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The operations ρ% and ρR play significant roles in X-theory. Their
definitions and the actions on the i^-groups of diverse complexes are described
in [2].

In this note, we calculate the action of p% on the reduced K-rings of a
complex projective space CPn. The method used here is the same as the one
which is employed by J. F. Adams in the calculation of pR on the ring
KB(S'») [2. (5.18)].

Preliminaries. Let CPn be the (complex) ^-dimensional complex projective
space and KG(CPn) (resp. KR{CPn)) be its complex (resp. real) (reduced)
K-rings. We write

c: KR(CP») >KC(CP»),

r:Kc(CP") >KR(CP»),

t : Kc(CPn) > KdCP1)

for the homomorphisms induced by complexification, realification and complex
conjugation. As is well-known ([1], Lemma 3.9), we have

c r = 1 + t,

re = 2.

The ring Kc(CPn) is generated by one generator μ which satisfies the relation
μn+1 = 0 ([1], Theorem 7.2). The ring K^CP1) is generated by one generator
ω = rμ which satisfies the following relations:

2(ω2w+1) = 0 , ω2w+2 = 0 , if n = 4w + l ,
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ω
2w +2 = 0, if n =

([3], Theorem 2.2, (i)).
Let

ch: Ka(X) > H*(X,Q)

denote the Chern character. Note that

ch: KICP^ICF") > H%CPn/CPm)

is a ring monomorphism ([1], p. 621). For the generator μ <Ξ Kj(CPn),
chμ = e~y — 1 (mod yn+1), where y <= H2(CPn,Q) is the generator. Therefore,
we have

ch cω = ch'crμ = ch(l + t)μ = ch{μ2/(l+μ)}

= (2sinh;y/2)2 (mod yn+1),

and

. ( 1 )

Next consider the stunted projective space CPyCP 1 . Since H2(CPn/CPι)
= 0, every real vector bundle over CPn/CPι has the vanishing 2-dimensional
Stiefel-Whitney class and therefore every element in KR(CPn/CPι) is
considered as a linear combination of Spin(8m)~bundles. By the exactness
of the sequence

!0 > KR{CPn/CPι) -l—> KB(CPn) -!—> KR(CPι) > 0,

KR(CPn/CPι) is additively generated by ωu ω2, ω3, such that the equalities

/'*©! = 2ω
( 2 )

j*ωs = ω% 5 = 2,3, •

hold ([3], Theorem 2.2, (iii)).

Determination of pRω. Let Qk be the additive group of fractions of the
form p/kQ, where p and q are integers.

THEOREM. For the generator ω e KR(CPn\ we have
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P%, <*> = 1 + #i<«> •+" a2ω
2 +

in lΛ-KR(CPn)® Qk, where at (t = 1, 2, ) is given by the following
formula:

at = (A«-l) (*«-(2f--l)«)/(2«(2f+1)!).

PROOF. By [2, (5.2)],

oo

Log 5Λ ωx = X) (1/2) Λ2ί ch2t cωx.

For the definition of cc2t, see [2, §2]. By the naturalities of ch and c, we
have

= Σ (V2) au chu - c(2ω) (by (2))

= 2£a 2 £(y£/(2i)!) (by(l))

= 2 Log((sinh3;/2)/0y/2)) (by [2, (2.1)]).

Therefore,

j*sh ωx = ((sinhy/2)/(y/2)γ . ( 3 )

We define

by

= k'x, for

This is a ring homomorphism and we have

By [2, (5. 6)], we have



THE OPERATIONS p* ON THE GROUP KB(CP«) 585

j*ch cfRωx= j*{(-ψ"ash ωt)/(sh »0ϊ

= ((sinh ky/2)/(k smhy/2)γ (by (3), (4)).

