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Introduction. Let M=G/G0 be a homogeneous space of a Lie group G
over a closed subgroup Go of it. Let g denote the Lie algebra of G. We
suppose that there is a family (g^^o (i *• integer) of subspaces of g satisfying
the following conditions:

(1) g = 2gt (direct sum)

(2) [βitβJcβi+i + βn-ji;

(3) g0 is the Lie algebra of Go.

This homogeneous space is considered with respect to a graded Lie algebra
(cf. Remark 1). In particular if g4 = {0} for i > 1, since conditions (1) and (2)
mean

9 = 9o + fli (direct sum), [g0, g0] c g0, [β0, βi] c βi and [g1? gj c β0,

the homogeneous space is an extension of a symmetric homogeneous space.
Our purpose is to establish the theory of the homogeneous spaces, and in this
note we shall study the homogeneous spaces satisfying some additional
conditions and, for the most part, ones which are homogeneous almost contact
manifold that are similar to Kahlerian symmetric spaces.

In §1 we shall define homogeneous spaces which are closely related with
the holomorphic geometry of real submanifolds in complex manifolds which
has been developed recently by N.Tanaka [8], and shall show a real submanifold
of a Grassmann manifold as a typical example of it.

The notion of an almost contact structure 2 = (φ, ζ, v) was given by
S.Sasaki [6]. In the previous note [4], we have shown that on a non-degenerate
almost contact manifold with structure tensors (φ, ξ, η) there is a unique linear
connection V associated with the almost contact structure (φ, ξ, η). In §2 we
shall consider the homogeneous spaces M =• G/Go which are denned in §1 and
satisfy an additional condition. The homogeneous spaces are similar to
Kahlerian symmetric spaces. We shall show that on the space M = G/Go a
G-invariant non-degenerate almost contact structure 2 = (φ, ξ9 η) can be
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canonically defined (Th. 1) and shall study the group of all automorphisms of
(M, Σ). Next we shall show that the linear connection associated with the
almost contact structure Σ is the canonical linear connection of the second
kind on the homogeneous space and whose curvature tensor field can be
computed (Prop. 2 and Th. 3). In the last section we shall prove the following :
Let M be a non-degenerate normal almost contact manifold with structure
tensors (φ, ξ,η). Let V be the linear connection associated with the almost
contact structure and R be the curvature tensor field of it. If \/R = 0, then
M is locally isomorphic to the homogeneous space given in §2.

Finally the authors wish to express their sincere thanks to Prof. N.Tanaka
for his kind guidance and for many valuable suggestions.

Preliminary remark, notations. Throughout this note, we assume the
differentiability of class C°°. Let M be a differentiate manifold. For each point
p of M, TP(M) denotes the tangent space of M a t p and £(M) denotes the
Lie algebra of all vector fields on M. Let / be a differentiable mapping of a
manifold into another manifold. f# and / * denote as usual the differential of
/ and the transpose of f*. R and C denote the field of real numbers and that
of complex numbers. C* denotes the multiplicative group of non-zero complex
numbers. Cn denotes the vector space of ^-tuples of complex numbers. GL(n, C)
denotes the group of non-singular nXn complex matrices. En denotes the
identity matrix of order n. Let g be a pxq complex matrix. ιg and g denote
as usual the transpose of g and the complex conjugate of g. Let A be an
nX-n complex matrix. TrA denotes the trace of A.

1. On certain homogeneous spaces. Let M = G/Go be a homogeneous
space of a Lie group G over a closed subgroup Go of G. Let g denote the Lie
algebra of G, the Lie algebra of all left invariant vector fields on G. We
suppose that there is given a family (gO^o it'•'- integers) of subspaces of g
satisfying the following conditions:

(1.1) β = Σβί (direct sum)

(1.2) [βt,β,]Cβ i + J + β,*_,,;

(1.3) 9 i={0} if i>2;

(1.4) There is an element u of g2 such that

[«,[κ,X]]=-Xfσr a l lX€ f l l ;

(1. 5) g0 is the Lie algebra of Go

(1.6) Ad(g)Qi = Qi, and Ad(g)u = u for all g^G0, where Ad(g) denotes

the adjoint representation of Go in g.

