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Let A and B be O-algebras and A®B their O-tensor product with
a

α-norm ([16]). We consider the following linear mapping from A®B to A
a

and ΰ defined by

/ / « \ \
r e s P LΦ[Σai®bi) = Σ<bi>Λlr>ai)

\ \ί=l I i=l /

for a bounded functional φ of A (resp. ψ of B). This mapping satisfies the
following relation

<X,φ®y\r> = <LΦ(x\φ> = <Rφ(x),ψ>

for every xzA®B.
a

Now the above relation may be considered, in some sense, as the non-
commutative version of Fubini theorem in iterated integrals and it is the
purpose of our present discussions to clarify the utility of this result in the
tensor products of C^-algebras settling all type problems of product algebras
(Theorem 2) by using this mapping, and deriving various structure theorems
for them, some of which are regarded as the extension of several results in
[7], [19].

The above mapping is also useful to more general situations (cf. [10],
[15]), since it can be defined in any tensor product of Banach algebras
whenever the defining cross-norm is not less than Schatten's λ-norm ([13]).

Through the discussions S(A) means the set of all states of a O-algebra
A and P(A) means the set of all pure states of A. The value of a linear
functional φ on x is always denoted as <x,<p>. Let AQB be algebraic
tensor product of A and B, then the norm oί is given by
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= sαp
y=i

j=i / = i

where φ and ψ run over the set of all states of A and B and r u n s

3=13

over A Q J B . This norm is also defined as the C*-enveloping norm of the
product representations rπι(g)7r2 oί AQ B where T^ and τr2 run over irreducible
representations of A and B, respectively.

1. We state the above cited non-commutative version of Fubini theorem
in the following manner.

THEOREM 1. Let A and B be C*-algebras, then for any bounded linear
functional φ of A (resp. ψ of B) we can define a linear continuous mapping
Rφ {resp. Lφ) from A®B onto B {resp. A) such as

resp = Σ <bi,ψ>a

= <Rφ{χ\ ψ> = <LΦ{x\ <p

satisfying the relation

x,

for every x in A®B. Moreover the family QR= [Rφ \<p € S{A)} is the total family
a

of positive linear mappings, that is, for any non-zero element x in A®B {not
a

necessarily positive) there exists a state φ with Rφ{x) ^ 0. The same holds for
the family $ z = {Lφ\ψζ S{B)} and also holds for the families {Rφ\φz P{A)}
and {LΦ\ψzP{B)}.

PROOF. We proceed along with Rφ. Since tf-norm is not less than
Schatten's λ-norm,

= sup
mm

= sup
wφmi

= sup
WΦMi

<Σ IHH- IIHMI

so that Rφ can be extended to the mapping from A®B onto .B(||RJ;g||9>||).
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The required relation is derived from the identity;

215

The last half of the theorem is easily seen once we notice that the family of
all product functional φ®ψ is total on A®B and a product functional is a linear

a

combination of product states. The case of pure states is also easily manageable.
We shall show two fundamental properties of these mapping at first.

LEMMA 1. Suppose I is a closed ideal in A®B, then Rφ(I), the closure
a

of Rφ(l), (resp LΦ(I)) is a closed ideal in B (resp. in A).

PROOF. Let Rφ be a fixed map and take an element x in I and an
element b in B. For an arbitrary positive number £, choose an element

ε
i n s o t n a t

11*11 Ml
. By using approximate

units in A we can find element e such that

Since,

bRJ ΣΣ
ί=l

= Σ <χuφ>byi=j

it can be shown that

- Rφ{e®bx)\\ ^ \\bRφ{x) - bRφ

- Rφ(e®bx)\

and R(e®bx) z Rφ{I). Hence bRφ(x) z Rφ(I) and similarly Rφ{x)b
same argument goes through LΦ.

φ(I). The
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A composition series {Λ}0̂ λ̂ λo of a O-algebra A means a well ordered
ascending series of closed ideals Iλ beginning with 0 and ending with A, and
for any limit ordinal λ, Iλ is the closure of the union of the preceding Γs.

LEMMA 2. Let {/λ}0̂ λ̂ λ0 be a composition series of a closed ideal I in

A®J5. Then, collecting each coinciding part of {Rφ{Iλ)} 0<sλ̂ λ0 {resp.

