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1. Introduction. In this note we give a sufficient condition for the
existence of an almost periodic solution of a system of equations. Most of
the sufficient conditions in the literature are either in terms of stability or
are uniqueness theorems that use a result of Amerio [1]. Our condition is
that certain solutions minimize a functional. An early example of such a
condition goes back to Favard. [2]. In the proof of Theorem 2 he shows
that a certain linear nonhomogeneous system has a unique solution with
minimum norm. This solution turns out to be almost periodic. We show
how to systematize this argument to get generalizations of some of Favard's
results.

2. Definitions and preliminary results. If {a'n} is a sequence we write
it as cί'. If cί — {oίn} is a subsequence of cί' we write cί<zcί'. For vector
functions of a real variable, the symbol Taf(t) = lim/(£ + <£„) and it is used

n—»oo

only if the indicated limit exists. The sense in which the limit exists will
always be indicated. Bochner [3] was the first to notice that almost periodic
functions (=a.p.) are precisely those functions / for which given <x', β'
sequences, there exist tfcαf, βcff such that Ta+βf = Ta(Tβf) = TaTβf
point wise, where oί+β = {cίn + βn}. It is this characterization that we use in
this note.

In the same paper, Bochner introduces the notation of an almost
automorphic (=a.a.) function. A bounded function f is a.a. if for every
sequence cί' there exists cCGot' such that Taf=g and T-ag = f exist
pointwise. Here — cί = { — an}.

We introduce a slightly stronger concept. A bounded function f is
compact almost automorphic (compact a.a.) if the above limits are required to
exist uniformly on every compact subset of the reals.
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We shall consider the differential equation

(1) x = F(t,x),

where F is compact a.a. in t uniformly in xe K, i.e., given a there exists
such that TaF(t,x) = \im F(t + an, x) = G(t,x) and T.aG(t,x) = \im G(t-an,x)

n n

= F\t,x) exist uniformly on IxK where / is an arbitrary compact subset of
R. For our purposes, we shall assume that K is compact in Rn and F is
continuous on RxK. For the vectors x e Rn, \ x \ denotes the Euclidean
norm and ||j:||=suρ|α;(£)|, when x is a function on R into Rn.

The hull of F is the collection of functions G such that TaF=G for some
a and the limit is uniform on compact sets.

The key to all our arguments is the following.

LEMMA 1. Let F be a continuous compact a.a. function in t uniformly
in x € Ky K compact^ and φ(t) a solution of (1) with φ(i) 6 K for all t.
Then given a\ there exists a a a' such that TaF= G, T.aG = F, Taφ = ψ,
T-aψ = φ1 all exist uniformly on compact sets and ψ is a solution of
x =G(t, x), with φγ a solution of x'=F(t,x).

PROOF. If a! is a given sequence, we first take a subsequence βcd
such that TβF=G and T.βG=F uniformly on compact sets. If IN=[—N9N]
then F(t,x) and F(t+βn,x) are uniformly bounded on INxK so that φ\t)
and φ'(t+βn) are uniformly bounded. By Ascoli's Theorem and then the
familiar diagonalization argument one gets a subsequence Ύdβ such that
T7φ=ψ exists uniformly on compact sets. Consequently ψ is a solution of
x' = G(t, x). In the same way, there is a subsequence cCdΎ such that T-aψ=φι

exists and ̂ ! is a solution of x/ = F(t,x).

LEMMA 2. (Amerio) Let F be a continuous compact a.a. function in t
uniformly in xz K, K compact. If there is a solution φ(t) ofx=F with
φ(t) € K and φ is defined on [t0, oo) for some t09 then every equation in the
hull has a solution defined on R with values in K.

PROOF. If φ(t) is a solution of x = F(t,x) on [t0. oo), let dn—n. Then
<p(t + n) is a solution of x =F(t + n,x) on [t0—n,oo)m Now one applies the
argument of Lemma 1 to get a subsequence aca! such that TaF—Gy

T-aG=F and Ta<p=ψ exists such that ψ'' = G(£,i/r). Clearly ψ will be defined
on R and hence T-aψ will be a solution of x=F(t,x) defined on R and
T-aψ(t) ^ K for all t. One gets a solution to the other equations in the hull
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by the argument of Lemma 1.