EXAMPLE. We denote by C2n+1 the complex vector space of (2n + 1)-
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complex variables and by eue2, ,e2n+1 the natural basis of it. Let H(2n + l,n)
denote the Grassmann manifold of ?z-planes in C2W+1. We see that the
protective transformation group PL(2n + 1, C) operates transitively on it. Let
O be an n-plane spanned by the vectors {el9 ,en}. We have H(2n + 1, n)
= PL(2n + 1, C)/H, where H is the isotropy subgroup of PL(2n + 1, C) at O.
Next, we denote by G the group of matrices g such that

g £ GL(2n + 1, C), fgkg = Xk, ΛzC* = C- {0},

where

0

-1

0

We set G = G/ZoG, where Z is the center of GL(2n + 1, C). The group G is
a Lie subgroup of PL{2n + 1, C). Let M be a G-orbit through O, i.e., the set
of points g O, g zG. We have known that M is represented as a homogeneous
space G/GOy where Go is the isotropy subgroup of G at O and is a real
submanifold of the Grassmann manifold H(2n + 1 , w). Let K denote the
group of matrices g such that

g e GL(2n + 1, C), tgjg = λ/, λ <Ξ C*,

where

We set K=G'nK'/ZΓ)G'nK'9 where Z is the center of GL(2n + l,C). The
group i£ is the maximal compact analytic subgroup of G. A K-orbit through O,
K/Ko (where Ko is the isotropy subgroup of K at O), is a compact submanifold
of M=G/G0. Since M is connected and dim M(= dim G/Go) = dim K/Ko, we
have M=K/K0.

The Lie algebra ϊ of iC may be identified with the Lie algebra of matrices

of the form
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A

ξ

B

a
ft

B

-ξ

-ιA

where A, B € u(n), a = — 2TrA and ξ € Cn. Now we define a family
subspaces of ϊ as follows:

A
0

0

0

ξ

0

0

0

B

0
a

0

- Ί
0

'?

0

0

0

°\0

-0
0 /

B \
0

0 /

, A e u(n) and α = - 2TrA

, B€u(n)

and ϊi = {0} if i > 2. Then, the family (Ϊ4) f e o of subspaces of ϊ defined above
satisfies conditions (1.1)—(1.6).

Finally we notice that the above homogeneous space M= G/GQ =K/K0, a
real submanifold of Grassmann manifold H(2n + 1 , n), is a space in the
holomorphic geometry of real submanifolds in complex manifolds (cf.[8]).

REMARK 1. The space M is represented as two homogeneous spaces G/Go

and K/Ko. We shall consider the relation between G/Go and K/Ko. The Lie
algebra g of G may be identified with the Lie algebra of matrices of the
form

A

ξ

B

a

•1

c
V

-*A

where A,B and Czu(ή), ct=-2TrA and ξ,ηzCn. We define a family (gt) of
subspaces as follows:
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So =

0
0

B

0

0

0

A

0

0

0
0

0

0

0

0

0

a

0

0
0

0

C

0

0

0

0

- M

) ί o

0

ξ

0

0

0

0

0
0

•F

'v
0

0

0
0

0

0

V

0

A € u(n) and a= -2TrA , and

δ t = {0} if | i | > 2 .

Then, the Lie algebra g has a graded Lie algebra structure, i.e.,

= ΣQi (direct sum)(1.7)

(1.8)

We denote by θ the involutive automorphism of g defined by:

ΘX=J~ιXJ for

where

0

1

0

Then, we have that 0gt = g_i, and ΐι = Q{θ)Γ\(Qi-^-Q_i) for all i ^ 0, where g(0)
is the subalgebra of g consisting of all elements X <E g such that ΘX = X
(cf. [8]).

We now remark that we have generally the following: Let (g,($i))i€z, Z
being the additive group of integers, be a graded Lie algebra over R, that is,
the family (g4) of subspaces of g satisfying conditions (1.7) and (1.8). We
assume the following:

(1)
(2)

g is finite dimensional and simple;

β* = 0 if | £ | > 2 a n d [β-i,β-i]^{0}.

Let B be the Killing form of g. Then there is an involutive automorphism



6 T. KATό AND K. Mόf OMίΫA

θ of g such that the quadratic form g =? X-*B{X, ΘX) € JR is negative definite
[8].

Let g(0) denote the subalgebra of g consisting of all elements X € g such
that ΘX = X. We set ϊ = g(0) and ϊ, = g(0)Π (gt + g_t) for i ^ 0. Then we can
see that the family (It)feo of subspaces of ϊ satisfies conditions (1.1) and (1.2).

