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0. Introduction. Let M be a compact regular Sasakian space, m: M — B
the fibering of M. Recently S. Tanno [10] discussed relations between the
Betti numbers of M and B by making use of the exact sequence of Gysin.
On the other hand it is well known that any harmonic p-form (p=m+1)
in a compact K#hlerian space M®™ is written in terms of effective harmonic
forms and the fundamental 2-form of M?™. The work by Tanno suggests
that an analogous theorem is expected in a compact Sasakian space.

In this paper, first we fix our notations in §1 and introduce a notion of
a C-harmonic form in a compact Sasakian space in §4. The decomposition
theorem for C-harmonic form will be given in the last section. We shall give
only outline of proofs by the following two reasons: (1) the discussions in §2
and §5 are similar to that of an almost Hermitian space and a Kéhlerian space,
(2) the results in §4 are based on straightforward computations though they
are rather complicated and it is expected to have a reformulation by Y. Ogawa
in a forthcoming paper [4].

1. Preliminaries.” Consider an n dimensional Riemannian space M" and
let {£}}, A =1,-++,n, be its local coordinates. Denoting the positive definite
Riemannian metric by ¢, the Riemannian curvature tensor and the Ricci
tensor are given by

Rt =afpi-afpl+ (e al - m ol
R, =R,

where «‘ 7:;} means the Christoffel symbol and 9, = 9/9x".

Components of a skew-symmetric tensor uy,...1, are considered as coefficients
of a differential form :

1) As to notations we follow S. Tachibana [8].
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u= iu;t,...x, dx" N\ -+« N\ dx™,

2!

so we shall represent this fact by
u: (W, = U, -

The exterior differential du and codifferential 8x are given by the
following formulas :

(du)l-llx"‘hv = vl-lrukl"‘ln - Z VAI ukl"‘li-lﬂllﬂ"‘lﬂ’ »
or

(du)/"l"‘lﬂd = Z (—1)i+1 va’tukl"'il"'lﬂﬂ b P; 1 k4

dup = Viu, p=0,
/\ . .
where A; means that A; is omitted,
@ty = = VUaryn,, P=1,7
u=0, p=0.

About the Laplacian operator A =d8+38d, we know the following formulas:

(Aw)ra, = —V*Vallaa, + Z Ry uy,oa o, + Z RapP Uiy speeetyuoenitps
i<t
=2,
(Au)r = —V*Vatta + R*u.,, p=1,

Au

—V*Veu, p=0.

A pform u is called to be harmonic, if it satisfies du =0 and 8z = 0.
Thus Au = 0 holds good for a harmonic form .
The inner product of p-forms # and v is given by
<u,v> = ;11—“"““’ phets

where v are contravariant components of v.

2) Y means the operator of covariant derivation.
3) We remark that 3z has the opposite sign of that in [8].
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Especially the norm |«| of « is given by
lu|* = <w,u>, |u| =Z0.

Let » = mdx* be a lform and we identify » with the vector field
7" =9"5.. The operator i(n) is defined by

G Whryeer, = 0" Uaryer,, P=1,

impu=0, p=0
Let =(1/2) @1, dx* \ dz* be a 2-form and we define an operator i(p) by

(i(¢) u)Al"'Aﬂ = (1/2) ¢0¢B u"‘ﬁ/‘a"'ln > P; 2 >
@pu=0, p=0,1.

The exterior product of » or @ and a p-form u are given explicitly by
the following formulas :

AW aryenry = Nalhrynr, — Z My Uhperpyaeeds s

or
AW Aty = 2 (=)t Rty P=1
(77/\1")7& =uUm, p= 0:
(‘7’/\u)am,---h,, = PaglUp,..r, — Z Par, UL oAy 1B8:001,
— Z PraUL oAy Beedy T Z PAA U oAy g Ay iBeeedy
i<i
or

@AW erye = 2 (1) g tn, e dtps P,

Jj<i

(@Aun, =upr,, p=0.

Now suppose that M™ is compact orientable.

