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1. Introduction. The Riemannian curvature, tensor R of a locally
symmetric Riemannian manifold (M,g) satisfies

(*) R(X, Y)*R = 0 for any tangent vectors X and Y,

where the endomorphism R(X, Y) operates on R as a derivation of the tensor
algebra at each point of M. A result of K. Nomizu [2] tells us that the
converse is affirmative in the case where M is a certain hypersurface in a
Euclidean space. That is :

Let M be an m-dimensional, connected and complete Riemannian
manifold -which is isometrically immersed in a Euclidean space Em+1 so
that the type number k(x) ^ 3 at least at one point x. If M satisfies
condition (* ), then it is of the form M=SkxEm~k, where Sk is a
hyper sphere in a Euclidean subs pace Ek+ι of Em+1 and Em~k is a Euclidean
subs pace orthogonal to Ek+ι.

Let Ri be the Ricci tensor of (M,g). Then condition ( * ) implies in
particular

(**) R(X, Y)-Rι = 0 for any tangent vectors X and Y.

First we have

THEOREM A. Let M be an m-dimensional, connected and complete
Riemannian manifold τvhich is isometrically immersed in a Euclidean
space Em+1 so that the type number k(x) ^ 3 at least at one point x. If M
satisfies condition (**) and has the positive scalar curvature, then it is of
the form M= Skx Em~k.
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This theorem says that, under the circumstance, condition (**) implies
that Rι is parallel and, in fact, M is symmetric.

If M is compact, then k(x) ^ 3 is replaced by m ^ 3, and we have

THEOREM B. Let M be an m-dimensional, connected and compact
Riemannian manifold which is isometrically immersed in Em+1, where
m^3. If' M satisfies condition (**) and has the positive scalar curvature,
then it is a hyper sphere.

For the case where k(x) = 2 we have

THEOREM C. Let M be an m-dimensional, connected and complete
Riemannian manifold which is isometrically immersed in Em+1 so that the
type number k(x) — 2 at least at one point x. If M satisfies condition (**)
and the scalar curvature is a positive constant, then M = S2 x Em~2.

If the Ricci tensor i?x is parallel, then M satisfies condition (**). Hence,
we can show

THEOREM D. Let M be an m-dimensional, connected and complete
Riemannian manifold which is isometrically immersed in Em+ι. If the
Ricci tensor is parallel and the scalar curvature is positive, then it is of
the form M = Sk x Em~k.

The condition on the type number k(x) at a point x is replaced by the
rank r(x) of the Ricci tensor at the point, provided that r(x) is greater than
1. Namely we have

COROLLARY. Let M be an m-dimensional, connected and complete
Riemannian manifold which is isometrically immersed in Em+1. Assume
that M satisfies condition (**) and the scalar curvature S is positive. And
suppose one of the following conditions is satisfied:

(i) the Ricci tensor has the rank r(x) ^ 3 at some point x,

(ii) the Ricci tensor has the rank r(x) — 2 at some point x and S is
constant.

Then M is of the form Sk x Em~k, k = r(x).

Proofs are given by modifications of the arguments in [2] and by applying
results of P.Hartman [1] and T.Y.Thomas [3].
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2. Reduction of condition (**). Let M be a connected hypersurface in
a Euclidean space Em+ί and let g be the induced metric on M. Let U be a
neighborhood of a point :r0 of M on which we can choose a unit vector field
ξ normal to M. For local vector fields X and Y on U tangent to M, we
have the formulas of Gauss and Weingarten :

(2.1) DXY = VXY + h{X,Y)ξ,

(2.2)

where Dx and Vx denote covariant differentiations for the Euclidean connection
of Em+1 and the Riemannian connection on M, respectively, h is the second
fundamental form and A is a symmetric endomorphism satisfying h(X, Y) = g
(AX, Y). Then the equation of Gauss is

(2. 3) R(X, Y) = AX Λ AY,

where, in general, X AY denotes the endomorphism which maps Z upon

g(Z, Y)X — g(Z, X) Y. The type number k(x) at a point x is, by definition,

the rank of A at x. For a point x of M9 take an orthonormal basis

(#i> * " ' > £m) of t n e tangent space TX(M) such that A^Λ = λΛ£Λ, It^h^m.

Then (2. 3) is written as

(2.4) i?0*, *,) = λ t λ^ t Λ *,.

Now by condition (**") and

[R(e4, ej)'Rλ\ek, eh) = - Rι(R(ei9 e3)ek, eh) - Rγ(ek, R(ei9 e,)eh),

we have

λiλj(8 i ibi2 iΛ — 8ikRjfi + SjhRik — SihRjk) — 0,

where jR;Ίfc are the components of i?i with respect to the frame {eh}. If we
put h — i Φ j — k9 then we get

(2.5) λiλ/Λ,, - Λw) = 0.

Next, since Z£(tfi, ^tf* = Xiλ/δ^i""?)^^), i? has the following components

(2.6) Rh

kii = λ . λ / M " - δ,Λ-)



300 S. TANNO

Contracting in h and z, we have

(2. 7) Rjίc — SjkX} (Σi^λi)

Therefore Rx is diagonal, and by (2.5), Rλ has at most two eigenvalues 0

and Ύ. If Ύ Φ 0, then the multiplicity of γ is equal to the type number k{x).

And the scalar curvature S of M is given by S = k{x)Ί. We denote the mean

curvature of M in Em+1 by K= m~xΣXh. Then, putting i = & in (2.7), we see

that Xfι is a solution of the equation

(2.8) Xl - mKλ,Λ + y = 0.