2. On certain almost contact homogeneous spaces. In this section we
shall consider only the homogeneous spaces which are defined in §1 and
satisfy the following condition:

(2.1) dim g2 = 1.

To begin with we explain the definitions and the notations which will be
required for the later treatment. Let M be a homogeneous space G/Go which
satisfies conditions (1.1)-^ (1.6) and (2.1). We set m = Qι + g2, the subspace of
g. It follows from conditions (1.1) and (1.6) that

(2.2) g = g0 + m (direct sum) and Ad(G0)mctn.

Let n be the natural projection of G onto M = G/Go. We set 0 = 7t(e), where
e is the identity element of G. The mapping g 5 X —> τt^(Xe) e T0(M) gives a
linear isomorphism of m onto the tangent space T0(M) at 0. We shall identify
with m and T0(M) by this isomorphism.

Let M be a differentiate manifold of dimension 2n + 1 (n ^ 1). An
almost contact structure on M is, by definition [6], a triple Σ = (φ ,ξ, η), where
φ is a tensor field of type (1,1) on M, ξ is a vector field on M and η is a
1-form on M, which satisfies the following conditions:

(2.3) φ2X= -X+η{X) ξ for all X € £(M)

(2.4)

An almost contact structure Σ = {φ,ξ,η) on M is called normal if the following
tensor field N of type (1,2) vanishes:

(2.5) N(X, Y) = - φ2[X, Y] + φ[φX, Y] + φ[X, φY] - [φX, φY]
, Y).ξ for all X, Y € £(Λί) (cf. [7]).

With these preparations, we shall prove the following:

THEOREM 1. Let M=G/G0 be a homogeneous space of a Lie group G
over a closed subgroup GQ of G, and assume that the Lie algebra g of G
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has a family (gOî o of subspaces of g satisfying conditions (1.1) — (1.6) and
(2.1). Let u be an element of g2 satisfying condition (1.4). Then, there exists
a unique G-invariant normal almost contact structure Σ = (φ, ξ, η) which
satisfies the initial conditions:

φ0 = admw, ξ0 = u and ηo = u*,

where admw is the restriction of adii on m, and u* is a 1-form on m defined
by u*(μ)= 1 and u*(X) = 0 for all X ζ j ,

To prove Th.l we shall first establish the following lemmas.

LEMMA 2.1. For all aeGQ and for all X <= Ql9 we have

(2. 6) Adn(a)[u, X] = [u, Adm(α)X].

(2. 7) Adm(a)u = u.

PROOF. (2.7) follows from condition (1.6). From equality (2.7), we have

Ada(a)[u, X] = [Adm(α>, Adm{a)X] = [u, Adm{a)X].
Q.E.D.

Let U be an open neighbourhood of 0 in tn. We set

N= expU = {expX, X € U},

and

If U is sufficiently small, N is a submanifold of G, N* is an open neighbour-
hood of 0 in M9 and the restriction of the projection π of G onto M gives a
diffeomorphism of N onto JV*. For X € m, we define a vector field X* in TV*
by (X*)p = (τα)#X, where α is a unique element of ΛΓ satisfying p—n{a) and
τα is the mapping gG0-+agG0 of M = G/Go onto itself.

Then, we have

LEMMA 2.2 ([5]). [X*, Y*]o = [X, n « /or <*K X,Y€tn, wΛer^ [X,Y]m

denotes the m-component of the element [X, Y].

PROOF OF THEOREM 1. Let /> be an arbitrary point of M. Choose
g € G such that <7«0 = p. From Lemma 2.1, (rg\(μdmu) (τg-ι\, is a linear mapping
of the tangent space TV(M) at p, is independent of the choice of g, and so
we set φ3,= (τ(7)^(admw)(vi)^. Hence we have a G-invariant tensor field φ of
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type (1,1) such that φo = a.άmu. Similarly we can define a G-invariant vector
field ξ and a G-invariant 1-form η on M such that ξo = u and ηQ = u*. Then,
we can show that a triple of the tensor fields 2 = (φ, £, η) satisfies conditions
(2.1) and (2.2). Hence we obtain a unique G-invariant almost contact structure
(</>, ξ, η) which satisfies the initial conditions

φ0 = 3.άmu, ξo = u a n d 770 = u*.