Then the global inner
product of p-forms % and v is defined by

(«, v) =f <u,v>dV,
M
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where dV maens the volume element of M". We shall denote the global
norm of z by |«|, ie., |u|*=(uw), || =0.

Let #,v, w,p and 5 be any p, p—1, p—2, 2 and 1 form respectively,
then the following integral formulas are well known :

(du, v) = (u, 8v)
(1(77) u, ‘U) = (u, "7/\7)) s (l(¢) u, w) = (u’ A\ w) s
(1.1) (Au, w) = | du||® + ||Su]|®.

Here we state the following lemmas which are useful for the later
discussions.

LEMMA 1.1. For a skew-symmetric tensor u™ we have
Ry.u™ =0.
LEMMA 1.2. For a skew-symmetric tensor u™ we have
Rypastt™® = —2Rpup,u® .
2. Almost contact metric space. An n dimensional Riemannian space is

called an almost contact metric space, if it admits a 1-form 5 = mdx* and a
2-form @ = (1/2)pr,dx* Adx* satisfying

2.1) In] =1: my =1,
(2.2) ime=0: 7"Pa =0,
(2~ 3) ¢al¢ua = _Snl + "Il’

where we have put

P = 9 Py

It is known that an almost contact metric space is orientable and its
dimension 7 is necessarily odd: n=2m+1.

In this section we shall concern ourselves with an n(=2m+1) dimensional
almost contact metric space M™.

We introduce an operator L by

Lu =pAu
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for any form w.
It is evident that if a p-form u satisfies i() «u=0 then we have i(n) Lu=0

and i(y) i(2p) u=0.
First we can get
LEMMA 21.% If a p-form u, satisfies i(y) u,=0, then we have
i(2p) L*u, = L*i(2p) u, + k(n+1—2p—2k) L*"'u,,

where k is any non-negative integer and L~'=0.

We shall call a p-form u to be effective if i(n)u = 0 and i(2p)u = 0 hold
good. A O-form is always effective. From Lemma 2.1 we can get

LEMMA 2.2. For an effective p-form u, we have

129y L u, = (s+k)(s+k—1)++-(s+1)
X (n+1—2p—25s—2)++« (n+1-2p—25s—2k) L°u,,

where k is any positive integer and s non-negative integer.
Especially we have
LEMMA 2.3. For an effective p-form u, we have
12pYLru, = k! (n+1—2p—2)+«+ (n+1-2p—2k)u,,
where k is any positive integer.
From this lemma for a large £ we get

THEOREM 2.1. In a 2m+1 dimensional almost contact metric space,
there does not exist an effective p-form other than 0 for p> m.

By virtue of Lemma 2.2 and the mathematical induction, we obtain the
following

LEMMA 24. If ¢, £ =0,1,+-+,7, are effective (p—2k)-forms and
satisfy

4) Proofs of lemmas in this section are analogous to that of an almost Hermitian space, see,
for example, S.I.Goldberg, [2], p.179-180.
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SN
Z Lk¢p~2k = 0 ’ r= [Vg_J >
then we have ¢p,_op =0 for p=m+1.

From these lemmas we have the following theorem which corresponds to
Hodge-Lepage theorem in an almost Hermitian space.

THEOREM 2.2. In a 2m+1 dimensional almost contact metric space, if

a p-form u, (p=m+1) satisfies i(n)u, =0, then it is written uniquely in the
Sform

Up = ;;ZoLk¢p_2k > r= [—g‘] )

where ¢,y are effective (p—2k)-forms.
PROOF. The cases p=0 and p=1 are trivial. Assuming its validity
for p such that 2= p=m' <m, we shall prove that for p+2. Let u, be a
p-form such that
i(mu, =0, p=m,
then there exists a p-form v, uniquely such that

21 i(2p) Lv, = u,, i v, =0.

In fact, by the assumption of the induction there exist uniquely effective forms
Yrp-9x such that

Uy = Z LFry o .
By Lemma 2.1 we know that

Uy =2 LE
is the unique solution of (2.1), where

_ 1
¢:ﬂ‘2k - 2(k+1)(m—p+k) '\P‘p—Qk'

5) [a] means the integer part of a.



