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1. Introduction. The Riemannian curvature. tensor R of a locally
symmetric Riemannian manifold (M,g) satisfies

(*) R(X,Y)-R=0 f{or any tangent vectors X and Y,

where the endomorphism R(X, Y) operates on R as a derivation of the tensor
algebra at each point of M. A result of K.Nomizu [2] tells us that the
converse is affirmative in the case where M is a certain hypersurface in a
Euclidean space. That is:

Let M be an m-dimensional, connected and complete Riemannian
manifold which is isometrically immersed in a Euclidean space E™' so
that the type number k(x)=3 at least at one point x. If M satisfies
condition (*), then it is of the form M=S*XE™* where S* is a
hypersphere in a Euclidean subspace E**' of E™' and E™* is a Euclidean
subspace orthogonal to E**',

Let R, be the Ricci tensor of (M,g). Then condition (*) implies in
particular

(*%) R(X,Y)-R, =0 for any tangent vectors X and Y.

First we have

THEOREM A. Let M be an m-dimensional, connected and complete
Riemannian manifold which is isometrically immersed in a FEuclidean
space E™*' so that the type number k(x)= 3 at least at one point x. If M
satisfies condition (**) and has the positive scalar curvature, then it is of

the form M = S*x E™k,
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This theorem says that, under the circumstance, condition (¥*) implies
that R, is parallel and, in fact, M is symmetric.
If M is compact, then k(x) = 3 is replaced by m = 3, and we have

THEOREM B. Let M be an m-dimensional, connected and compact
Riemannian manifold which is isometrically immersed in E™*', where
m=3. If M satisfies condition (**) and has the positive scalar curvature,
then it is a hypersphere.

For the case where k(x) =2 we have

THEOREM C. Let M be an m-dimensional, connected and complete
Riemannian manifold which is isometrically immersed in E™' so that the
type number k(x) =2 at least at one point x. If M satisfies condition (¥%)
and the scalar curvature is a positive constant, then M = S? x E™2,

If the Ricci tensor R, is parallel, then M satisfies condition (¥*). Hence,
we can show

THEOREM D. Let M be an m-dimensional, connected and complete
Riemannian manifold which is isometrically immersed in E™'. If the
Ricci tensor is parallel and the scalar curvature is positive, then it is of

the form M = S* x E™ %,

The condition on the type number A(x) at a point x is replaced by the
rank 7(x) of the Ricci tensor at the point, provided that r(x) is greater than
1. Namely we have

COROLLARY. Let M be an m-dimensional, connected and complete
Riemannian manifold which is isometrically immersed in E™'. Assume
that M satisfies condition (**) and the scalar curvature S is positive. And
suppose one of the following conditions is satisfied :

(i) the Ricci tensor has the rank r(x) =3 at some point x,

(i1) the Ricci tensor has the rank r(x) =2 at some point x and S is
constant.

Then M is of the form S* x E™* k= r(x).

Proofs are given by modifications of the arguments in [2] and by applying
results of P. Hartman [1] and T.Y.Thomas [3].
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2. Reduction of condition (¥*). Let M be a connected hypersurface in
a Euclidean space E™*' and let g be the induced metric on M. Let U be a
neighborhood of a point x, of M on which we can choose a unit vector field
& normal to M. For local vector fields X and Y on U tangent to M, we
have the formulas of Gauss and Weingarten :

2.1) DY =Y + (X, Y)E,

(2.2) Dy = —AX,

where Dy and < ydenote covariant differentiations for the Euclidean connection
of E™*! and the Riemannian connection on M, respectively. A is the second

fundamental form and A is a symmetric endomorphism satisfying (X, Y) =g
(AX,Y). Then the equation of Gauss is

(2.3) R(X,Y)=AX A AY,

where, in general, X A'Y denotes the endomorphism which maps Z upon
9 Z, X — g(Z, X)Y. The type number k(x) at a point x is, by definition,
the rank of A at x. For a point £ of M, take an orthonormal basis

(e1,+++,e,) of the tangent space T,(M) such that Ae, =N, 1=h=m.
Then (2.3) is written as

(2.4) R(e;, €;) = MNje, N e;.
Now by condition (*¥*) and
[R(ei, €5)-Ri)(ex, en) = — Ru(R(e;, €))ex, €) — Ri(ew, R(ei, €;)en),
we have
NN Rn — 8k Ry + 8,0 R — 8,4Ry) = 0,

where R;, are the components of R, with respect to the frame {e,}. If we
put h =17 # j =k, then we get

(2.5) MR — Ry;) = 0.
Next, since R(e;, e;)ex = MM ;(d;ce;—8;xe;), R has the following components

(2.6) R':; = Nans(85607 — 8::8)).
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Contracting in 2 and 7, we have
(2.7) Rk = 85N ; (Zisio).