[Lφ{Iχj]o^λ^λo) we get a composition series in Rφ(I)(resp in LJJ)).

The proof is almost a series of verbal checks, so is left to the reader.
Let Aλ and Bλ be C*-algebras on a Hubert space Hx and A2 and B2 be

those on H2. Then both O-algebras AX(&A2 and Bι(&B2 are considered to be
a a

operator algebras on a Hubert space H^H^ In this case we have

LEMMA 3. // Bλ®B2 is a subalgebra of Aλ®A2, both Bx and B2 are sub-
a a.

algebras of Ax and A2 respectively,

PROOF. Suppose that Bx is not contained in Ax and let a be a non-zero
element of Bλ not belonging to Ax. We can find a bounded linear functional
φ on B{Hτ), the algebra of all bounded linear operators on Hu such that

< a, φ > ^ 0 and < x, ψ > = 0 for every x e A^

Take a bounded linear functional Λ/Λ on B(H2), the algebra of all bounded
linear operators on H2, whose restriction to B2 does not reduce to zero
functional.

The restriction of the product functional φ®ψ to Aλ®A2 is zero, whereas

the restriction to BX®B2 does not reduce to zero, a contradiction. Hence
a

AXOBX and similarly A2ΌB2.

In the following, we denote by τrφ the canonical representation associated
with a state φ of a C^-algebra. HΛ means the representation space of a
representation TΓ. We also denote by C(H) the C*-algebra of all compact
operators on a Hubert space H. An irreducible representation 7Γ of a C*-
algebra A is called normal if τr(A) contains a (non-zero) compact operator of
HΛ (hence necessarily TΓ(A)ΏC(H) by the result of [5]).

An immediate corollary of Lemma 3 is the following result concerning
normal representations without the assumption of separability.

COROLLARY. Let ττ1 and τr2 be irreducible representations of C*-algebras
A and B. The product representation TΓ^TΓZ of A®B is normal if and only

a

if both TΓJ and TΓ2 are nor?nal.

Now we shall decide all types of tensor products of C^-algebras. Though
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proofs are separated we shall state all of them together for completeness in
the next

THEOREM 2. Let A and B be C*-algebras. Then,
(a) A®B is a C*-algebras with continuous trace if and only if both A

a

and B are C*-algebras with continuous trace,
(b) A®B is a generalized C*-algebra with continuous trace (abbreviated

a

by GTC-algebra) if and only if both A and B are GTC-algebras,
(c) A®B is a CCR algebra if and only if both A and B are CCR

a

algebras,
(d) A®B is a GCR algebra if and only if both A and B are GCR

a

algebras,
(e) A®B is an NGCR algebra if and only if either A or B is an NGCR

algebra.

A part of these results is found in Wulfsohn [18], [19] and Guichardet
([7] some of them with the assumption of separability). It is also to be noticed
that using Sakai's recent result [12] we can prove the assertion (e) along with
the same line as Guichardet [7] used the results of Glimm [6] in separable
case, but our proof of (e) is more direct and uses only elementary properties
avoiding to use the results of Glimm's difficult constructions.

Indeed the assertion (e) is an easy consequence of the following result
which seems to have an interest of its own.

THEOREM 3. Let I be a CCR ideal in A®B and φ be a pure state of
a

A (resp. B). Then ~RjT) (resp ΣJJf) is a CCR ideal in B (resp in A). If I is

a GCR ideal in A®B, Rφ(Γ)(resp LJT)) is also GCR ideal in B (resp in A).
a

PROOF. We may assume that Rφ(I)^0. Write φ = tfπ φ(ωξ) where ωξ is a

vector state of ττφ(A) by a vector | ( | j | | | = l ) in HΛφ. Let ψ be a pure state of

B such that τrΦ \ Rφ(I), the restriction of τrΦ to RJJ), is a non-zero represent-

ation of a C*-algebra Rφ(l)
For any element x in A®B and a bounded linear functional φ of

a

we have by Theorem 1

< iτφ(Rψ(x)), φ> = < RΨ(x), ιτ

= <X, t^rφ(ωξ)®tτrΦ(φ) > = < x, t(πφ(g)7Γφ)(ω!:<g)φ) > = < if^ir^x), ωξ®φ > •(*)
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Since τr01Rφ(ΐ)^0, the above relation implies that πφ®πΦ\I^0, so that
becomes an irreducible representation of / and as / is a CCR ideal,

