THE OPERATIONS ρ_{R}^{k} ON THE GROUP $\widetilde{K}_{R}\left(\boldsymbol{C P}^{n}\right)$

Koichi Iwata and Hiroshi Ôike

(Received June 11, 1968)

The operations ρ_{C}^{k} and ρ_{R}^{k} play significant roles in K-theory. Their definitions and the actions on the K-groups of diverse complexes are described in [2].

In this note, we calculate the action of ρ_{R}^{k} on the reduced K-rings of a complex projective space $C P^{n}$. The method used here is the same as the one which is employed by J.F.Adams in the calculation of ρ_{R}^{k} on the ring $\widetilde{K}_{R}\left(S^{4 n}\right)$ [2. (5.18)].

Preliminaries. Let $C P^{n}$ be the (complex) n-dimensional complex projective space and $\widetilde{K}_{C}\left(C P^{n}\right)$ (resp. $\left.\widetilde{K}_{R}\left(C P^{n}\right)\right)$ be its complex (resp. real) (reduced) K-rings. We write

$$
\begin{aligned}
& c: \widetilde{K}_{R}\left(C P^{n}\right) \longrightarrow \widetilde{K}_{c}\left(C P^{n}\right), \\
& r: \widetilde{K}_{c}\left(C P^{n}\right) \longrightarrow \widetilde{K}_{R}\left(C P^{n}\right), \\
& t: \widetilde{K}_{c}\left(C P^{n}\right) \longrightarrow \widetilde{K}_{c}\left(C P^{n}\right)
\end{aligned}
$$

for the homomorphisms induced by complexification, realification and complex conjugation. As is well-known ([1], Lemma 3.9), we have

$$
\begin{aligned}
c r & =1+t, \\
r c & =2 .
\end{aligned}
$$

The ring $\widetilde{K}_{c}\left(C P^{n}\right)$ is generated by one generator μ which satisfies the relation $\mu^{n+1}=0$ ([1], Theorem 7.2). The ring $\widetilde{K}_{R}\left(C P^{n}\right)$ is generated by one generator $\omega=r \mu$ which satisfies the following relations:

$$
\begin{array}{ll}
\boldsymbol{\omega}^{2 w+1}=0, & \text { if } n=4 w, \\
2\left(\omega^{2 w+1}\right)=0, & \boldsymbol{\omega}^{2 w+2}=0, \\
\text { if } n=4 w+1,
\end{array}
$$

$$
\omega^{2 w+2}=0, \quad \text { if } n=4 w+2, n=4 w+3
$$

([3], Theorem 2.2,(i)).
Let

$$
\operatorname{ch}: \widetilde{K}_{c}(X) \longrightarrow \widetilde{H}^{*}(X, Q)
$$

denote the Chern character. Note that

$$
\operatorname{ch}: \widetilde{K}_{c}\left(C P^{n} / C P^{m}\right) \longrightarrow \widetilde{H}^{*}\left(C P^{n} / C P^{m}\right)
$$

is a ring monomorphism ([1], p. 621). For the generator $\mu \in \widetilde{K}_{c}\left(C P^{n}\right)$, $\operatorname{ch} \mu=e^{-y}-1\left(\bmod y^{n+1}\right)$, where $y \in H^{2}\left(C P^{n}, Q\right)$ is the generator. Therefore, we have

$$
\begin{aligned}
\operatorname{ch} \cdot c \omega & =\operatorname{ch} \cdot \operatorname{cr} \mu=\operatorname{ch}(1+t) \mu=\operatorname{ch}\left\{\mu^{2} /(1+\mu)\right\} \\
& =(2 \sinh y / 2)^{2} \quad\left(\bmod y^{n+1}\right)
\end{aligned}
$$

and

$$
\begin{equation*}
c h_{2 t} \cdot c \omega=2 \cdot y^{2 t} /(2 t)! \tag{1}
\end{equation*}
$$