Coppel [4] shows that if G is in the hull of F, then the hull of G is
contained in the hull of F. Now suppose Taφ exists uniformly on compact
sets, for φ a solution of x=F. Then Taφ is a solution of some equation in
the hull of F. In fact, there is a βaa such that TβF=G exists uniformly
on compact sets, then Tβφ — Taφ is a solution of x=G. Henceforth Ύaφ
means that the limit exists at least uniformly on compact sets.

Let λ be a mapping from the solutions in K of the equations x = G(t, x)
in the hull of F to the real numbers. This functional is said to be subvariant
if X(Ta<p) 5g λ(^). In view of Lemma 1, and the above discussion Taφ is in
the domain of λ whenever φ is. An example of a subvariant functional is

3. Main results. The idea now is, that if λ is a subvariant functional
for the solutions in some compact set, then X(T-aTaφ) fg λ(<£>) and hence if
λ is minimized by only one solution φ of a particular equation, then φ is
compact a.a. This leads to a sufficient condition for the existence of a.p.
solutions. By a solution we shall mean that the domain is all of R.

THEOREM 1. Suppose that F is continuous and compact a.a. in t
uniformly in xe K, K compact and that (1) has a solution with values in
K. If there exists a subvariant functional λ such that μ = min [λ>(φ) \ φ is
a solution of x — F(t, x), φ{£) e K] exists and is attained by a unique
solution, then that minimizing solution is compact a.a.

PROOF. Let φ(t) be the unique solution of x^Fit.x), with φ(t) 6 K,
that minimizes λ. From Lemma 1, given a\ there exists a<zct! such that
T-.aTaφ is a solution of x = F(t, x). Now by the subvariance of λ,
λ(T'-aT

y

aφ) ig X(Taφ) ^ λ(<£>). Since the minimizing solution is unique
T-aTaφ=φ, and the convergence is uniform on compact sets.

THEOREM 2. Suppose F is a.p. in t uniformly for xz K, K compact,
and that for some G in the hull of F, there is a solution in K. If there
is a subvariant functional λ such that μG — min (λ(<£>) | <p is a solution
x = G(t, x), φ(t) e K] exists for each G in the hull of F and is attained by
a unique solution, then every equation in the hull has an a.p. solution.

PROOF. By the preceding Theorem, the minimizing solution φ of
χ—F(t,oί) is a.a. and X(Taφ)=\(φ) whenever Taφ exists. We claim further,
that Taφ is the minimizing solution of TaF=G. If λ(ψ) < X(Ta<p) =
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for -ψ ' = G(ί, ψ ), then there is a subsequence β<za such that T.βG — F and
T-βψ is a solution of x — F(t, x). Then λ(T_^) ^ λ( ψ) < λ(<p) is a
contradiction. Now let ύ! and #' be given. Extract subsequences by Lemma 1
such that Ta<p, TβTjp, Ta+βφ, TaF, TβTuF and Ta+βF all exist, the first
three uniformly on compact sets, the last three uniformly on RxK. By
Bochner's Theorem we may assume Ta+βF= TβTaF. Thus TβTaφ and Ta+βφ
are solutions of the same equation which by the above are both minimizing
solutions. Hence Ta+βφ=TβTa(p and by Bochner's Theorem φ is a.p. Clearly
Ύosp is an a.p. solution of x=TaF.

COROLLARY 1. If F is continuous and compact a.a. in t uniformly
for x£ K, K compact and F has a unique solution φ(t) z K, then φ is compact
a.a. If further F is a.p. and each equation in the hull of F has at most
one solution in K, then φ is a.p.

P R O O F . Take

It is an intriguing question whether Corollary 1 is true in the following
form. If F is a.p. and has a unique solution in K, then that solution is a.p.
In Fink and Seifert [5], it is shown that if that solution is uniformly stable,
then it is a.p. A related statement is also possible. If every equation in the
hull of F has a unique solution in K and F is compact a.a., is the unique
solution of x =F a.p. ? This seems to be unknown. Corollary 2 is also an
immediate consequence of Amerio's Theorem.

COROLLARY 2. (Favard). If f(t,x) = A(i)x+g{t) where A is an a.p.
nXn matrix and g is an a.p. vector function and if every equation
x=L(t)x where L is in the hull of A has the property that every bounded
nontrivial solution φ satisfies \ φ{ί) \ §: £ > 0 for some S(φ), then x = f(t, x)
has an a.p. solution if and only if it has a bounded solution.