Hence 7Γ0(B) D C(HX^) by Lemma 3. Therefore the equality (*) also implies
that the polar of τrΦ(Rφ(I)) and that of C(HΛφ) in the conjugate space of πΦ(B)
coincide each other, which shows 7rφ(Rφ(l))—τrφ(Rφ(I)) = C(HΛφ). As every
irreducible representations of Rφ(Γ) arise in this way, Rφ(ί) must be CCR ideal
in B.

Next, let / be a GCR ideal in A®B and {jx}o^x^x0 a canonical composition
a

series for /. Denote by {JA}O^A^A0 the derived composition series of Rφ(Γ) by
Rφ(cί. Lemma 2) and let ψ be a pure state of B such that 7rΦ\JA = 0 and
•ΠVUΛ+I^O for some index Λ. The representation irφ can be considered
naturally as an irreducible representation of a Of-algebra JAY\I J A- Consider the
corresponding family of the ideal Γs with Rφ(Iχ) = JA±I There exists the
smallest ideal Iλ among them and in this case λ is not a limit ordinal. Thus
X = χχ + 1 and clearly Rφ(Iλι)=JA.

Now for a vector state ωv in HΛ the equality (*) turns out to be

<irΦ(Rφ{x)\ ωη> = <πφ®πΦ(x\ ωξ®ωn> = <τrφξζ)7Γφ(x), ωξ®η>.

Hence τrφ \ JΛ = 0 implies that the restriction of a vector state ωξ®η to
•πV®7r0(/λl) is zero, which implies τrφξξ)7rφ\I\x = 0. On the other hand, τrφ<g)7rΦ\I^0
because τrφ\Rφ(lλι+1) ^0. Therefore τrφ(g)7rΦ can be considered to be an
irreducible representation of Iλl+1/Iλι which is a CCR algebra by assumption.
Then the same argument as in the proof of the first half part of the theorem
shows that

and since each irreducible representation of JJ+I/JA arises in this way JA+I/JA

is a CCR algebra. This completes the proof. Similar arguments show that the
results also hold for Lφ.

An immediate consequence of Theorem 3 is the only if parts of the
assertions (c) and (d). A direct proof of the if parts of (c) and (d) are found
in [18] and [19]. The proof of the assertion (e) goes as follows; if either A or
B is an NGCR algebra there exist no non-zero GCR ideals in A®B by

a

Theorem 1 and 3, hence A®B is an NGCR algebra. The only if part of the
a.

assertion (e) is an easy consequnce of the if part of (d). Direct proofs of the
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if parts of the assertions (a) and (b) are due to Wulfsohn [19]. But, before
going into our final discussions we shall quote here the definitions of a C*
algebra with continuous trace and a GTC algebra following Dixmier [4].

Let Trτr(a) be the trace of the operator π(a) for an irreducible representa-
tion 7Γ of a C*-algebra A and a positive element a in A. Since Trπ(a) only
depends on the unitary equivalent class of 7r, Trτr{a) is considered a function
on A, the dual space of A. In the following we shall identify an irreducible
representation TΓ with if, the unitary equivalence class to which 7r belongs. Let
•p be the set of all positive elements a in A such that Trπτ(a) is a finite
continuous function on A, then there exists a self-ad joint two-sided ideal tn(A)
in A whose positive part coincides with p. Put J(A) = m(A), the closure of
m(A). A is called a C^-algebra with continuous trace if J(A) = A. On the other
hand, generally we can find a composition series {Iχ}o^λ^λo of a closed ideal
Iλo in A such as J(A//λffl) = 0 and J(A/Iλ) = Iλ+1/Iλ. If Iλΰ = A, we call A a
GTC algebra and {Iχ} the canonical composition series of A. We shall use the
following characterization of GTC algebras by [4; proposition. 12 and 13],
that is, a C*-algebra A is a GTC algebra if and only if there exists a well
ordered ascending sei~ies {Uλ} of open sets in A, beginning with null set and
ending with A, and such that if λ is a limit ordinal Uλ is the union of the
preceding Uys and each point in Uλ+1 — Uλ admits a fundamental system of

closed neighbrohoods in A—Uλ.