Next consider the stunted projective space $C P^{n} / C P^{1}$. Since $H^{2}\left(C P^{n} / C P^{1}\right)$ $=0$, every real vector bundle over $C P^{n} / C P^{1}$ has the vanishing 2 -dimensional Stiefel-Whitney class and therefore every element in $\widetilde{K}_{R}\left(C P^{n} / C P^{1}\right)$ is considered as a linear combination of $\operatorname{Spin}(8 m)$-bundles. By the exactness of the sequence

$$
0 \longrightarrow \widetilde{K}_{R}\left(C P^{n} / C P^{1}\right) \xrightarrow{j^{*}} \widetilde{K}_{R}\left(C P^{n}\right) \xrightarrow{i^{*}} \widetilde{K}_{R}\left(C P^{1}\right) \longrightarrow 0,
$$

$\widetilde{K}_{R}\left(C P^{n} / C P^{1}\right)$ is additively generated by $\omega_{1}, \omega_{2}, \omega_{3}, \ldots$ such that the equalities

$$
\begin{align*}
& j^{*} \omega_{1}=2 \omega \\
& j^{*} \omega_{s}=\omega^{s}, \quad s=2,3, \cdots \tag{2}
\end{align*}
$$

hold ([3], Theorem 2.2, (iii)).
Determination of $\rho_{R}^{k} \omega$. Let Q_{k} be the additive group of fractions of the form p / k^{q}, where p and q are integers.

THEOREM. For the generator $\omega \in \widetilde{K}_{R}\left(C P^{n}\right)$, we have

$$
\rho_{R}^{k} \omega=1+a_{1} \omega+a_{2} \omega^{2}+\cdots,
$$

in $1+\widetilde{K}_{R}\left(C P^{n}\right) \otimes Q_{k}$, where $a_{t}(t=1,2, \cdots)$ is given by the following formula :

$$
a_{t}=\left(k^{2}-1\right) \cdots\left(k^{2}-(2 t-1)^{2}\right) /\left(2^{2 t}(2 t+1)!\right) .
$$

Proof. By [2, (5.2)],

$$
\log s h \omega_{1}=\sum_{t=1}^{\infty}(1 / 2) \alpha_{2 t} c h_{2 t} c \omega_{1} .
$$

For the definition of $\alpha_{2 t}$, see [2, §2]. By the naturalities of $c h$ and c, we have

$$
\begin{aligned}
j^{*} \log s h \omega_{1} & =\sum(1 / 2) \alpha_{2 t} c h_{2 t} \cdot c j^{*} \omega_{1} & & \\
& =\sum(1 / 2) \alpha_{2 t} c h_{2 t} \cdot c(2 \omega) & & (\text { by (2)) } \\
& =2 \sum \alpha_{2 t}\left(y^{2 t} /(2 t)!\right) & & (\text { by (1)) } \\
& =2 \log ((\sinh y / 2) /(y / 2)) & & (\text { by }[2,(2.1)]) .
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
j^{*} \operatorname{sh} \omega_{1}=((\sinh y / 2) /(y / 2))^{2} . \tag{3}
\end{equation*}
$$

We define

$$
\Psi_{H}^{k}: \sum_{s \geq 0} H^{2 s}(X, Q) \longrightarrow \sum_{s \geq 0} H^{2 s}(X, Q)
$$

by

$$
\Psi_{H}^{k}(x)=k^{s} x, \text { for } x \in H^{2 s}(X, Q)
$$

This is a ring homomorphism and we have

$$
\begin{equation*}
j^{*} \Psi_{H}^{k} \operatorname{sh} \omega_{1}=((\sinh k y / 2) /(k y / 2))^{2} . \tag{4}
\end{equation*}
$$

