(t)\right|^{a} d t=o\left(e^{x}\right)
$$

3. 2.

Theorem 15*. For $q>1, s_{n} \rightarrow \sigma[B, \alpha, \beta]_{q}$ if and only if $s_{n} \rightarrow \sigma\left[B^{\prime}, \alpha, \beta\right]_{q}$ and $a_{n} \rightarrow 0[B, \alpha, \beta]_{q}$.

ThEOREM 18*. For $q>1, s_{n} \rightarrow o\left[B^{\prime}, \alpha, \beta\right]_{q}$ if and only if $s_{n} \rightarrow \sigma[B, \alpha, \beta+1]_{q}$.
Proofs of these theorems can be constructed from the proofs of Theorems 15 and 18 of [1], by using
i) Theorems 3*, 11* instead of Theorems 3, 11 of [1],
ii) Lemma A to give equivalent statements about means and sums,
e.g.

$$
\int_{0}^{x} e^{t}\left|S_{\alpha, \beta}^{\prime}(t)\right|^{q} d t=o\left(e^{x}\right)
$$

if and only if

$$
\int_{0}^{x}\left|s_{\alpha, \beta}(t)-s_{\alpha, \beta-1}(t)\right|^{a} d t=o\left(e^{q x}\right)
$$

iii) Lemma 5* with $p=q$ instead of Lemma 5 of [1],
iv) Minkowski's inequality instead of the triangle inequality,
v) (applicable only to the proof of Theorem 18*), Theorem 15* instead of Theorem 15 of [1].

References

[1] D. Borwein and B. L. R. Shawyer, On Borel-type Methods, Tôhoku Math. Journ., 18 (1966), 283-298.
[2] G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities, Cambridge University Press, (1934).

Department of Mathematics, The University of Western Ontario, London, Ontario, Canada.

[^0]: 1) The second integral does not appear when $p=1$.