LEMMA 4. Let φ be a pure state of A (resp. B). Then Rφ(J(A®Bj)cJ(B)
cc

(resp. Lφ(J(A®B))cJ(A)).
a

PROOF. It is sufficient to show that Rφ(m(A®B)+)cm(B)+ where the sign
a

"+" indicates positive parts of algebras. We choose a complete orthonormal
basis {ξj} in H7Cφ so that φ — t7rφ(ωξ^. Let ψ be a pure state of B and {η^}
be a complete orthonormal basis in HXφ. Note that {ξi®ηίc} is a complete
orthonormal basis in HΛφ®HXφ. For an arbitrary element a in tn(A(g)β)+,

by assumptions. Therefore,

= Σ Σ < πv(g)77v(α), ωξt(8>nk> = Σ Σ <fτrΨ®πΦ(a\ ωξi®ωVk>
i k
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= Σ Σ < ^ VW ®v*(ωj> = Σ Σ
i A: ί Λ

= Σ Σ MR^ξjiafiv** Vic) =
ί k

Hence,

Tr(τrΦ(Rφ(a))) =

Now the first term of right hand is continuous in irφ®πΦ e A®B, the dual
a

space of A®B, hence continuous in πφ fixing τrφ, while the second term is
a

the sum of positive lower semi-continuous functions (cf. [3; Proposition 5])
with variable τrΦ hence itself lower semi-continuous. Thus Tr(irφ(Rφ(a))) is a
finite upper semi-continuous function on B and as Tr(τrΦ(Rφ(ά))) is always
lower semi-continuous in B ([3]) this concludes the proof. The proof for Lφ

is almost the same.
Since Rφ and LΦ are onto mappings Lemma 4 contains the only if part of

the assertion (a).
At last, suppose that A®B is a GTC-algebra. Take a pure state φ of

a

A and let {JA}Q^A^A0 be a composition series of B derived by Lemma 2 from
the canonical composition series {/λ}ô λ̂ λ0 of A®B. The duals of all J's form
a well ordered ascending series of open sets in B, beginning with null set
and ending with B, and such that if A is a limit ordinal JΛ is the union of
the preceding J's. Take an element τr0 in JJ+I—JJ- The arguments in the proof
of the last half part of Theorem 3 show that there exists an index λ satisfying
Rφ{Iλ+1) — JA+i and Rφ(Iλ) = JΛ and that τrφ®τrQ belongs to Iλ+1 — Iλ.

Now a GTC-algebra is a GCR algebra, hence a C*-algebra of type I. Thus
by (d) and [18; Theorem 4] we can identify the topological space A ® B with
AxB (the identification goes through 7Γ!(g)7r2 = (7r1? τr2)). Let [/bean arbitrary
neighborhood of τr0 in B. Denoting by V an open neighborhood of πφ in A
we get a neighborhood VxU of τrφ®7r0. Hence there exists an open neighbor-
hood W(aVxU) of 7rφ®τr0 such that

Wn(AxB-Tλ)czVχUn(AxB-%

by the above cited result in [4]. For this neighborhood W we can find open
neighborhoods VΊ and U1 of τrφ and 7r0, satisfying V\XU dW. Then one easily
sees that



TENSOR PRODUCTS OF C*-ALGEBRAS 221

that is, 7r0 admits in B—JΛ a fundamental system of closed neighborhoods.
Therefore £ is a GTC-algebra and similarly A is a GTC-algebra, too. Thus
all proofs of Theorem 2 are completed.

2. Here we consider at first the types of general tensor products A®B of
β

C^-algebras A and B by a compatible norm β. A cross-norm β in AQB is
called a compatible norm if the completion of the normed "^-algebra AQB by
/3-norm becomes a C*-algebra. That is, β is the norm satisfying the following
conditions

. 7 = 1 .7 = 1

and I

Among these norms Turumaru's tf-norm is the smallest one (Takesaki [14;
Theorem 2]). Hence a product functional φ®ψ is always continuous on A®B.

