Tôhoku Math. Journ. 20(1968), 582-588.

THE OPERATIONS ρ_R^k ON THE GROUP $\widetilde{K}_R(CP^n)$

KOICHI IWATA AND HIROSHI ÔIKE

(Received June 11, 1968)

The operations ρ_c^k and ρ_R^k play significant roles in K-theory. Their definitions and the actions on the K-groups of diverse complexes are described in [2].

In this note, we calculate the action of ρ_R^k on the reduced K-rings of a complex projective space $\mathbb{C}P^n$. The method used here is the same as the one which is employed by J. F. Adams in the calculation of ρ_R^k on the ring $\widetilde{K}_R(S^{4n})$ [2. (5. 18)].

Preliminaries. Let CP^n be the (complex) *n*-dimensional complex projective space and $\widetilde{K}_{\mathcal{C}}(CP^n)$ (resp. $\widetilde{K}_{\mathcal{R}}(CP^n)$) be its complex (resp. real) (reduced) *K*-rings. We write

$$c: \widetilde{K}_{R}(CP^{n}) \longrightarrow \widetilde{K}_{C}(CP^{n}),$$

 $r: \widetilde{K}_{C}(CP^{n}) \longrightarrow \widetilde{K}_{R}(CP^{n}),$
 $t: \widetilde{K}_{C}(CP^{n}) \longrightarrow \widetilde{K}_{C}(CP^{n})$

for the homomorphisms induced by complexification, realification and complex conjugation. As is well-known ([1], Lemma 3.9), we have

$$cr = 1 + t$$
,
 $rc = 2$.

The ring $\widetilde{K}_{c}(CP^{n})$ is generated by one generator μ which satisfies the relation $\mu^{n+1}=0$ ([1], Theorem 7.2). The ring $\widetilde{K}_{R}(CP^{n})$ is generated by one generator $\omega = r\mu$ which satisfies the following relations:

$$\omega^{2w+1} = 0$$
, if $n = 4w$,
 $2(\omega^{2w+1}) = 0$, $\omega^{2w+2} = 0$, if $n = 4w+1$,

 $\omega^{2w+2}=0$, if n=4w+2, n=4w+3

([3], Theorem 2.2, (i)). Let

 $ch: \widetilde{K}_{c}(X) \longrightarrow \widetilde{H}^{*}(X,Q)$

denote the Chern character. Note that

$$ch: \widetilde{K}_{c}(CP^{n}/CP^{m}) \longrightarrow \widetilde{H}^{*}(CP^{n}/CP^{m})$$

is a ring monomorphism ([1], p. 621). For the generator $\mu \in \widetilde{K}_c(\mathbb{C}P^n)$, $ch \ \mu = e^{-y} - 1 \pmod{y^{n+1}}$, where $y \in H^2(\mathbb{C}P^n, Q)$ is the generator. Therefore, we have

$$ch \cdot c\omega = ch \cdot cr \ \mu = ch(1+t) \ \mu = ch\{\mu^2/(1+\mu)\}$$

= $(2\sinh y/2)^2 \pmod{y^{n+1}}$,

and

$$ch_{2t} \cdot c\omega = 2 \cdot y^{2t} / (2t) ! . \tag{1}$$

Next consider the stunted projective space CP^n/CP^1 . Since $H^2(CP^n/CP^1) = 0$, every real vector bundle over CP^n/CP^1 has the vanishing 2-dimensional Stiefel-Whitney class and therefore every element in $\widetilde{K}_R(CP^n/CP^1)$ is considered as a linear combination of Spin(8m)-bundles. By the exactness of the sequence

$$0 \longrightarrow \widetilde{K}_{\mathbb{R}}(\mathbb{C}P^n/\mathbb{C}P^1) \xrightarrow{j^*} \widetilde{K}_{\mathbb{R}}(\mathbb{C}P^n) \xrightarrow{i^*} \widetilde{K}_{\mathbb{R}}(\mathbb{C}P^1) \longrightarrow 0,$$

 $\widetilde{K}_{R}(CP^{n}/CP^{1})$ is additively generated by $\omega_{1}, \omega_{2}, \omega_{3}, \cdots$ such that the equalities

$$j^* \omega_1 = 2\omega$$

$$j^* \omega_s = \omega^s, \quad s = 2, 3, \cdots$$
(2)

hold ([3], Theorem 2.2, (iii)).