204 S. TACHIBANA
Now let %,,, be a (p+2)-form such that i(y)u,,, = 0 and put
1(20) Upsy = Uy,

then we have that i(y) #, = 0. For this #, we consider the v, of (2.1) and
put

bpia = Uprs — va‘
Then ¢,,, is effective and we have the form

up+2 = ¢p+2 + ZLk+l ¢p—2k .

The uniqueness follows from Lemma 2.4. Q.ED.

Let A?(M) be the vector space of p-forms on M™" satisfying i(p)u, = 0.
Then we can get the following two theorems.

THEOREM 2.3. i(2p)L is an automorphism of A°(M) for p=m—1.

THEOREM 24. L: A *)(M)— A?(M) is an into isomorphism for
2= p=m+1

The following lemmas are necessary for the discussion in the later sections.
LEMMA 25. If u satisfies i(p)u = 0, then we have |pN\u|=|u].
As a special case of Lemma 2.1 we have
LEMMA 26. For any (p—2)-form v such that i(n)v = 0, we have
i(2p) Lv = Li(2p)v + (n—2p+3)v.

Now we introduce an operator ® by

*
* ull"'hﬂ = z¢7‘4aull"'ll-1“"'7‘p b Pg 1 H
u=Qu :

=0, p=0,

*
then « is again a p-form for a p-form .

LEMMA 2.7. For any p-form u such that i(p)u = 0, we have



ON A DECOMPOSITION OF C-HARMONIC FORMS 205
i(2p)Pu = D i(2p)u.

3. Identities in a Sasakian space. An 7 dimensional Sasakian space is
a Riemannian space which admits a unit Killing vector field #* such that

3.1 VAVt = G — -
In the following we shall consider an n dimensional Sasakian space M™.
If we put @,” = V,7", then @,, = ®,*ga, m and ¢r, give an almost contact

metric structure to M™ and hence M™ is orientable and n is odd: n = 2m+1.
As (3.1) becomes

3B.2) VaAPu = Mo — T Jrus
we can get
View = —(n=Dn, V'Vapu = —20,.
Applying the Ricci’s identity to s we have
Vo Vum — VuVom = — Ryn® 1
from which it follows that

R,,,,;qu = MGur — PG
Rfn.=(m—1)n,.

Next, applying the Ricci’s identity to @* we have
VoVo@i — Vo V@i = Ry P2® — Riai® 9",
from which we can get the following formulas:
Rpoe* P1* — Roi® Ps" = 98" — @ gor — Por " + 97 g,
P Reppe = = Roone @i° + PorJou — Poudor — PorGou + Pou o »

(1/2) ¢aB Raﬁlp = Rle ¢p.s + (1'1 — 2) Prus
R..p’ = — R0’ R:?’eh = R} Py .

LEMMA 3.1. For any skew-symmetric tensors u*® and w" we have
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X Roaputt™® 0™ = Rapyopd ™ wt .
Now we define two differential forms @ and % by
@ = (1/2) prda* A\ dz*, n=mdz",
then we have
dn=2p.

About harmonic tensors in a compact Sasakian space the following
theorems are known [8].

THEOREM A. In an n(=2m+1) dimensional compact Sasakian space,
a harmonic p-form u is orthogonal to 7, ie., i(p)u=0, if p=m.

THEOREM B. In an n dimensional compact Sasakian space, if u is
a harmonic p-form (p= m), then so is ®u.

THEOREM C®. The (2p+1)-th Betti number of an n dimensional com-
pact Sasakian space is even, if 0 <2p+1=m.

From Theorem A we have

LEMMA 3.2. Any harmonic p-form (p=m) in a compact M" is
effective.

4. C-harmonic form in a compact Sasakian space. Let M" be an n
(=2m+1) dimensional compact Sasakian space. We shall call a p-form # in
M™ to be C-harmonic, if it satisfies

(i) i(u=0,
(ii) du=0,
(iii) du=9N\iCp)u.?