PROOF. An a.p. solution is bounded. For the converse, let a bounded
solution φγ exist. Let K be a compact set containing the range of φx. We
take ^(y)=\\y\\. Clearly λ is subvariant. Let aL = mί{λ(y)\y'=Ly + hyy z K}
where Lx + h is in the hull of AxΛ-g. Let X(φn) —> Or- Then {φ'n} is
uniformly bounded, hence by Ascoli's Theorem we have a subsequence which
converges uniformly on compact sets to a solution φ of x —LxΛ-h. Clearly
\{φ)=aL. We now show that the minimum is attained only by φ. If ψ is
another solution with χ(ψ) = aL then ^ - ψ is a solution of x=Lx and hence
there exists 8 > 0 such that \φ—ψ\(t)^€. This implies that 2p(t)-ψ(t)
^ I?>(*)I2+IΫOOI2—£2 N o w (<p+Y)/2 is a solution of x = Lx + h and the
above inequality yields | (φ+ψ)/2 \ \t) = [ | φ(t) \2 + | ψ(t) 12]/4 + φ(t). ψ(t)/2
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^ [ | M 2 + lltll2]/4 + [IMOII1 + Ht(OII2-θ2]/4 g α| - £2/4 < a\. This contradic-
tion shows the uniqueness. Now Theorem 2 gives the result.

Notice that in Theorem 2, λ is not required to be non-negative nor
even continuous. We give an example of a second order system where
X(y) = suip y — mi y is minimized by a unique solution. Specifically we
consider the equation

( 2 ) y"=A*ty,y)

with / continuous on RxK; where K is some compact subset of R2. We say
that (2) satisfies the maximum principle if for every a < b and two solutions
y and z, y(μ)—z(a)^M, y(b)-z(b)^M, and y(t) — z(t)^0 on [a, b] imply
that y(t)-z(t) ^ M on [a, b].

LEMMA 3. Suppose that f in equation (2) is continuous and suppose
that a solution exists with values in K. Then there exists a solution φ
such that \{φ) :g λ(λ/Ό for all solutions ψ in K where \(φ) = swp<p—ini<p.

PROOF. Let X(φn) -+ inί{x(<p)\<p a solution of (2) in K] = a, where φn

are solutions of (2) in K. Since for any N, f is bounded on [ — N,N]xK,
we have φn,φ'n> and φ'ή uniformly bounded so by the Ascoli and diagonaliza-
tion argument we get a subsequence converging uniformly on compact sets to
a solution φ. If λ(<p) > a then sup φ(t) — inf φ{t) > a for some compact I.

But this quantity is a continuous function under uniform convergence on
compact sets, so that sup φ — inf φ = lim [sup φn — inf <pn] ^ a. Hence

X(φ) = a.

THEOREM 3. Let f in (2) be a.p. in t uniformly for (y,z)zK and
suppose that every equation y" = g(t,y,y') in the hull of f satisfies the
maximum principle. If one of these equations has a solution in K, then
every equation has an a.p. solution in K. Here K is compact.

PROOF. Let λ(^) = sup y — inf y. By Lemma 3, there is a solution φg

which minimizes λ over the solutions in K of y" = g(t, y, y). Let ag = X(<pg).
We claim that for all g in the hull of /, ag = af. Choose a so that Tag = f
and Taφg is a solution of y" = f Since λ is subvariant, af rg \(Ta(pg) :g ag.
By a symmetric argument ag ĝ af. Now φg may not be unique for solutions
in K, however we show that it is on a suitably chosen compact subset Ko.
Suppose ψf is one solution of (2) such that \(<Pf) = af. Let Ko = [a,b]xH,
where a = inf φf, b = sup φf and H is a compact interval containing the
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range of φ'f(i). By Lemma 1, each equation y" = g(t, y, y) in the hull of f
has a solution in Ko. Furthermore, ag—af implies that every solution φ of
y" — g with φ in Ko satisfies b = sup φ and a = inf φ. As a matter of fact,
a stronger statement is true. For any t0, sup [φ(t)\t^t0] = sup{φ(t)\t^t0} = b
and a similar statement holds for iτάφ{t). For example, if s\xp{φ(t)\t §: t0]
^=b—8 for some £ > 0, then consider the sequence cί'={n}. Extract a
subsequence oίCCί' such that Ύag — h and Taφ = ψ exist uniformly on compact
sets. Now ψ is a solution to y" = h and since Λw —> oo? tx-\-0Ln ^ ί0 f° r large
7Z, and we have ^ ( O = lim^(ίi + Λw) rg έ—£. Thus supψ fg έ—£, which is
a contradiction.