Finally, we shall show that the almost contact structure (φ, ξ, η) is normal.
Owing to the homogeneity of M, it is sufficient to verify that N= 0 at the
origin 0. And since N is a tensor field, it is sufficient to verify that N{X*9

Y*)o — 0 for all X, Y £ m. On the other hand, φ and η are G-invariant, we
have

(2. 8) φ(X*) = (φo(X))* and τ?(X*) = constant on N*.

And from condition (1.6), we have

(2.9) [«,βo]={O}.

By Lemma 2.2 and equalities (2.8) and (2.9), we have

*, Y*)o = - ψί[X* Y ]̂o + φo[φX^, Y*]o + Φo[X ,̂ φY ]̂o

Φ0KΦ0X)*, Y^]

= - [u, [«, [X, Y]m]] + [u, [[u, X], Y]m] + [u, [X, [iί, Y]]m]

- [[«, X], [«, Y]]m + «*([x, y]m). t t

= - [«, [u, [X, Y]] - [[«, X], Y] - [X, [K, Y]]]

- [[«, X], [z/, Y]]m + «*([X, Y]m)^

= - [[*, X], [«, Y]]m + ^([X, Y]m) u.

Now we write X = Xx 4- X2 and Y = Y^ Y2, where Xl9 Y1 € 0! and X2, Y2 € g2.
Then, by conditions (1.1), (1.4) and equality (2.9), we have

, Y*)o = - [[^XJ, [u, Yi]]. + ^([X l y yjm).tf
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+ U*([X1,Y1]n) u

= - [xl9 γλ]u+ u*axl9 YΛJ U = o.

This completes the proof of Th. 1.

REMARK. Suppose that the homogeneous space G/Go in Th. 1 satisfies
the following condition:

(2.10) The bilinear mapping Qx x gt <= (X, Y) —> [X, Y]^2 € g2 is non-degenerate,

where [X, Y]92 is the g2-component of [X, Y].

Then, the almost contact structure 2 = (φ, ξ, η) given in Th. 1 is non-degenerate
(cf.[4]). In particular, η is a contact form on M and M=G/GQ is a homogeneous
contact manifold (cf.[l]).

Next, we assume that the Lie group G is simple and compact. Since g is
simple and compact, the Killing form B of g is a negative definite symmetric
bilinear form on g. Since

(2.11) J3(Ad(α)X, Ad(α)Y) = B(X, Y)

for all a € G and for all X, Y € g, there is a unique G-invariant Riemannian
metric g on M which satisfies the initial condition:

(2.12)

where 2n = dim gx and Bm is the restriction of ΰ on nt.
Then, we obtain the following

PROPOSITION 1. Let 2 = (φ, ξ, η) be the G-invariant {normal) almost
contact structure on M in Theorem 1, and let g be the G-invariant
Riemannian metric on M defined as above.

Then the Riemannian metric g is determined by the almost contact
structure 2. More precisely, we have the equality:

(2.13) g(X, Y) = - 2dη(X, φY) + V(X)η(Y)

for all X, Y e £(M).

Using the above notations, we have
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LEMMA 2.3.

(2.14) go(X,u)=Vo(X\

(2.15) <70(X, Y) = Vo([X, φ0Y]m) + ηo(X)ηo(Y)

for all X,Yeτn.

PROOF. From condition (2.1), we have B(X,u) = Tr(adX adw) = 0 for
X <= gx. And since [w, \u, X]] = — X for X € g1? we have

JB(W, U) = Tr(ad u ad w) = — dim gx = — 2w.

Hence (2.14) follows. Next, we notice that B(Q0, g2) = 0. In fact, since G is
compact and simple, it is known that g0 is semisimple (cf.[2]). So we have

,9o], β«) = 5(9o, [flo, flj)

If both X and Y are in Qu using Lemma 2 and the above notice, we have

ga(X, Y)= ^ - B.(X, Y) = - ^ - B(X, [u, [u, Y]])= - - ^ - B([«,X], [«, Y])

(«, [X, [«, Y]]) = - -4- BJu, [X, [u, Y]]m)
2M

which yields (2.15). If X or Y is in g2, (2.15) follows from equality (2.14).
Q.E.D.

PROOF OF PROPOSITION 1. Since g, φ and η are G-invariant, it is
sufficient to verify

(2.16) <7o(X*, y») = - 2(^).(X», φY*)

for all X, Y € m. By equality (2.8) and Lemma 2.2, we have

(2.17) 2(^)0(X* φY*) = X?η{φY*) - (φY*)o n(X*) - ί».([X*, ΦY*])

- Xtt&φJΠ*) ~ (φoY)ϊn(X*) - Vo([X*, (ΦoY)*ί)

= -ηo([X,φBY]m).
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Hence (2.16) follows from equalities (2.15) and (2.17). Q.E.D.