By definition, a C-harmonic form of degree 0 or 1 is nothing but harmonic.
It is easily seen that the form ¢ itself is a C-harmonic 2-form.
By virtue of Theorem A and Lemma 3.2, we have

6) S.Tachibana and Y.Ogawa, [9]. S.Tanno [10].
7) Y.Ogawa [4] proved that if p<m then (i) is a consequence of (ii) and (iii).



ON A DECOMPOSITION OF C-HARMONIC FORMS

207
THEOREM 4.1.

In a 2m+1 dimensional compact Sasakian space, a
p-form (0 = p=m) is harmonic if and only if it is effective C-harmonic.

Next we have

LEMMA 4.1. If u is a C-harmonic p-form, then v =1i2p)u is a C-
harmonic (p—2)-form, (p= 2).

PROOF. i(p)v=0 is trivial. Putting

w = i(2p) v

Wiger, = PP Vpigent, s

we can get

v =79 A\w=nAi2p)v

by a straightforward computation.
Next we shall prove that dv =0. At first we have

q’lll’(Au)Al...Ap = Al + A.2 + A3 >
where

A= "¢MM V*Vatlr..a,
= —V*VaU.a, T 201,.4,,

A, = phh Z RiZ Useigen,
= 2™ R\ tspger, + Z Ry Urgeeenidy s

— il
A, = pht Z RapPounrpencenty

J<i

R AL
+ @™ Z RypP trpegecn, + @ Z Rap P tnecpecgenty
i<t

= {_%A,szA;’um...a, + 2(71—2)‘1&,...;;,,} — 2(?—2) Vlger ity

— 2(p—2)Vppr, + Z Rap P Uryeeopenngeaity +

2<j<t
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Thus we can get

4.1) i(2p) Au = Av + 2(n—2p+3)v.

On the other hand, operating d to du = n Av we have
Au=2p Nv—nAdv,

from which it follows that

4.2) i(2p) Au = 2i(2p) Lv — i(2p)(n \ dv)
= 2n—2p+3)v + 2p A i2p)v — 1 A\ i(2p) dv.

Comparing (4.1) and (4.2) we have

Av =2p \ i(2p)v — 9 N\ i(2p) dv.
Consequently we obtain

<Av, v> = <2p A\ i(2p) v, v> .

Integrating the last equation we have
4.3 (Av,v) = (2p A i(2p) v, v) = [i(2p) v|°.
On the other hand we have
4.4) l8vl|* = [i(2p) ©|*

by taking account of Lemma 2.5. Thus by (4.3), (4.4) and (1.1), we have
ldv|? = 0. Q.E.D.

LEMMA 4.2. If u is a C-harmonic p-form, then so is Pu.

PROOF. Put # = du. i(n); =0 is evident. We put v =1i(2p)u and
*
calculate 8z, then we have

CANIPRERE LY  SPACAN

=Bl+Bg+B3+B4,
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where
By = — V@1 tgpa, = 0, (- i(n)u = 0),
By = —@0*VMUuryon, =0, (- dv=0),

»
— A —
B, = — Z Vhor S taeann, = 0,

i=2

d *
B, =— Z L/ 7 M Upyeoeaenidy, = (7)/\'0)7&2..‘1, .

tm2

Hence we get
* * . *
u=gANv=9gANPv=9Ai2p)u.

* * %
To prove that « is closed, we calculate <<Aw, u>. At first we have

*
VE¥Vallaonr, = Z {Prur,caen, + M, Vo Ur e,
+ V“¢A‘a Vauh,...a...;t,‘ + ?A,a VVa u)t,-..o--.-)t,,} 5
from which we can get
*h A * *A A,
— NN q e, = — U Y @0 TV Vallagt -
As u is C-harmonic, we have

Au=dp\v)=2p Nv—n/\dv

and hence

— V¥V allrpgedy, = — Z R;L,"ull...p...a...;t, - R.,”u;h...,,...;t,

=i

- Z thhaﬁ Udyeeeqteregsesfeehy

k<j
- Z Ral;xﬁuhl...u.-.ﬁ...lp - Z lea'aﬁull-na...ﬁ...lp
J>i k<i

Thus complicated computations show that we can have

* %k *
<Aw,u> = |v|°.