Determination of $\rho_R^k \omega$. Let Q_k be the additive group of fractions of the form p/k^q , where p and q are integers.

THEOREM. For the generator $\omega \in \widetilde{K}_{\mathbb{R}}(\mathbb{C}P^n)$, we have

K. IWATA AND H. ÔIKE

$$\rho_R^k \omega = 1 + a_1 \omega + a_2 \omega^2 + \cdots,$$

in $1+\widetilde{K}_{\mathbb{R}}(\mathbb{C}P^n)\otimes Q_k$, where a_t $(t=1,2,\cdots)$ is given by the following formula:

$$a_t = (k^2 - 1) \cdot \cdot \cdot (k^2 - (2t - 1)^2)/(2^{2t}(2t + 1)!)$$

PROOF. By [2, (5.2)],

$$\operatorname{Log} sh \omega_1 = \sum_{t=1}^{\infty} (1/2) \alpha_{2t} ch_{2t} c \omega_1.$$

For the definition of α_{2t} , see [2, §2]. By the naturalities of ch and c, we have

$$j^* \operatorname{Log} sh \omega_1 = \sum (1/2) \alpha_{2t} ch_{2t} ch_{2t} ch_{2t} ch_{2t} d_1$$
$$= \sum (1/2) \alpha_{2t} ch_{2t} ch_{2t} c(2\omega) \qquad (by (2))$$
$$= 2 \sum \alpha_{2t} (y^{2t}/(2t)!) \qquad (by (1))$$
$$= 2 \operatorname{Log}((\sinh y/2)/(y/2)) \qquad (by [2, (2.1)]).$$

Therefore,

$$j^* sh \omega_1 = ((\sinh y/2)/(y/2))^2.$$
 (3)

We define

$$\Psi^k_H: \sum_{s\geq 0} H^{2s}(X,Q) \longrightarrow \sum_{s\geq 0} H^{2s}(X,Q)$$

by

$$\Psi^{\scriptscriptstyle k}_{\scriptscriptstyle H}(x)=k^{\scriptscriptstyle s}x\,, \ \ {
m for} \ \ x\in H^{\scriptscriptstyle 2s}(X,Q)\,.$$

This is a ring homomorphism and we have

$$j^* \Psi_H^k sh \,\omega_1 = ((\sinh ky/2)/(ky/2))^2 \,. \tag{4}$$

By [2, (5.6)], we have

THE OPERATIONS
$$\rho_R^k$$
 ON THE GROUP $\widetilde{K}_R(CP^n)$

$$j^* ch \cdot c \rho_R^k \omega_1 = j^* \{ (\Psi_H^k sh \, \omega_1) / (sh \, \omega_1) \}$$

= $((\sinh ky/2) / (k \sinh y/2))^2$ (by (3), (4)).

Since

$$j^{*} ch \cdot c \rho_{R}^{k} \omega_{1} = ch \cdot c \rho_{R}^{k}(2\omega)$$
$$= (ch \cdot c \rho_{R}^{k} \omega)^{2}$$

we have

$$ch \cdot c \rho_R^k \omega = (\sinh ky/2)/(k \sinh y/2).$$
(5)

Recall the formula in the elementary calculus

$$\sinh nx = \sum_{r=0}^{\infty} (n/(2r+1)!) \left[\prod_{t=1}^{r} (n^2 - (2t-1)^2) \right] \sinh^{2r+1} x$$

Here, $\Pi[$] means 1, when r = 0. If *n* is odd, the right hand side has the finite summands. But when *n* is even it is a infinite series. Therefore we have

$$ch \cdot c\rho_R^k \omega = \sum_{t=0}^{\infty} (1/(2t+1)!) \left[\prod_{u=1}^t (n^2 - (2u-1)^2) \right] \sinh^{2t} y/2$$