Next, we assume, hereafter, that G is simply-connected. We set ή = g0 + 02-

By condition (1.2), ή is a subalgebra of g. Let H denote the Lie subgroup of

G with the algebra ί). We denote by s the involutive automorphism defined

by : s(X) = X if Xz ίj and s(X)=—X if Xz glβ Since G is simply-connected,

there exists an analytic homomorphism σ of G into itself such that (<r#)e = 5.

Since s is an involutive automorphism, the same is true of σ. The group H

is the identity component of the group of fixed point of σ. In particular, H is

closed in G.

LEMMA 2.4. A pair (G,H) is a Riemannian symmetric pair.o:>

Let B denote the Killing form of g. We have a G-invariant Riemannian

structure Q such that Qo = B^y where B^ denotes the restriction of B to gx.

From Lemma 2.1 and condition (1.4), we have

(2.18) adw Aά(h) = Aά(h) adu,

(2.19) B(ad(u)X, aΔ(μ)Y) = B(X, Y)

for all hzH and for all X,Ye§x. Hence we obtain a G-invariant almost

complex structure J such that Jo — %Au. In [2], we have shown that the

structure Q is Kahlerian, J is integrable, and with the corresponding complex

structure, G/H is a Kahlerian symmetric space.

PROPOSITION 2 (cf. [1]). The space G/Go is a principal circle bundle

over the Kahlerian symmetric space.

Now, we shall study on the group of automorphisms of G/Go.

DEFINITION ([3]). Let M (resp.M') be an almost contact manifold with

structure tensors 2 = (φ, ξ, η) (resp.Σ' = (φ\ ξ\ η)). A diffeomorphism f oί M

onto M is called an isomorphism o/(M,Σ) onto (Άf, Σ') if it satisfies the

following conditions:

(2.20) φ' f*=f*.φ;

(2.21)

(1) Let G be a connected Lie group and H be a closed subgroup of it. The pair (G, JF/) is
called a Riemannian symmetric pair if the group Ad^(H) is compact and there exists an
involutive analytic automorphism σ of G such that (Hσ)0czHc2Hσ, where Hσ is the set of fixed
points of σ and ( Ή σ ) 0 is the identity component of Hσ.
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If, moreover, M = M and Σ = Σ', / is called an automorphism of (M, Σ).

The set of all automorphisms of (M, Σ) forms a group of transformations

of M. We denote it by A(M) and AΣ(M).

REMARK [3]. I f / i s an isomorphism of (M,Σ) onto (M',Σ')> then the
following equality also holds:

(2.22) M = ξ'

Let M be the above homogeneous space G/Go. By Theorem 1, M has
the G-invariant almost contact structure Σ = (φ, ζ, η). By Proposition 1, we see
that automorphisms of (M, Σ) are isometries of the Riemannian manifold M
with structure g. The group I(M) of all isometries of M is a Lie transfor-
mation group with respect to the compact open topology. Since the group
A{M) is closed in I(M)9 A(M) is also a Lie transformation group of M. Let
AQ(M) denote the identity component of it.

Then we have

THEOREM 2. A0(M) = Gx [7(1), the product group of G and [7(1),
where [7(1) denotes the multiplicative group of complex numbers of absolute
value 1.

PROOF. Let f<=A0(M). Since the vector field ξ generates the right
translations of the bundle and f#ξ = ξ, f commutes with all right translations
of it. Hence, f is a homomorphism of the principal circle bundle and induces
a mapping of the base space N= G/H onto itself, which will be denoted by
f. Recalling the definition of φ, g, Jand Q, we can see that f is a holomorphic
isometry of the Kahlerian symmetric space N. Let A0(N) denote the identity
component of the group of all holomorphic isometries of N. It follows that
the mapping I: A0(M)5f-+f € A0(N) gives a continuous homomorphism of
Λ0(M). Since the pair (G, H) is a Riemannian symmetric pair and G is simple
and acts effectively on the coset space N= G/H, by facts on symmetric
spaces (cf. Th. 1 (ch.V, p. 207) and Lemma 4.3 (ch. VIII, p. 303) in [2]), we have
A0(N) = G. Since A0(M)DG, acting on the left on M = G/GOy I is surjective.
Next, let fs the kernel of /. Since η defines a connection in the bundle and
f*η= η, there exists a unique element a of [7(1) such that f — Ra, where Ra

denotes the right translation of the bundle. Hence, Theorem 2 is proved.