The maximum principle is now applied to show that each equation
y" = g{t,y,y) has only one solution in Ko. If φ and ψ are distinct solutions
in Ko, then let h = φ—ψ. Suppose there is a t0 such that £ = A(ί0) > 0 and
h'(t0) > 0. Then h(t) ^ A(ί0) for all t ^ ί0, for if h(tλ) < h(tQ) for some tl9

then there are points t0 < t2 < ts such that h(t3) = A(ίo)> (̂̂ 2) > h(t0) and
Λ(ί) > 0 on [tQ, t3]. This contradicts the maximum principle on [t0, t3]. There
is a sequence tn—>oo such that limψ*(/n) = b, but then φ(tn) ^ ^(^w) + £ for

large n implies that sup φl^ib + £ > b, so that φ is not in Ko. If A'(ί0) < 0,
one shows that A(ί) §^ Λ(ί0) for all t^t0. Now by choice of notation either
one of the above occurs, or h\t) = 0 in which case the argument is clear.
Hence there is exactly one solution of each equation y" = g in Ko. This
solution is a.p. by either Theorem 2 or Corollary 1.

Note that the above argument also shows that if f is compact a.a., then
x" =f has a compact a.a. solution.

COROLLARY 3. Let f be compact a.a. in t uniformly for (y, z) e K,
K compact, and suppose every equation y" = g{t, y, y) in the hull of f
satisfies the maximum principle. If y"=f has a solution in K, then it has
a compact a.a. solution in K.

It would be appropriate at this point to give some sufficient conditions on
/ so that the hypotheses of Theorem 2 are satisfied. Suppose for example,
that f(t,y,y) is strictly increasing as a function y for each fixed t and y.
Let h(t) be the difference of two solutions of y"=f(t,y,y'). Then it is easy
to show that h(to)^O and h'(to)=O imply that h(tQ)h"(t0) > 0. The maximum
principle follows from this. This is the condition of Lemma 3.3 in Jackson
[5]. We then have the following corollary.

COROLLARY 4. Let f(t,y,z) be a.p. in t uniformly for (y,z)eK, K
compact, and suppose that every function in the hull of f is strictly
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increasing in y. Then (2) has an a.p. solution in K if and only if it has
a solution in K.

Note that the existence of an a.p. solution reduces to finding a solution
^ o n a ray [a, oo) such that both φ and φ are bounded on this ray. See
Lemma 2. See Schrader [7] or Schmitt [8] for interesting sufficient conditions.
We note, however, that Corollary 4 yields a much better result than Theorem
4 of Fink [9]. We reproduce the statement here as

COROLLARY 5. Suppose that f(t,yyz) satisfies

( i ) there exist a<b such that f(t, α, 0) ^ 0 ^ fit, b, 0) for all tzR;
(ii) there exist c<0<d such that f(t,x,c) and f(t,x,d) do not

change sign for teR and x <= [α, b]
(iii) / is uniformly a.p. in t on [a, b] X [c, d]
(iv) each function in the hull of f is strictly increasing in the second

variable.

Then there is an a.p. solution φ of (2) with (φ{t)y φ'(t)) £ [α, b] X [c, d] .

In the particular case when f(t,y,z) — g(y,z)+h(t) for h a.p., then the
above conditions are particularly simple since the increasing in y of g and
the existence of the four constants <z, 6, c, d is all that is needed for the
existence of an a.p. solution.

We also may note that the uniqueness of a solution in a compact set
implies that the module of the solution is contained in the module of the
function /, so that Theorem 3 and its corollaries also have this containment
as conclusions see [1]. This is not necessarily true for the general case of
Theorem 2.

The argument of Theorem 3 can be extended to second order systems.
Suppose that in equation (2), y y and / are n-vectors. Suppose we have a
maximum principle for systems which says that the ordinary scalar maximum
principle holds for each component. Call this the vector maximum principle.
Then we have

THEOREM 4. Let f be a vector function a.p. in t uniformly for
n

y £ Ki, y' £ K2. where Kλ and K2 are compact^ and Kλ = xCα^όJ. Suppose

that there is a solution of (2) -with y(t) z Kx and y\i) £ K2 for all t and
that every equation in the hull of f satisfies the vector maximum principle,
then (2) has an a.p. solution in K1xK2.
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PROOF. Define Xi(y) = sup J Ί — inf yγ where yL is the first component.
One goes through the argument of Theorem 3 to get [cl9 d{\d[al9 bλ~\ such
that every solution of a fixed equation y' = g in the hull of f that remains in
[cl9 dλ] X [a2, b2] X X [an, bn] X K2 has the same first component. Let
K1 = [cu dt] X [a29 b2] x x [an9 bn]. Then for \2(y) = sup3/2 - inf y2 we
repeat the argument for solutions which are required to be in KιxK2. In n
steps we get a set Kn = [cl9 dγ~\ x x [cn, dn] such that precisely one
solution of each equation in the hull of f lies in KnxK2. Now apply
Theorem 2.