In the case $n \equiv 1 \pmod{4}$ the theorem follows since $ch \cdot c$ is a monomorphism on $\widetilde{K}_{\mathbb{R}}(\mathbb{C}\mathbb{P}^n)$. In the case n=4w+1, consider the exact sequence

$$0 \longrightarrow \widetilde{K}_{R}(S^{8w+4}) \longrightarrow \widetilde{K}_{R}(CP^{4w+2}) \xrightarrow{i^{*}} \widetilde{K}_{R}(CP^{4w+1}) \longrightarrow 0.$$

For the generator ω' of the ring $\widetilde{K}_{\mathbb{R}}(CP^{4w+2})$, we have

$$i^{*}(\omega^{'s}) = \omega^{s}, \quad s = 1, 2, \cdots, 2w+1$$

Since $ch \cdot c$ is a monomorphism on $\widetilde{K}_R(CP^{4w+2})$, by the naturalities of $ch \cdot c$ and ρ_R^k , the coefficient of ω^{2w+1} in $\rho_R^k \omega$ is a mod 2 reduction of the coefficient of ω'^{2w+1} in $\rho_R^k \omega'$ and the theorem is valid.

Determination of $\rho_R^k \omega^s$ $(s \ge 2)$. Since $ch \cdot c$ is the ring homomorphism, we have

$$ch \cdot c\omega^{s} = 2^{2s} \sinh^{2s} y/2$$

= $2 \left\{ \sum_{r=0}^{s-1} (-1)^{r} {2s \choose r} \cosh(2s-2r) y/2 + (-1)^{s} (1/2) {2s \choose s} \right\}$

and

$$ch_{2t} \cdot c\omega^{s} = 2\left\{\sum_{r=0}^{s-1} (-1)^{r} {2s \choose r} (s-r)^{2t} / (2t)! \right\} y^{2t}, \quad t = 1, 2, \cdots.$$

Therefore

$$\begin{aligned} \log sh \,\omega^{s} &= \sum_{t} (1/2) \,\alpha_{2t} ch_{2t} c \omega^{s} \\ &= \sum_{t} \alpha_{2t} \left\{ \sum_{r=0}^{s-1} (-1)^{r} {2s \choose r} (s-r)^{2t} / (2t)! \right\} y^{2t} \\ &= \sum_{r=0}^{s-1} (-1)^{r} {2s \choose r} \left\{ \sum_{t} \alpha_{2t} (s-r)^{2t} y^{2t} / (2t)! \right\} \\ &= \sum_{r=0}^{s-1} (-1)^{r} {2s \choose r} \operatorname{Log} \left\{ (\sinh(s-r) y/2) / ((s-r) y/2) \right\}.\end{aligned}$$

Therefore,

$$sh\omega^s = \prod_{r=0}^{s-1} \left\{ (\sinh(s-r)y/2) / ((s-r)y/2) \right\}^{(-1)^r \binom{2s}{r}}.$$

Since Ψ^k_H is a ring homomorphism, we have

$$\Psi_{H}^{k} sh \, \omega^{s} = \prod_{r=0}^{s-1} \left\{ (\sinh k(s-r)y/2) / (k(s-r)y/2) \right\}^{(-1)^{r} \binom{2s}{r}}$$

and therefore

$$ch \cdot c\rho_R^k \omega^s = \Psi_H^k sh \, \omega^s / sh \, \omega^s = \prod_{r=0}^{s-1} \left\{ (\sinh k(s-r)y/2) / (k \sinh(s-r)y/2) \right\}^{(-1)^r \binom{2s}{r}}.$$
 (6)

From this we can determine $\rho_R^k \omega^s$ as above. But for general s it is very complicated. For example, in the case s = 2, (6) reduces to

$$ch \cdot c\rho_R^k \omega^2 = (\sinh ky/k \sinh y)((k \sinh y/2)/(\sinh ky/2))^4.$$
(7)

Therefore

$$ch \cdot c \rho_R^k \omega^2 = (1 + ((k^2 - 1)/2) \sinh^2 y/2 + ((k^2 - 1)(k^2 - 3^2)/4!) \sinh^4 y/2 + \cdots)$$
$$\cdot (1 + ((k^2 - 1)/3!) \sinh^2 y/2 + ((k^2 - 1)(k^2 - 3^2)/5!) \sinh^4 y/2 + \cdots)^{-3}$$

THE OPERATIONS
$$\rho_R^k$$
 ON THE GROUP $\widetilde{K}_R(CP^n)$ 587
= 1-((k^4 -1)/15) sinh⁴ y/2
+ (2(k^2 -1)(10 k^4 +31 k^2 +31)/(3³ · 5 · 7)) sinh⁶ y/2 + · · · .