EXAMPLE 1. The (2n + l)-dimensional sphere S2n+1 may be naturally
represented by the homogeneous space SU(n + l)/SU(n). We set G=SU(n + ΐ)
and G0 = SU(n). The Lie algebra g of G may be identified with the Lie algebra
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%\x(n + 1). Now, define a family (g^^o of subspaces of g as follows :

0 0

0 a

o -*;
9 1 H I ! (

Then the family (gt)ί^0 thus obtained satisfies conditions (1.1) —(1.6), (2.1) and

(2.10). Th.l and remark show that there is a G-invariant (non-degenerate

normal) almost contact structure Σ = (φ, ξ, η) on S2n+1. By Th.2, the group of

automorphisms of (S2n+\ Σ) is U(n + 1) = SUin + 1) x £7(1).

EXAMPLE 2. We now consider an irreducible compact Kahlerian symmetric

homogeneous space G/H. Let g and ϊj denote the Lie algebra of G and H,

respectively. There exists a family (gOt̂ o of 9 which satisfies conditions (1.1)
homogeneous space G/H. Let g a

respectively. There exists a family

— (1.4) and the conditions:

[9o, β«] = 0, and £j = g0 + g2 (cf, [2]).

Let Go be the Lie subgroup of G with Lie algebra g0. Then it can be proved

that Go is a closed subgroup of G and that the homogeneous space G/GQ

together with the family (g*) satisfies conditions (1.1) —(1.6) and (2.1). The

homogeneous almost contact manifold G/Go with the structure tensor fields

Σ = (φ, ξ, η) given in Th. 1 is a principal circle bundle over the Kahlerian

symmetric space G/H (cf.[l]).

Now, let M be the homogeneous space G/Go of a connected Lie group G

over a closed subgroup Go of it which satisfies conditions (1.1) —(1.6), (2.1)

and (2.10). By Theorem 1, we have a G-invariant non-degenerate normal

almost contact structure Σ = (φ, ξ, η) on M, and so we have the G-invariant

(pseudo) Riemannian structure g given by:

(2.23) g(X, Y) = - 2dη{X, φY) + η(X)η(Y)

for all X, Y <= £(M). Hence, by Theorem A in §3, we have the linear connection

V which is uniquely determined by the almost contact structure Σ = (φ, ξ, η).

We shall study the linear connection V on the space G/Go. Hereafter we

shall use the notations given in the beginning of this section. In [5], we have
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shown that there is one-to-one correspondence between the set of G-invariant
linear connection V and the set of all bilinear mappings ct oί m x m into m
which are invariant by Ad(G0), that is,

(2. 24) Ad(<7MX, Y) = a(Aά(g)X, Aά(g)Y)

for all X, Y <= m and for all g z Go, and the correspondence is given as follows:

(2.25) (WY*)o

for all X, Y € m. Let T and R denote the torsion tensor field and the curvature
tensor field of the linear connection V corresponding to a. Then, at the origin
0, we have

(2.26) T.(X, Y) = a(X, Y) - a(Y, X) - [X, Y]m •

(2.27) R0(X, Y)Z = a(X, a(Y, Z)) - a(Y, a(X, Z)) - a([X, Y]a, Z)

- [ [ X , Y k , Z ]

for all X, Y, Z e m, where [ ]β0 denotes the g0-comρonent of the element [X,Y].
In particular, the invariant linear connection V corresponding to <2ΞΞΞO, is
called the canonical linear connection of the second kind, satisfies V T = 0 and
\/R = 0, where T and R denote the torsion tensor field and the curvature
tensor field of it. The canonical linear connection of the second kind is of
fundamental importance to represent locally a manifold as a homogeneous
space [5].

Turning now to study the linear connection V, clearly it is a G-invariant
linear connection.

Then, we have

PROPOSITION 3. The linear connection V on the space G/Go is identical
with the canonical linear connection of the second kind on it.