Two sufficient conditions for the vector maximum principle are given in
Heimes [10], both of which essentially demand strictly increasing component
functions in maching variable, i.e., fk is increasing in yk. We refer the
interested reader to that paper.

4. Concluding remarks. Theorem 2 of this paper, through Corollary 1,
proves a special case of Amerio's Theorem. As a matter of fact, almost all,
if not all, of the uses of Amerio's Theorem in the literature only use the
special case when uniqueness is involved. In any case, the hypotheses of
Amerio's Theorem are that in x' = F(t,x), F is uniformly a.p. on K and that
every equation in the hull x' = G(t,x) has the property that for each solution
in K, there is a constant p(φ) such that 0 < p{φ) fg | φ(t) — ψ(t) \, for ψ any
other solution in K. One can show that p may be picked independent of φ
and that each equation has only a finite number of solutions in K. These
seem to be rather strong hypotheses.

It may be of interest to note that neither hypothesis of Theorem 2 nor
those of Amerio's Theorem are consequences of the other. To show that an
equation may have only separated solutions but not minimize a subvariant
functional, consider the following example given in Seifert [11].

Let z[= —Zι and z'2 = z2(l — zξ). Write this as a vector system z = f(z)
where f(z) = (—zl9 z2(l — zl))τ. Now, if x—A{t)z9 where

(c°st - sin
Vsin t cos

in A
os t) '

then x = F(t,x\ where F(t,x) = A\t)Aτ{t)x + A(t)f(Aτ(t)x). F is periodic
of period n. There are two periodic solutions x1 = (—sin t9 cos t)τ and
x2 = (sm t, — cos t)τ. Furthermore, these are the only solutions that satisfy
I:r(£)I = 1 for all t. Thus for K= [x\ \x\ =1} we have exactly these two
solutions which are separated. But x1(t-\-7t)=x2(t) so that for any subvariant
functional λ two aplications of translation by it yield \(x2) t=== λ(:£i) fg X(x2) so
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that neither xx nor x2 can be a unique minimizing solution. This also
shows that the minimizing condition is not necessary for an a.p. solution.

Conversely, a system which minimizes a functional but does not have
separated solutions, consider y"-\-y=f(t), where f is a.p. and such that a
bounded solution exists, say f(t) = s in^ 2 t + sin*/ 3 t then there is a
bounded solution and the difference of two solutions has constant norm. Thus
by Corollary 2, there is a solution which minimizes the norm. The solution
is not separated because the norm of differences, though a constant for each
pair, can be arbitrarily small. For the above f, no solution is periodic so it
is not clear how to get separated solutions by restricting the compact set K
in E2.

The minimizing conditions of Theorem 1 and 2 are used first to get
compact a.a. solutions and then to show that these a.a. solutions are a.p. We
have used the condition Ta+βφ = TaTβcp to make this last step. Veech [12]
has shown that φ is a.p. if and only if φ is a.a. and Taφ is a.a. whenever
this limit exists point wise. This condition does not seem to be of use in the
present context.

Finally, it would be of interest to know the connection between the
existence of subvariant functionals with minimizing solutions and the stability
conditions which yield Lyapunov functions.

George Seifert has pointed out that the condition that f(t,y,y) be strictly
increasing in y is almost necessary for the maximum principle to hold. In
fact, let to,y1>y2, and z be given and assume that f is continuous. Let
yt(t) be solutions to the initial value problems yi(t0) = yi9 y'i(t0) = z, i — 1, 2.
By the maximum principle on [tQ — 8, £0 + δ], for δ sufficiently small, t0 cannot
be an interior maximum of yx(t) — y2(t). Hence yϊ(t0) — yϊ(t0) Ŝ  0. This
implies that f(to,ylyz)^f(tOyy2,z). That is, a necessary condition for the
maximum principle is that f be nondecreasing in y.
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