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1. Introduction. The function g* introduced by Littlewood and Paley is
important in their work. A generalized Littlewood-Paley function gt is
essentially the same as the function

where σ%,(x) denotes the n-\h (C,α:)-mean of Fourier series of fix). Hence we
denote this by gt(x) = gt(x,f). One of the most important results of them
is that, if fix) € Lp(l < p^ 2) and a > 1/p then

ί \g*(x)\»dx^APta f \fix)Vdx.

The known proofs of this inequality depend upon complex method and at
least depend upon M.Riesz's theorem. In the present note, the author gives a
real proof which is independent from M.Riesz's theorem. In section 3, we extend
this to multiple Fourier integrals. Specifically, when the function is radial,
we can give a heuristic proof of the Hankel multiplier theorem. This is done
in section 4. D.L.Guy [2] has proved already this theorem by transplantation
technique and B.Muckenhoupt and E.M.Stein [5] have proved by the method
of generalized conjugate function. In the last section, we shall give the
theorem in multiple Fourier series.

2. One variable case. Let fix) be an integrable function with period 2π
and its Fourier series be

S(f) = ao/2 + Σ (βυ cos vx + bυ sin vx)
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Set A«n=(n+a), and

then

where σ%(x) is the w-th (C,Λ)-mean of S(f).
We consider now the operation Tα such that

1/2

V /z

Applying BesseΓs inequality, it is easy to see that Ta is strong type (2,2),
provided a > 1/2. Next we consider for δ > 0, τ^ix). Denote by Kl(t) the
conjugate (C, δ)-kernel, that is,

then

Say. Since

we have an estimation of the kernel Hn(i) such that

(1)
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which is proved by the method of Zygmund's book [4, p.94]. And we have
also

(2)

since, when nt ΐS

and nt ^

Following the method of J.T.Schwarz [1, pp.1164-1184], denote by
the /2-valued kernel such that

Then, by (1) for

(3)

φ(x) = {Hn{x)/^~n} ( n = 1 , 2 • . . ) .

\Hn(x+y)\HJjx+y)

= w 1 / 2 + 8 l α : | 1 + s .

On the other hand, from the mean Value theorem and (2), we have also

Hn(x+y) Hn{x)
(4) \H'n(x+θy)\

\χ
1+8

provided \x\ > 2 | , y | . Therefore

HJjx+y) HΏ(x)
AJ 7i Λ/n

2 ,1/2

dx
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V/2

By the Hormander test [1, p.1169], T1 + δ is of weak type (1,1). Hence applying
Marcinkiewicz's interpolation theorem, we have that T1+δ is of strong type
(py/>) for 1 < ^ ? < 2 . However in the L2-case as mentioned above, we have
rather stronger result, that is to say, Tu{a > 1/2) is of strong type (2,2). We
take now any function gn(x) such that

jr

for all x and consider the linear operation

n

Moreover we extend the index a to complex cr + zY, then the norm increases
with e2T*. If we interpolate between p=l-\-β (£ > 0) and p—2 changing index
Re a between 1 + δ (8 > 0) and 1/2 + *; (η > 0), we get finally the following
theorem.

THEOREM 1. If a> 1/ρ (1 <ρ^2), then

£
This theorem has been proved in the author's note [6] by the complex method.

3. Spherical means of multiple Fourier integrals. Our real proof has an
advantage to be able to extend the result to the spherical mean of multiple
Fourier integrals and Fourier series.

Let x and y be vectors in ^-dimensional euclidean space Ek, and set

x=(x19x2, ;xk), (x,y)=xλyλ

\x\2=x\+xl+ — +xl, dx — dxxdx2 dxk .