Since

j * ch cρ%ω1 = ch cρR(2ω)

we have

ch-cρk

Rω = (sinh ky/2)/(k smhy/2). ( 5 )

Recall the formula in the elementary calculus

Γ r Π

sinhnx = Σ(«/(2r+l)!) Π (n2-(2t-ΐ)2) sinh2r+1 x .
r=0 Lί=l J

Here, Π[ ] means 1, when r = 0. If w is odd, the right hand side has the
finite summands. But when n is even it is a infinite series. Therefore we have

In the case n ^ 1 (mod 4) the theorem follows since ch c is a mono-

morphism on KR(CPn). In the case w=4tc; + l, consider the exact sequence

0 > Kn(S*™+*) > KB(CP*W+2) -!—+ KR(CPiw+1) > 0.

For the generator ω of the ring KR(CPiw+2)9 we have

t*(ω°) = ω

β , 5 = 1, 2, , 2 ^ + 1.

Since cA c is a monomorphism on KR(CPiw+2)9 by the naturalities of ΓA Γ

and ρR, the coefficient of ω2w;+1 in ρRω is a. mod 2 reduction of the coefficient

of α>/2w+1 in ρRω and the theorem is valid.

Determination of pRωs («^2) . Since ch c is the ring homomorphism,
we have

ch cω* = 22ssinh2s;y/2

= 2 JΣ (-l
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and

Therefore

Therefore,
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Log sh ωs = £ (1/2) tf2

ί I r=0

= Σ (-l)r

9 *=1,2 ,

{(smh(s-r)y/2)/((s-r)y/2)}

>=ϊί {(smh(s-r)y/2)/((s-r)y/2)} ~irC'\

Since Ψx is a ring homomorphism, we have

Ψ%shω>=

and therefore

(-i)fr

β)
. (6)

r=0

From this we can determine ρ%ωs as above. But for general s it is very
complicated. For example, in the case 5 = 2, (6) reduces to

ch-cplω2 = (sinh £y/£ sinh <y)((£ sinh.y/2)/(si ( 7 )

Therefore

ch cpW = (l+((£2-l)/2)sinh2;y/2 + p2-l)(P-32)/4!)sinh43;/2 + )

.(l+((/b2-l)/3!)sinh23;/2+P2-l)(/62-32)/5!)sinh4j'/2+ .)"«
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= 1 - ((£4 -1)/15) sinh4 y/2

+ (2(y&2-l)(10)fe4+3U2+31)/(33.5.7))sinhβ3;/2 + . . . .

So we have

T H E O R E M .

= l-((£ 4 -l)/240)ω 2 + ((y&2-l)(10)&4 + 3U2

The following theorem is more convenient.

T H E O R E M .

pk

R(ω2+4ω) =

( ( ) ( ) ( ) / ) 3 + .
PROOF.

ch cρ%(ω2 +4ω) = (ch cρ% ω2)(ch cρk

R ω)4

= sinh ky/k sinhjr (by (5) and (7)) ( 8 )

= Σ(217(2r+l)!) Π (^-
r=0 ί=l

This completes the proof.

The first term of pRω\ We have

Since for arbitrary s,

t<s

we can easily see that

THEOREM. For arbitrary s, we have
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pk

R(ύ° = l + (l/2)(ku-ΐ)cc2sω
8 + (higher order terms).

For ωiw+1 e KR(CPiw+1), we have

T H E O R E M .

pRωiw+ι = 1 + ω4w;+1 z/ £ ΞΞΞ ± 3 mod 8

= 1 if k==±l mod8.

PROOF. We know that for the generator a <= KR(SSw+2) = Z2

ρRct = l + <χ if i = ± 3 mod8

= 1 if k==±l mod 8.

By the exactness of

0 > KR(S*W+2) > KR(CPiw+1) > KR(CI*W) > 0,

the theorem follows immediately.

REMARK. Let h0 be the canonical complex line bundle over CP", we
have

ch - cplrQtl) = (sinh^λ3;/2)/(sinhλ^/2).

(8) is obtained from this formula as the special case λ = 2.
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