Consequently, we have a number 5 (0 ̂  s ^ £(•£)) such that

Λi : = : Λ>2 — — Λ s — λ/,

λ s + i = = Xfc(a;) = mK — λ = μ,

λ>k(x) + l — * ' ' — λ; m = U,

by interchanging the order in {e^}.

3. Proofs of theorems. Let f:M-*Em+1 be an isometric immersion
of an m-dimensional, connected and complete Riemannian manifold M with
property (**). The scalar curvature S of M is assumed to be positive. Since
the conclusion of our theorem is M = Sk X Em~k, in the proofs we can assume
that M is oriented, and hence k is globally denned.

LEMMA 3.1. The scalar curvature S > 0 implies that the type number
is a constant k^2.

PROOF. By S = k(x)y at x, we have 7 > 0 on M. Since Rι has at
most two different eigenvalues 0 and 7, the inequality 7 > 0 on M tells us
that the multiplicity of 7 is constant on M. On the other hand, 7 Φ 0 at x
implies that k{x) is the multiplicity of 7, and hence k(x) = k a constant
on M. Suppose that k = 1. Then we have mK = X and 7 = 0 by (2.8).
This is a contradiction, and we have k ̂  2.

LEMMA 3.2. Every sectional curvature is non-negative.

PROOF. Let x be an arbitrary point of M and let {eh} be an orthonormal

basis of TX(M) such that Aet = Xet for 1 =g i ^ 5, Aeu = μeM for 5 + 1 ig M ̂  &,

and Aet = 0 for £ + 1 ̂  ί ^ m. Take an arbitrary 2-plane in TX(M). Then
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we have two vectors X and Y which span the 2-plane :

X = Σί=i<ztet + 2Ls+ίbueu + ΈuL

where we can assume that ai9bu,ct9aj9bv, and ct are non-negative (by changing
some eh—> — eΛ, if necessary). By (2.3) we have

R(X, Y) = V-ytiJaidjei Λ e} + \μΣ,it ΰaιb'ίiet Λ «̂

+ XμZvjbuiijeu Λ ^j + μ>2Zu,vbub'υeu Λ ^ .

After a simple calculation we have

, Y)X, Y) - [(ΣαϊXΣα?) - (Σa^W

4- [(2α?X26?) + (ΣMXΣαί1) -

The right hand side of the above equation is equal to

Since Ύ = λ/x. and kΊ =• S, we can assume that λ and μ are positive. Then,
by well known inequalities we have — g(R(X,Y)X,Y)^0 and thereby every
sectional curvature is non-negative.

LEMMA 3. 3. (P. Hartman [1]) Let M be an m-dimensional, connected
and complete Riemannian manifold such that all 2-dimensional sections
have non-negative curvatures. If f:M-^Em+δ, δ > 0, is an isometric
immersion such that the relative nullity function v is a positive constant,
then fM is v-cylindrical.

By Lemmas 3.1 and 3. 2, we can apply Lemma 3. 3 for δ = 1, v = m — k
and we get the Riemannian product M=ΔdfcxEm~k, where M* is a
^-dimensional, connected and complete Riemannian manifold and Em~k is an
(m — ̂ -dimensional Euclidean space. Furthermore the restriction f of f to



302 S. TANNO

M* is an isometric immersion of ikP into a (£ + l)-dimensional Euclidean

subspace Ek+1 which is orthogonal to a Euclidean subspace Em~k in E'n+ι.

Let {eh} be an orthonormal basis at a point (x,y) of M, x^M* and

y ζ ^m-fĉ  s u c j 1 t j i a t t ] i e £ r s t el9 ,ek are tangent to M* at r and ek+l9 ,

£m are tangent to jζ"1-* at y. Then the Ricci tensor R[ of M* and the Ricci

tensor i?x of M have the same value R[(ei9 e3) = Rx(ei9 e3) for 1 ίg /, / ^ £. On

the other hand, we see that Rx(ei9e^) — Ίg{^ι,e3) for 1 ^ i, j ^ ^. Hence, M*

is an Einstein space. By a theorem of (E. Cartan and) T. Y. Thomas [3], fMk

is a hypersphere in Ek+1. This completes the proofs of Theorems A and C.

If M is compact, then the type number Hoc) at some point x is equal to

m (cf. [2], p.57). So we see that S = my, namely, M is an Einstein space.

Hence, fM is a hypersphere and we have Theorem B.

If the Ricci tensor is parallel, then the scalar curvature is constant.

Therefore to prove Theorem D it suffices to notice the Ricci identity

(3.1) (V V#0(Z, W X, Y) - (V ^R,)(Z, W;Y,X) = (Λ(X, Y) R&Z, W).

4. Remarks.

REMARK 1. / / dim M = 2, then condition (**) is trivial.

In fact, we have Rx = ag for some differentiate function a on M. Then

the Ricci identity (3.1) shows that condition (**) is satisfied always.

REMARK 2. If d i m M = 3, then condition (**) is equivalent to

condition ( * ).

In fact, if d i m M = 3, then we have

(4.1) R(X, Y) = RιX Λ Y + X A RΎ - (1/2)SX Λ Y,

where S is the scalar curvature and R1 is defined by RX(X9 Y) = g(RιX, Y).

If we take an orthonormal basis {eh} such that Rιeh = Ίheh9 1 ^ h rg 2, then

condition ( * ) is equivalent to

(4.2) (7t - 7,)(2(7i + y}) - S) = 0,

which is also equivalent to condition (**).
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