PROOF. Let a denote the bilinear mapping of m X m into m corresponding

to the G-invariant linear connection V. We shall show tf=0. Since V . ^ O , we
have

(2.28) X g{Y, Z) = g(V*Y, Z) + g{Y, V^Z)

for all X, Y, Z € ϊ (M). Since g is G-invariant, it follows from the correspondence

between V and a that, at the origin 0 € G/G09
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(2 29) <7o«X, Y),Z) + go(Y, a(X, Z)) - 0

for all X, Y, Z e m. In fact, we have

, Y),Z)+go(X, a(X, Z ) ) = M W Y * ) 0 ) Zf)+go(Yf, (V^Z*)0)

= X?-g(Y*,Z*) = 0.

On the other hand, the torsion tensor field T of the linear connection V
is given by:

(2.30) f(X, Y) = 2dη(X, Y) ξ + η(Y)φX - η (X)φY

for all X, Y € l(M). Then, we have

(2.31) fo(X,Y) = -[X,Y]n

for all X, Y € m. In fact, we have

ηo(Y*).φ0X* - v<)(X*)φ0Y*

, Y]m) « + M*(Y)[w, X] - u\X)[u, Y]

- - [X, Y]9l - [X, Y]9l = - [X, YU

where [ ]Sl(i = 1,2) denotes the gΓcomponent of the element [X, Y].
Hence, by equalities (2. 26) and (2. 31), we have

(2.32) α ( X , Y ) - < Y , X )

for all X,Y e nt.
Therefore, by equalities (2. 29) and (2. 32), we have, for any X,Y,Z 6 nt,

,70«X,Y), Z) = - «70(Y, α(X, Z)) - - ^0(Y, a(Z, X)) = ^ 0 « Z , Y), X)

- gla(J, Z), X) = - glZ, a(Y, X)) - - g,(Z, a(X, Y))

= -go(μ(X,Y),Z),

which yields αc=O, because g0 is a non-degenerate bilinear form on the tangent
space at 0. This completes the proof of Proposition 3.
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From Proposition 3 and equalities (2.26) and (2.27), we have

THEOREM 3. Let T and R denote the torsion tensor field and the

curvature tensor field of the linear connection V on the space G/Go. Then,

at the origin 0 6 G/Go,

(2.33) T(X,Y)=-[X,Y] n ,

(2. 34) R(X, Y)Z = - [[X, Y]βo Z]

for all X,Y,Zz m.

3. On the almost contact manifold which is locally representable as
a homogeneous space. To begin with we shall explain the definition and
the fact which were established in the previous note [4]. Let M be an almost
contact manifold with structure tensors Σ = (φ, ξ, η). Let us consider the tensor
field g of type (0,2) on M defined by:

(3. 1) <7(X, Y) = - 2dη(X, φY) + η(X)η(Y)

for all X,Y € J(M). We shall say that the almost contact structure Σ = (φ, ξ> η)
is non-degenerate, if the tensor field g is a (pseudo-) Riemannian structure on
M.

We have shown

THEOREM A [4]. Let M be an almost contact manifold with structure
tensors Σ = (φ, ξ, η). If the almost contact structure Σ = (φ, ξ, η) is non-
degenerate and normal, then there exists a unique linear connection V on M
such that φ, ξ, η and g are parallel with respect to it, and whose torsion tensor
field T is given by

(3. 2) T(X, Y) = 2^(X, Y).ξ + η(Y)φX - η(X)φY

for all X,Y€j(Af).

It is well known that a locally symmetric Riemannian manifold is locally
isomorphic to a homogeneous Riemannian symmetric space. We shall now
establish such a fact on almost contact manifolds.

THEOREM 4. Let M be a non-degenerate normal almost contact
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manifold. Let V be the linear connection given by Theorem A and R be the
curvature tensor field of it. If \/R — 0, then there exists a homogeneous
space G/Go of a connected hie group G over a closed subgroup Go of it
which satisfies the following conditions :

(1) There exists a family (gO^o of subspaces of the Lie algebra of G
which satisfies conditions (1.1) --^(1.6) and (2.1),

(2) For each point p of M, there exists an isomorphism f of some
open neighbourhood of p in M onto an open neighbourhood of the origin 0
of the homogeneous space G/Go.

Let m denote the tangent space TP(M). If A is an endomorphism of m,
then A can be uniquely extended to the tensor algebra over m as a derivation,
preserving type of tensors and commuting with contractions.

LEMMA 3.1 (cf. [2], [5]). Let g0 denote the set of all endomorphisms of
m which, when extended to the tensor algebra as above, anihilate φp, ξp, ηp,
Tp and Rp. Then g0 is a Lie algebra with the bracket [A, B] = AB — BA,
furthermore, RP(X,Y) £ g0 for. all X,Y <zm.