When f(x)=f(Xi,X2>' ' •> &k) belongs to the class Lp (l^p^ 2), we consider
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its Fourier transform defined by

F(y) = [ ftxy™ dx

and the spherical Riesz means of order Λ = (& —1)/2+/3 of F(y), that is to say

J\V\<R

where

S&x, f )=<?«)-* t

= (2w)-* Γ f(x+u)K%(u)du

ϊ(*)= f ( l

dy

I I Λ

Following the notation of the preceding section, we set

Taf= jJ \S%cf)-SS;H?,f)\' dR

2 .1/2

dRΪ

where

•u

r%{x,f)=Sl(x,f)-S%-\x,j)

=(2*)-* [ ( I - Jj

-(2*)-* Γ ( l - Jj

\y\<R

m
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= - ^ P - Δ f f(x+u)K%-Xu)du
vEk

f(x + u)AK«R-\u)du ,

where Δ is the Laplacian operator. By the Parseval relation, Ta is of the

strong type (2,2) if a > 1/2. We consider now a- ~ ^ — + 1 + 8, and set

where

HB(x)dx = C8-±rΔKR (x)dx

- Γ - IA
 k~%

Here we set

Then it is well known that

0(1) as#-»O

0{χ-™+»} as ^->oa

and Vμ(Λί) is finite in any compact range. When the function is radial, the
Laplacian is transformed by polar coordinates to

r

Differentiating
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d
Vk-lβ+s(Rr)=-J

Hence

-> \-^ Vk.ιβ+s(Rr) + £=± -jp Vk.w+

-1 {RΎk-Vΐ+s+1(Rr)+RirΨk.Vi+3+.z(Rr)} dr

If

= O(R-δr-iS+1))dr

and if Rr^l

Hιlr)tJC-ιdr=O(Rkrk-1 + R'+

=O(R-sr-{S+1))dr,

because k 2; 2. Thus we get

(1) Hdf)rk-1dr=O(R-sr-il+S))

Once more differentiating HJf), we have

dHR(r)
dr

When Rr^l,
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and when Rr §Ξ

Thus we have

(2)

It is remarkable that HR(r)rk ιdr has the same estimation to the one-
dimensional case. Consider now the ZAvalued kernel

then by (1) for \r\ > 2 | s |

(3)

and by (2)

(4)
HB(r+s) HB(r)

dHB(r+θs)
dr

(δ>0)

-χ dr

Islr*-1 dr

dr.
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Hence, by (3) and (4)

G. SUNOUCHI

Hn(r+s) f
'

U (
I 5 2 5- 2 ( 1 - δ >

+

f
Thus by the Hormander test we can prove that T1Jrk-i+b (δ > 0) is of

weak type (1,1). Now the operation T1+fcz_i+s is of weak type (1,1) and of

strong type (2, 2) as mentioned above. Applying Marcinkiewicz's interpolation
theorem, we have that T 1 + ^! + δ is of strong type (p, β) for 1 <p^2.

Next we take any function g(r,R) such that

f~ ι*r
for all r and consider the linear operation

However, in the ZΛcase, Ta is of strong type (2,2) if a > 1/2. We extend
the index a to complex <r+/r, then the norm increases with e*M. If we
interpolate between p=l+e (β > 0) and p=2 changing the index Re a between

1 +
k—1 1

(δ> 0; and ——\-η{η> 0), we get finally the following theorem.

THEOREM 2. // a> \ - + -\- (1-k), (1 < p^ 2) then
P Δ
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2k
COROLLARY. // , 1 <ρ^2, then

Elk υ Λ-ΊC

This is a ^-dimensional extension of the original g* function of Littlewood-

Paley and the range —r—— < p :g 2 is the conjectured range of the validity

of mean convergence of spherical means.

4. Radial functions. If f(x) is radial, that is

then F(y) is also radial and

F(y)=Φ(\y\)=Φ(η)

Jo

Jo

Now let us set the weight function

where

is the critical index, and consider

φ(ξ)zL(dnιυ).