So we have

THEOREM.

$$\rho_R^k \omega^2 = 1 - ((k^4 - 1)/240) \,\omega^2 + ((k^2 - 1)(10k^4 + 31k^2 + 31)/(2^5 \cdot 3^3 \cdot 5 \cdot 7)) \,\omega^3 + \cdots$$

The following theorem is more convenient.

THEOREM.

$$\rho_R^k(\omega^2 + 4\omega) = 1 + ((k^2 - 1)/3!)) \omega + ((k^2 - 1)(k^2 - 2^2)/5!) \omega^2 + ((k^2 - 1)(k^2 - 2^2)(k^2 - 3^2)/7!) \omega^3 + \cdots$$

Proof.

$$ch \cdot c \rho_{R}^{k}(\omega^{2}+4\omega) = (ch \cdot c \rho_{R}^{k} \omega^{2})(ch \cdot c \rho_{R}^{k} \omega)^{4}$$

= sinh ky/k sinh y (by (5) and (7)) (8)
$$= \sum_{r=0}^{k-1} (2^{2r}/(2r+1)!) \prod_{t=1}^{r} (k^{2}-t^{2}) \sinh^{2r} y/2.$$

This completes the proof.

The first term of $\rho_R^k \omega^s$. We have

$$\log\{\Psi_{H}^{k} sh \, \omega^{s}/sh \, \omega^{s}\} = \sum_{t} \alpha_{2t}(k^{2t}-1) \left\{ \sum_{r=0}^{s-1} (-1)^{r} \binom{2s}{r} (s-r)^{2t}/(2t)! \right\} y^{2t}.$$

Since for arbitrary s,

$$\sum_{r=0}^{s-1} (-1)^r \binom{2s}{r} (s-r)^{2t} = 0 \qquad t < s$$
$$= (1/2)(2t)! \qquad t = s,$$

we can easily see that

THEOREM. For arbitrary s, we have

$$\rho_R^k \omega^s = 1 + (1/2)(k^{2s} - 1) \alpha_{2s} \omega^s + (higher order terms).$$

For $\omega^{4w+1} \in \widetilde{K}_R(CP^{4w+1})$, we have

THEOREM.

PROOF. We know that for the generator $\alpha \in \widetilde{K}_{\mathbb{R}}(S^{\otimes w+2}) = Z_2$

$$\rho_R^k \alpha = 1 + \alpha \quad \text{if} \quad k \equiv \pm 3 \mod 8$$

$$= 1 \quad \text{if} \quad k \equiv \pm 1 \mod 8.$$

By the exactness of

$$0 \longrightarrow \widetilde{K}_{R}(S^{\mathfrak{sw}+2}) \longrightarrow \widetilde{K}_{R}(CP^{\mathfrak{sw}+1}) \longrightarrow \widetilde{K}_{R}(CP^{\mathfrak{sw}}) \longrightarrow 0,$$

the theorem follows immediately.

REMARK. Let h_c be the canonical complex line bundle over CP^n , we have

$$ch \cdot c \rho_R^k r(h_c^{\lambda}) = (\sinh k \lambda y/2)/(\sinh \lambda y/2).$$

(8) is obtained from this formula as the special case $\lambda = 2$.

REFERENCES

- [1] J. F. ADAMS, Vector fields on spheres, Ann. of Math., 75(1962), 603-632. [2] J. F. ADAMS, On the groups J(X)-II, Topology 3(1965), 137-171.
- [3] J. F. ADAMS AND G. WALKER, On complex Stiefel manifolds, Proc. Cambridge Philos. Soc., 61(1965), 81-103.

THE COLLEGE OF GENERAL EDUCATION TÔHOKU UNIVERSITY SENDAI, JAPAN

AND

IWATE MEDICAL COLLEGE MORIOKA, JAPAN