We set g = g0 +m (direct sum). We now introduce a bracket operation in
g as follows:

F o r l j ζ t n , [X,Y] = - TP(X,Y) - RP(X,Y).

ForXζtn, A z g0, [A, X] = - [X, A] = AX (A operating on X).

For A,Be g0, [A,B] = AB - BA.

Since VT= 0 and VR = 0, we have

LEMMA 3.2 [5]. The bracket operation above turns g into a Lie algebra.

Let gi(resp. g2) denote the subspace of m which is spanned by the elements
{-φlX,Xzm} (resp. {£,}). We set β t = {0} if i > 2.

We can show the following

LEMMA 3.3. The family (βO^o of subspaces of g satisfies conditions
(1.1)-(1.4).

PROOF. We shall first show the followng equality:

(3.3) R(X, ξ) = 0 for all X z Ϊ(M).

In fact, we have shown in [4] the following equality:
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(3.4) R(φX, φY) = R(X, Y) for all X, Y <Ξ £(M).

Hence, it yields (3.3).

From the definition of the bracket operation, putting u = ξP9 we can show

that conditions (1.1)^(1.4) follow.

PROOF OF THEOREM 4. It can be shown that there exists the connected
Lie group G whose Lie algebra is g and that the analytic subgroup Go of G
corresponding to g0 is closed (cf. [2]). Then, we can show that the homogeneous
space G/GQ satisfies conditions (1.1) — (1.6), (2.1) and (2.10). In fact, by Lemma
3.3, conditions (1.1) — (1.5) follow. By the definition of the bracket oparation,
we have

(3.5) [βo,βi]Cβi and

(3.6) [βo,*]= {0}, where u = ξp.

Since the analytic subgroup Go is connected, the above conditions (3.5) and

(3.6) yield condition (1.6). Next, let X9Yeqlm Then, by the definition of the
bracket operation, we have

[X, Y],. =(-T(X, Y)-R(X, Y)\. = - 2dη(X, Y) ξ.

Since the almost contact structure is non-degenerate, we can show that condition
(2.10) follows. Hence, by Th.l and remark, we obtain a G-invariant non-
degenerate normal almost contact structure X = (φ\ ξ', η) on the homogeneous
space G/GQ.

Let n be the natural projection of G onto G/Go. Let e be the identity
element of G. We put τt{e) = 0. Then, the mapping g => X->(τr*)β(Xβ) € T0(G/G0)
gives a linear isomorphism of TV{M) onto the tangent space T0(G/G0). We
denote it by A. By Prop.l, the canonical linear connection of the second kind
on the space G/Go is the linear connection V' obtained in Th. A. Let T" and
R' denote the torsion tensor field and the curvature tensor field of the linear
connection. By Th.3 and the bracket operation of g, we have Tp = T'o and
Rp=Rl Since \/T=VR = 0 and V'T' = V'i?' = 0, it follows from the
equivalence theorem (cf. Lemma 1.2 (ch.IV, p. 165) in [2]) that there exists an
affine transformation / of some opan neighbourhood of p in M onto an open
neighbourhood of the origin 0 of G/Go such that f(p) = 0 and (f*)p = A.
Then, we have

(3.7) φΌ-A = A'φp and η'0 A = ηp.
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Therefore, Theorem 4 will thus follow from

LEMMA 3.4. Let M (resp. M) be a manifold with a non-degenerate
(normal) almost contact structure Σ = (φ, ξ, η) {resp. Σ' = (φ'9 ξ\ η)) and the
linear connection given by Th. A. Let f be an affine transformation of M
onto M\ Suppose that for some point pzM, the linear mapping
Tp(M)-+Tf{p)(M') satisfies

' ΦP

If M is connected, then f is an isomorphism of (M, Σ) onto (M\ Σ')

PROOF. Let qzM and X€ Tq(M). We join q and p by a curve γ. Let T
denote the parallel translation from q to p along γ and 77 denote the parallel
translation from f(q) to f{β) along /• γ. Since / is an aίnne transformation, we
have

Hence, we have

(Λ)5 (φQX) = r;1 (Λ)p T . &X = T-/ (Λ)p. φp (TX)

In a similar way, we have

Vf(p) (f*)p — Vp

This completes the proof.
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