By [2, (5.6)], we have

$$
\begin{aligned}
j^{*} c h \cdot c \rho_{R}^{k} \omega_{1} & =j^{*}\left\{\left(\Psi_{H}^{k} \operatorname{sh} \omega_{1}\right) /\left(\operatorname{sh} \omega_{1}\right)\right\} \\
& =((\sinh k y / 2) /(k \sinh y / 2))^{2} \quad(\text { by }(3),(4)) .
\end{aligned}
$$

Since

$$
\begin{aligned}
j^{*} c h \cdot c \rho_{R}^{k} \omega_{1} & =c h \cdot c \rho_{R}^{k}(2 \omega) \\
& =\left(c h \cdot c \rho_{R}^{k} \omega\right)^{2}
\end{aligned}
$$

we have

$$
\begin{equation*}
c h \cdot c \rho_{R}^{k} \omega=(\sinh k y / 2) /(k \sinh y / 2) . \tag{5}
\end{equation*}
$$

Recall the formula in the elementary calculus

$$
\sinh n x=\sum_{r=0}^{\infty}(n /(2 r+1)!)\left[\prod_{t=1}^{r}\left(n^{2}-(2 t-1)^{2}\right)\right] \sinh ^{2 r+1} x
$$

Here, $\Pi[$] means 1 , when $r=0$. If n is odd, the right hand side has the finite summands. But when n is even it is a infinite series. Therefore we have

$$
\operatorname{ch} \cdot c \rho_{R}^{k} \omega=\sum_{t=0}^{\infty}(1 /(2 t+1)!)\left[\prod_{u=1}^{t}\left(n^{2}-(2 u-1)^{2}\right)\right] \sinh ^{2 t} y / 2
$$

In the case $n \neq 1(\bmod 4)$ the theorem follows since $c h \cdot c$ is a monomorphism on $\widetilde{K}_{R}\left(C P^{n}\right)$. In the case $n=4 w+1$, consider the exact sequence

$$
0 \longrightarrow \widetilde{K}_{R}\left(S^{8 w+4}\right) \longrightarrow \widetilde{K}_{R}\left(C P^{4 w+2}\right) \xrightarrow{i^{*}} \widetilde{K}_{R}\left(C P^{4 w+1}\right) \longrightarrow 0 .
$$

For the generator ω^{\prime} of the ring $\widetilde{K}_{R}\left(C P^{4 w+2}\right)$, we have

$$
i^{*}\left(\omega^{\prime s}\right)=\omega^{s}, \quad s=1,2, \cdots, 2 w+1
$$

Since $c h \cdot c$ is a monomorphism on $\widetilde{K}_{R}\left(C P^{4 w+2}\right)$, by the naturalities of $c h \cdot c$ and ρ_{R}^{k}, the coefficient of $\omega^{2 w+1}$ in $\rho_{R}^{k} \omega$ is a $\bmod 2$ reduction of the coefficient of $\omega^{\prime 2 w+1}$ in $\rho_{R}^{k} \omega^{\prime}$ and the theorem is valid.

Determination of $\rho_{R}^{k} \omega^{s}(s \geqq 2)$. Since $c h \cdot c$ is the ring homomorphism, we have

$$
\begin{aligned}
c h \cdot c \omega^{s} & =2^{2 s} \sinh ^{2 s} y / 2 \\
& =2\left\{\sum_{r=0}^{s-1}(-1)^{r}\binom{2 s}{r} \cosh (2 s-2 r) y / 2+(-1)^{s}(1 / 2)\binom{2 s}{s}\right\}
\end{aligned}
$$

and

$$
c h_{2 t} \cdot c \omega^{s}=2\left\{\sum_{r=0}^{s-1}(-1)^{r}\binom{2 s}{r}(s-r)^{2 t} /(2 t)!\right\} y^{2 t}, \quad t=1,2, \cdots
$$