β

On the other hand, there exists the largest compatiale norm v as shown in
Guichardet [8]. A®B is nothing but the enveloping O-algebra of an involutive

Banach algebra A®B, tensor product by γ-norm in the sense of Schatten [13]

(cf. [11]). Following [14], we say that a C*-algebra A has the property (T) if

tf-norm is the unique compatible norm in AQB for any C*-algebra B. A GCR

algebra has the property (T) by [14; Theorem 3], hence there are no problems

for compatible norms in the corresponding if parts of the assertions (a),

(b), (c) and (d) in Theorem 2. On the other hand, suppose that A®B

is a GCR algebra. Since β^cί, A®B becomes a homomorphic image of a GCR

algebra, A®B, hence itself a GCR algebra. Therefore both A and B are GCR
algebras by the assertion (d) of Theorem 2 and a posteriori β = ct. As all classes
of C*-algebras in the assertions (a), (b) and (c) are GCR algebras, the above result
shows that there are no distinguished points in the corresponding only if parts
in (a), (b) and (c) for a compatible norm from those in Theorem 2. As to the
assertion (e) the only if part holds for any compatible norm β. In fact, suppose
that A®B is an NGCR algebra and that both A and B have non-zero GCR

0

ideals / and J respectively. Then the closure of IQJ in A®B is a non-zero

GCR ideal by the above consideration, a contradiction. Hence either A or B
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is an NGCR algebra. However the author does not know whether or not
A®B is an NGCR algebra when A or B is an NGCR algebra.

Next, let Kl9 K2 and K be the largest GCR ideals in A, B and A®B
a

respectively.lt is plausible that generally Kι®K2= K, which will clarify the
a

reason of the assertions (d) and (e) in Theorem 2. Unfortunately, we get only
the following partial result.

THEOREM 4. Let A and B be C*-algebras. If either A or B has the
property (T), then Kλ®K2 =K in A®B.

a a

PROOF. Assume that A has the property (T), i. e. a = v in any O-tensor

product A®B. It is shown in [8] that the kernel of the canonical homomor-

phism A®B to A®B/K2 induced by the quotient homomorphism B~>B/K2 is

A®K2. If K2HB, λ®B/K2 = A®B/K2 is an NGCR algebra by the assertion (e)

in Theorem 2 and A®K2Z)K. The case K2 = B also implies that A®K2
V V

= A®BΌK. Next, consider the homomorphism A®K2-
J>A/K1®K2 induced

a v v

by the quotient homomorphism A—>A/Kλ. Then similar arguments as above

show that its kernel KX®K2 (cf. [8]) contains K. As a GCR algebra has the

property (T), KX®K2 coincides with KX®K2 and K1®K2ΌK, while the
v a a

converse inclusion is seen from the assertion (d) in Theorem 2.

As for J(A),J(B) and J{A®B) it can be shown that if KX®K2 =K holds

in A®B we have J(A)®J(B) = J(A®B). We omit the proof. "
a a a.

3. Let 7r be an irreducible representation of A®B on Hx. As it is known,
a

7r induces canonically factor representations τrλ and 7r2 of A and B on Hπ

such that ηr(a®b) = πι(cήτr2φ)=π2(b)πι(a) (cf.[7]) and there exists a natural
isomorphism between the algebraic generation by TΓ^A) and π2(B) and
7r1(A)07r2(β) (cf. for example [1; Chap. 1 §2, Exercise 6]). Hence transposing the
norm in the algebraic generation by ir^A) and τr2(β) to 7r1(A)Qτr2(β) we get
the tensor product τr1(A)®π2(B) which is necessarily isomorphic to τr(A®B).

β a

These represenattions nrx and π2 are called restrictons of ΊΓ to A and B. Now
let / be a proper closed ideal in A®B and *π be an irreducible representation

a

of A®B vanishing on /. Denote by φ and ψ pure states of TΓ^A) and π2(B)
a

and by θ^ the canonical isomorphism between π{A®B) to 7r1(A)®τr2(5), then
a β

an easy calculation shows that trπt tθn:{φ®ψ) = trπΊ{φ)®tfτr2{^) and we get the
following result.