Then the above Fourier transforms reduce to the Hankel transforms

φ(ξ)Vv-m(ξη)dmv(ξ).
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For the partial integrals defined by

Jo

C.S.Herz [3] proved the norm inequality such as

(1) [ \Sa(ξ9φ)\>dmv(ξ)^Apf \φ(ξ)\pdmv(ξ)

provided that

Hence g* gets a full power and it is a routine argument to prove the
following theorem.

THEOREM 3. Let T be the multiplier transformation defined by

oo

zvhere

Γ°°

Jo

and the multiplier μ(τj) satisfies

:g= Mη, 0 < η < oo .

Then the transformation φ ~> Ύφ has a bounded extension from Lp(dmv)
to Lp(dmv) provided that (2ι/+l)/(i;+l) < ρ< (2v+ΐ)/v.

PROOF. At first, we shall reduce the corollary of Theorem 1 to the

radial function φ(ξ). Thus, if — — — < p ^ 2, then
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(2) iff if
Jo ι Jo Jo

^Ap,v Γ \φ(ξ)\pdmv(ξ).
Jo

i?"5
P/2

Next we have to generalize the norm inequality (1) to vector-valued functions.
This is done by the Herz method [3], and we get

Γ ~ Γ o o p/2 co oo

(3) I I \Sa(t){ξ,φ(;t)}\*dt dmυ(ξ)^Ap / \<p(ξ,t)\*dt dmv(ξ).

From (2) and (3), it is easy to get the following proposition. (See Zygmund

[9]).

PROPOSITION. // 2 v \ λ <p< 2 y + 1 , then
V+L V

2 t Vβ

(k=0, ±1, ±2, •)

where

Λ

aΛξ>9>)= I Φ(η)Vv-lβ(ξη)dmv(η).
J

From this and Herz's theorem we can prove easily the multiplier theorem
of Marcinkiewicz type.

REMARK 1. We can extend the original </*-theorem to the weighted
norm. Hence the weight function mυ(x) is extensible to wider range.

REMARK 2. In the above theorem, v=(k — l)/2 and k is any positive
integer. By an interpolation argument, we can extend v to any positive real
number in that range.

5. Spherical means of multiple Fourier series. For the sake of
simplicity we consider only two variables case. Letf(x)=f(xly x2) be integrable
on the unit cube Q and its Fourier series be
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and set

then the spherical (R, n2, α)-mean of the Fourier series is representable by
convolution such as

Γ

JQ

The kernel is transformed into (See [2]),

( n a CX.

2j X\) "i Kjy^ϊ -^2/ I J

where C=Γ(l + α)/7rα:. We consider now

1/2

"if
2 1/2

This corresponds to the Ta in the section 3. It is easy to see that Ta is
of strong type (2,2) provided that a > 1/2. Next we take α = l + l/2+δ(δ>0)
and set

r1 + 1 / 2 + 6(^,/)= f(x+t)HR(t)dt

where the corresponding kernel is

~
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where Δ is the Laplacian, that is to say

— a*2 ' ay

At first, we consider for rril+rril > 0

Change to the polar coordinate, then for a radial u, Au is transformed
to

d2u + I du
dr2 r dr

Hence the term in the summation has the form such as

ΔVa(2τrRr)

where tf = 1 + 1/2 + 8. Differentiating this

Va(2τrRr)= -

and

ΛVα(2τrJRr) = O(R~8 r~

Hence the formula (2) is less than



510 G. SUNOUCHI

Thus we have the estimation

HB{xι, xt) = CA(V1+1/2+δ)(2τrRr) + O(R'δ)

and since

dR ) 1 2

= c

we can neglect the ramainder terms in the following argument. Hence we
can proceed to the same as Fourier integral and get the following theorem.

THEOREM 4. If a>—- - - ^ - ( 1 < p ^ 2 ) , then
p 2

JjJ" \f(χ)\"dχ.

From Theorem 4, we can prove easily some of the almost everywhere
summability and strong summability theorems such as given in Stein [7].

COROLLARY. If 4/3<p^2y then
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