Therefore

$$
\begin{aligned}
\log s h \omega^{s} & =\sum_{t}(1 / 2) \alpha_{2 t} c h_{2 t} c \omega^{s} \\
& =\sum_{t} \alpha_{2 t}\left\{\sum_{r=0}^{s-1}(-1)^{r}\binom{2 s}{r}(s-r)^{2 t} /(2 t)!\right\} y^{2 t} \\
& =\sum_{r=0}^{s-1}(-1)^{r}\binom{2 s}{r}\left\{\sum_{t} \alpha_{2 t}(s-r)^{2 t} y^{2 t} /(2 t)!\right\} \\
& =\sum_{r=0}^{s-1}(-1)^{r}\binom{2 s}{r} \log \{(\sinh (s-r) y / 2) /((s-r) y / 2)\} .
\end{aligned}
$$

Therefore,

$$
s h \omega^{s}=\prod_{r=0}^{s-1}\{(\sinh (s-r) y / 2) /((s-r) y / 2)\}^{(-1) \cdot\left({ }_{r}^{2 s}\right)}
$$

Since Ψ_{H}^{k} is a ring homomorphism, we have

$$
\Psi_{H}^{k} s h \omega^{s}=\prod_{r=0}^{s-1}\{(\sinh k(s-r) y / 2) /(k(s-r) y / 2)\}^{(-1) r^{2 s}\left(r_{r}\right)}
$$

and therefore
$\operatorname{ch} \cdot c \rho_{R}^{k} \omega^{s}=\Psi_{H}^{k} \operatorname{sh} \omega^{s} / \operatorname{sh} \omega^{s}=\prod_{r=0}^{s-1}\{(\sinh k(s-r) y / 2) /(k \sinh (s-r) y / 2)\}^{(-1) r\left({ }_{2}^{s}\right)}$.
From this we can determine $\rho_{R}^{k} \omega^{s}$ as above. But for general s it is very complicated. For example, in the case $s=2$, (6) reduces to

$$
\begin{equation*}
c h \cdot c \rho_{R}^{k} \omega^{2}=(\sinh k y / k \sinh y)((k \sinh y / 2) /(\sinh k y / 2))^{4} . \tag{7}
\end{equation*}
$$

Therefore

$$
\begin{aligned}
c h \cdot c \rho_{R}^{k} \omega^{2}= & \left(1+\left(\left(k^{2}-1\right) / 2\right) \sinh ^{2} y / 2+\left(\left(k^{2}-1\right)\left(k^{2}-3^{2}\right) / 4!\right) \sinh ^{4} y / 2+\cdots\right) \\
& \cdot\left(1+\left(\left(k^{2}-1\right) / 3!\right) \sinh ^{2} y / 2+\left(\left(k^{2}-1\right)\left(k^{2}-3^{2}\right) / 5!\right) \sinh ^{4} y / 2+\cdots\right)^{-3}
\end{aligned}
$$

$$
\begin{aligned}
& \quad \text { THE OPERATIONS } \rho_{R}^{k} \text { ON THE GROUP } \widetilde{K}_{R}\left(C P^{n}\right) \\
& =1-\left(\left(k^{4}-1\right) / 15\right) \sinh ^{4} y / 2 \\
& +\left(2\left(k^{2}-1\right)\left(10 k^{4}+31 k^{2}+31\right) /\left(3^{3} \cdot 5 \cdot 7\right)\right) \sinh ^{6} y / 2+\cdots .
\end{aligned}
$$

So we have

ThEOREM.

$\rho_{R}^{k} \omega^{2}=1-\left(\left(k^{4}-1\right) / 240\right) \omega^{2}+\left(\left(k^{2}-1\right)\left(10 k^{4}+31 k^{2}+31\right) /\left(2^{5} \cdot 3^{3} \cdot 5 \cdot 7\right)\right) \omega^{3}+\cdots$.
The following theorem is more convenient.
Theorem.