"For each proper closed ideal I in A®B, we can find a pure state trπΊ(φ)
a

®iτr2(ψ) vanishing on Γ'.
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Combinning this with Theorem 1 we can show that the tf-tensor product

of simple Of-algebras is also simple. In fact, let A and B be both simple C*-

algebras and / be a proper closed ideal in A®B. There exists a pure state
a

vanishing on /, and <I,<po®ψo> = <Rφo(I), ψo>=zO. Hence Rφo(l) is
a proper closed ideal in B by Lemma 1, and Rφo(l) = 0. Therefore for an
arbitrary pure state ψ of B,

= <Rφo(I),

As A is also simple, this means LΦ(I) = 0 i.e. Lφ(I) — 0. Hence 7 = 0 by

Theorem 1.

This fact is proved at first in [14].

Now the question naturally arises; when does the family of all (product)

pure states ψ®ψ of A®B separates closed ideals in A®B ? This question
a. a

means that to what extent a closed ideal in A®B is determined by its
a

components in A and B and that, in other words, to what extent the quotient

algebras of A®B are compatible with Fubini type theorem described in
a

Theorem 1. So we set the following definition.
DEFINITION. A®B is called to satisfy the condition (F) if the family

a

P(A) and ψeP(B)} separates all closed ideals in

Before going into the structure theorem of the algebra satisfying condition

(F) we note that a similar argument as in the first part of this section shows

that there exists a canonical isomorphism θπ between the image 7r(A(g)β) of
a

a factor representation iτ of A®B and 7rι(A)ξξ>7r2(B) such as
a β

where τrλ and τr2 are restrictions of π to A and B.

THEOREM 5. The following statements for A®B are equivalent',
a.

1. A$$B satisfies the condition (F),
a

2. for each closed ideal I in A and J in B, the kernel of the homomor-

phism A®B—>A/I®B/J canonically induced by the quotient homomorphisms

A-+A/I and B->B/J is given by 7 0 B + A 0 J .
a a

3. for any factor representation TΓ of A®B, nr(A®B) is canonically
a a

isomorphic to the a-tensor product 7Γ1(A)®7Γ2(B) where irx and τr2 are restric-
cc

tions of ir to A and B.
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If either A or B is of type I, A®B satisfies the condition (F) as seen
a

from the condition 3 and [14; Theorem 3]. Hence Theorem 5 explains the back
of Theorem 1 in [19]. Moreover, since the homomorphic images of the C*-
algebra which is an inductive limit of C^-subalgebras of type I in the sense
of Takeda [20] are also algebras of the same type, we can see by Theorem 5
in [14] and the condition 3 that A®B satisfies the condition (F) if A or B is

oc

an inductive limit of O-subalgebras of type I.
PROOF OF THEOREM 5. The implication 1 -> 2. Let 7 and J be closed

ideals in A and B and θl9 θ2 be the quotient homomorphism A —> A/1 and
B-^B/J. Denote by θι®θ2 the canonical homomorphism A®B —> A/I®B/J

a a

induced by them. Clearly the kernel of #i®#2, (fli®^)"1^), contains the ideal
7<g)B+A®J. Suppose that φ®y\r\l®B + A®J = 0 where φ € P(A) and ψ £ P(B).

a a a a

We have φ \ I = 0 and ψ ] J — 0, so that φ and ψ induce pure states φ and -ψ '
on A/7 and 5/J. Then for an arbitrary element x in (θί®θ2)~\O\

Therefore the condition 1 implies that (θι®θ2)''ι(0) = 7®B + A®J.
a a

The implication 2 —> 3. Let TΓ be a factor representation of A ® 5 and 7τ1?