209
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On the other hand, we have IS;P = l; |2, because of S = ”’I/\;’- Hence
* *
it follows that |du||?>=0 by (1.1), from which « is closed. Q.E.D.

LEMMA 43. If v is a C-harmonic (p—2)-form, then u = Lv is a C-
harmonic p-form.

PROOF. It is evident that i(p)u =0 and du = d(@Av) =0 hold good.
As we have

uaﬂkl"'hu-z = ¢C¥B‘vll"'lp»z - Z ?ahlvkl"'ﬂ“‘lﬂ
- Z¢Aﬂa‘vxl...a...1,_z + Z DA VhpeeeaeeeBeedy
Jj<i

V* Ungr,.,, 1 the sum of the following eight terms Cp, -+, C;:
Cl = va¢dﬁ‘le"'lﬂ-i = _(n_l) N8 UAeedps s

C2 = Pap V““UA,---A,_: = - Z vll (¢ﬂu 'Z)A,---a---l,,_.) + (1)_ 2) 78 UVhieeApoe 5
C,=- Z VEPar, Vrpoponty, = (—1) Z N, VdpeeeBeetps >

Ci = = 2 P, VEUhpoetys = D PAS VaUhpeeienitey

*
+ vﬁvll'--%-z - (P—Z) Z My TUN By >

C5 = — Z va¢1_,ﬁ‘vl,---a---lp-a

= (ﬂ/\v)ﬁl,---l,,_, + (P_S) N8 UA . Aps s

C6 = - Z¢M}S V“ ‘vlp--a---h,_,
=" (—1) @ar, (B0)aee Ao pes 5
G = Z AVARL/ Y £ VRO S YO
Jj<i
= (=) {@N\Verrss — mgvh...x,_,} ,
Cs =3 Pan Vi Orarptys = 9 (— 1) Pan, 0 bperptys -

J<i J<i
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Thus we can get

Su=n-2p+3)p ANv+e A dv
= N\ {(n—2p+3)v + @ A\ i(2p)v}
=9 N\ i2p)u. Q.E.D.

5. Main theorems.

THEOREM 5.1. In an n (=2m+1) dimensional com pact Sasakian space,
any C-harmonic p-form u, 0= p=m+1, can be written uniquely in the
Sollowing form:

Up = k% Ly s, r= [—5_] >

where ¢, are harmonic (p—2k)-forms.

PROOF. We use the notations in the proof of Theorem 2.2. Assuming
its validity for p 2= p=m' <m, we shall prove it for p+2. Let u,,, be
C-harmonic, then

12p) Uyss = u,

is C-harmonic (- Lemma 4.1). By the assumption of the induction, , is
written uniquely in the form:

Up = Z Ly s s
where 4Yr,_,; are harmonic. The equation
i(2p) Lv, = u,, i(n) v, =0
admits unique solution
Up = Z L* ¢, s,

where

1
Pose = SR D) — pr By Vo

are harmonic, so v, is C-harmonic by virtue of Lemma 4.3. By putting
¢p42 = Uy —Lv,, the proof is completed. Q.E.D.
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A?(M) is the vector space of p-forms such that i(p)u =0. Let C?(M)
and H”(M) be the vector space of C-harmonic p-forms and harmonic p-forms
respectively. Then we have

AYM) > C(M) > H (M), p=m.
The p-th Betti number b, is dim H?(M). Now we introduce ¢, by
¢, = dmC (M), p=m.

Then we can obtain the following theorem by the analogous way as that of
Kihlerain spaces.

THEOREM 5.2. In an n (=2m+1) dimensional compact Sasakian space,
we have

by =1c, =1, b, =c,

c2k§17 k=1>""l:]£i|,

IA
5

by=cp—Cpy =0, 2=p

o =by+byytecetby,, 2=p=m, rz[f—J.
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