$$
\begin{aligned}
\left.\rho_{R}^{k}\left(\omega^{2}+4 \omega\right)=1+\left(\left(k^{2}-1\right) / 3!\right)\right) \omega & +\left(\left(k^{2}-1\right)\left(k^{2}-2^{2}\right) / 5!\right) \omega^{2} \\
& +\left(\left(k^{2}-1\right)\left(k^{2}-2^{2}\right)\left(k^{2}-3^{2}\right) / 7!\right) \omega^{3}+\cdots .
\end{aligned}
$$

Proof.

$$
\begin{align*}
& c h \cdot c \rho_{R}^{k}\left(\omega^{2}+4 \omega\right)=\left(c h \cdot c \rho_{R}^{k} \omega^{2}\right)\left(c h \cdot c \rho_{R}^{k} \omega\right)^{4} \\
&=\sinh k y / k \sinh y \quad(\text { by (5) and (7)) } \tag{8}\\
&=\sum_{r=0}^{k-1}\left(2^{2 r} /(2 r+1)!\right) \prod_{t=1}^{r}\left(k^{2}-t^{2}\right) \sinh ^{2 r} y / 2 .
\end{align*}
$$

This completes the proof.
The first term of $\rho_{R}^{k} \omega^{s}$. We have

$$
\log \left\{\Psi_{H}^{k} s h \omega^{s} / s h \omega^{s}\right\}=\sum_{t} \alpha_{2 t}\left(k^{2 t}-1\right)\left\{\sum_{r=0}^{s-1}(-1)^{r}\binom{2 s}{r}(s-r)^{2 t} /(2 t)!\right\} y^{2 t}
$$

Since for arbitrary s,

$$
\begin{aligned}
\sum_{r=0}^{s-1}(-1)^{r}\binom{2 s}{r}(s-r)^{2 t} & =0 & & t<s \\
& =(1 / 2)(2 t)! & & t=s
\end{aligned}
$$

we can easily see that
THEOREM. For arbitrary s, we have

$$
\rho_{R}^{k} \omega^{s}=1+(1 / 2)\left(k^{2 s}-1\right) \alpha_{2 s} \omega^{s}+(\text { higher order terms }) .
$$

For $\omega^{4 w+1} \in \widetilde{K}_{R}\left(C P^{4 w+1}\right)$, we have

Theorem.

$$
\begin{aligned}
\rho_{R}^{k} \omega^{4 w+1} & =1+\omega^{4 w+1} & & \text { if } k \equiv \pm 3 \bmod 8 \\
& =1 & & \text { if } k \equiv \pm 1 \bmod 8 .
\end{aligned}
$$

Proof. We know that for the generator $\alpha \in \widetilde{K}_{R}\left(S^{8 w+2}\right)=Z_{2}$

$$
\begin{aligned}
\rho_{R}^{k} \alpha & =1+\alpha & & \text { if }
\end{aligned} \quad k \equiv \pm 3 \bmod 88
$$

By the exactness of

$$
0 \longrightarrow \widetilde{K}_{R}\left(S^{8 w+2}\right) \longrightarrow \widetilde{K}_{R}\left(C P^{4 w+1}\right) \longrightarrow \widetilde{K}_{R}\left(C P^{4 w}\right) \longrightarrow 0,
$$

the theorem follows immediately.
Remark. Let h_{c} be the canonical complex line bundle over $C P^{n}$, we have

$$
\operatorname{ch} \cdot c \rho_{R}^{k} r\left(h_{c}^{\lambda}\right)=(\sinh k \lambda y / 2) /(\sinh \lambda y / 2)
$$

(8) is obtained from this formula as the special case $\lambda=2$.

References

[1] J. F. Adams, Vector fields on spheres, Ann. of Math., 75(1962), 603-632.
[2] J. F. Adams, On the groups $J(X)$-II, Topology 3(1965), 137-171.
[3] J. F. Adams and G. Walker, On complex Stiefel manifolds, Proc. Cambridge Philos. Soc., 61(1965), 81-103.

The College of General Education
Tôhoku University
SEndai, Japan
AND
Iwate Medical College
Morioka, Japan