τr2 its restrictions to A and 7?. As we said above, there exists a compatible

norm β in 7r1(A)Oτr2(β) such that ^ ( A ^ β ) is isomorphic to 7r1(A)®τr2(5) by

θx. Let p be the canonical homomorphism from Ίri(A)®7Γ2(B) to 7Γ!(A)(g)7r2(β).
β a

The composed homomorphism poβ^o^ is nothing but the product homomorph'sm

from A®B to r7rι{A)®τr2{B) induced by rτri and τr2. As the latter is a composition

of the homomorphism A®7>—> A/<7rί"1(0)®Z?/7rj"1(0) and the isomorphism between

A/πϊ1(0)<g>B/πi\0) and 7r"(A)®7r2(β), the kernel of poβ^ is τrΓ1(0)(g)β + A^^XO)
α a. a.

by the assumption 2. On the other hand,
τrΓ1(0)®β + A(g)7r2-

1(0)C7r-1(0)cthe kernel of poβ^π.
a a

Hence 7r1(0)=τrΓ1(0)(g)β+A(8)7r2~
1(0), and p is an isomorphism, that is, β = ot.

a a

The implication 3—> 1. Let 7 and J be distinct closed ideals in A®B. We
u

may assume that 7 is not contained in J. Take an irreducible representation
ΊT of A®7? such that 7r(7)̂ vO and τr(J) = 0 and let rτrι and 7Γ2 be its restrictions.

a

We have 6^0^(1)^0 in 7Γ1(A)®7Γ2(J5) and we can find pure states ψ and ψ of

and τr2(J3) such as φ(g)f\θπo<7r(I)^0. Thus,
and

This completes the proof.



TENSOR PRODUCTS OF C*-ALGEBRAS 225

In the case that both A and B are separable O-algebras the situation is
described also in the following manner. We shall show its outline.

Let Ω(A), Ω(JB) and Ω(A®β) be structure spaces of A, B and A®B i.e.
a a

spaces of all primitive ideals with hull kernel topology. We shall define the

mapping Φ from Ω(A&i3) to the product space Ω(A)xΩ(-B). Let P be a

primitive ideal in A ® ΰ and take an irreducible representation ΊΓ of A®B
a. a

such as τr~\0) = P. Its restrictions τrx and 7r2 are factor representations and
both O-algebras TΓ^A) and τr2(B) have no ideal divisors. Hence TΓ^^O)^ Ω(A)
and 7Γ2~\O) € Ω(B). Both ideals π1~

1φ) and rrr2~
1(0) do not depend on the choice

of the representation TΓ and we get the mapping Φ defined as Φ(P) = (τr1~
1(0\

τr2~1(0)). Φ is a continuous onto mapping from Ω(A®β) to Ω(A)XΩ(JB). On the
a

other hand, let P and Q be primitive ideals in A and B and consider the

irreducible representations f7rί and τr2 such as rrrι~
1(0) = P and 7Γ2~

1(O) = Q. The

representation TΓJ®?^ is airreducible and (#7Γi®7r2)"*
1(0) e ί2(A®B) and again the

kernel ( T Γ ! ® ^ ) " 1 ^ ) does not depend on the choice of TTΊ and 7Γ2, so that we can

define the mapping Ψ from Ω(A)xΩ(B) into Ω(A(g)B) by Ψ(P, Q) = (τr1(8)7r2)-
1(0).

α

The mapping Ψ is also continuous.

Now the composed mapping Φ Ψ is the identity map in Ω(A) X Ω(β).

While, "the composed mapping ψoφ ^ the identity map in Ω(A®S) if and

only if A®B satisfies the condition (F)." In this case, Ω(A®£) is homo-
a a

morphic with the product space Ω(A) x Ω(β).
The relation between the condition (F) and the property (T) is the follow-

ing; if the homomorphic images of a C*-algebra A having the property (T)
have always the property (T), then A®B satisfies the condition (F), by 3 of

a

Theorem 5, for any O-algebra B. However it is not known whether the
homomorphic images of a O-algbera having the property (T) have also the
property (T) or not.

We note at last that if A®B satisfies the condition (F) the equality
KX®K2 = K holds where Ku K2 and K are the largest GCR ideals in A, B

a

and A®B used in Theorem 4. In fact, if a pure state φ®ψ (φ £ P(A), ψ e P(B))
a

vanishes on Kλ®K2 we have ^ 1 ^ = 0 or ψ\K2 = 0, and
a

<X,<p<g)ψ> = <Rφ(x),ψ> = <Lψ(x\φ> =0
for every x € K because Rφ(K) c K2 and LΦ(K) c Xx by Theorem 3. Since

C.K, this implies the conclusion.
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