Therefore R, is diagonal, and by (2.5), R, has at most two eigenvalues 0
and v. If v # 0, then the multiplicity of v is equal to the type number k{x).
And the scalar curvature S of M is given by S = k(x)Y. We denote the mean
curvature of M in E™*' by K=m"'3\,. Then, putting j=% in (2.7), we see
that A, is a solution of the equation

2.8) A, — mKN, + v = 0.
Consequently, we have a number s(0= s = k(x)) such that

7‘1:)\12:...—__—7\%:),,
7\fs+1:"':7\'k(x):mK—7\::/l',

7\"5(1)4»1 =cer =Ny = O’
by interchanging the order in {e,}.

3. Proofs of theorems. Let f:M— E™' be an isometric immersion
of an m-dimensional, connected and:complete Riemannian manifold M with
property (*¥). The scalar curvature S of M is assumed to be positive. Since
the conclusion of our theorem is M = S* X E™ % in the proofs we can assume
that M is oriented, and hence k is globally defined.

LEMMA 3.1. The scalar curvature S > 0 implies that the type number
is a constant k= 2.

PROOF. By S = k(x)y at x, we have Y>0 on M. Since R, has at
most two different eigenvalues 0 and ¥, the inequality ¥y >0 on M tells us
that the multiplicity of ¥ is constant on M. On the other hand, ¥ # 0 at =x
implies that k(x) is the multiplicity of 7, and hence k(x) =% a constant
on M. Suppose that #=1. Then we have mK = and Y =0 by (2.8).
This is a contradiction, and we have %= 2.

LEMMA 3.2. Every sectional curvature is non-negative.
PROOF. Let x be an arbitrary point of M and let {e,} be an orthonormal

basis of T, (M) such that Ae,=ae;, for 1=i=s, Ae,=pe, for s+1=u=k,
and Ae, =0 for ¥+ 1=¢t=m. Take an arbitrary 2-plane in T,(M). Then
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we have two vectors X and Y which span the 2-plane:

ST k
X =3_ae;, + S _cnibue, + SLk+1Ci€y,

, © ’ . ,
Y = Zleajej -+ 2u:s+1buev + EZ’I:k+lcleh

where we can assume that a;, b,, ¢, a;, b,, and ¢; are non-negative (by changing
some e, —> —e,, if necessary). By (2.3) we have

R(X, Y) = )\;QEi_jaia;ei /\ €; -+ h/hzi,vaib;ei /\ €,

+ ANpZy,budie, N e; + pZybubies N e,
After a simple calculation we have

— gRX, V)X, Y) = [(Cad)(Za}) — (Sa,ai)In?
+ [(Sa)(Eb2) + (Sh2)(Za)?) — 2AZaa)(Ebby) v
+ [(CB)Eb?) — (Sbb, 1w,

The right hand side of the above equation is equal to

((Ea)EaPI N + [(EHYEEN] w)
— (Baa)n + (Sb.b)p)
+ ((Bah)(Zb) + (BbL)(Za?)
— 2[(Ea)(EaF O EOHI ).

Since ¥ =Au and kY =S, we can assume that A and p are positive. Then,
by well known inequalities we have — g(R(X,Y)X,Y)=0 and thereby every
sectional curvature is non-negative.

LEMMA 3.3. (P.Hartman [1]) Let M be an m-dimensional, connected
and complete Riemannian manifold such that all 2-dimensional sections
have non-negative curvatures. If f:M—E™?® §>0, is an isometric

immersion such that the relative nullity function v is a positive constant,
then fM is v-cylindrical.

By Lemmas 3.1 and 3.2, we can apply Lemma 3.3 for 8=1, v=m — %
and we get the Riemannian product M= M* x E™* where M* is a
k-dimensional, connected and complete Riemannian manifold and E™ % is an
(m—k)-dimensional Euclidean space. Furthermore the restriction f* of f to
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M* is an isometric immersion of M* into a (k+1)-dimensional Euclidean
subspace E**' which is orthogonal to a Euclidean subspace E™ % in E™*!,

Let {e,} be an orthonormal basis at a point (x,y) of M, x< M* and
ye E™* such that the first e,,---,e, are tangent to M* at x and exsp, -+,
e, are tangent to E™* at y. Then the Ricci tensor R} of M* and the Ricci
tensor R, of M have the same value Ri(e;, e;) = Ri(e;,e;) for 1=, j=k. On
the other hand, we see that R(e;,e;) = vgle;, e;) for 1 =14, j =k Hence, M*
is an Einstein space. By a theorem of (E.Cartan and) T.Y.Thomas [3], fM*
is a hypersphere in E**!. This completes the proofs of Theorems A and C.

If M is compact, then the type number k(x) at some point x is equal to
m (cf.[2],p.57). So we see that S = my, namely, M is an Einstein space.
Hence, fM is a hypersphere and we have Theorem B.

If the Ricci tensor is parallel, then the scalar curvature is constant.
Therefore to prove Theorem D it suffices to notice the Ricci identity

B.1) (VVRXZ,W; X,Y) = (VVRXZ,W; Y, X) = (RX,Y)-R)Z, W).
4. Remarks.
REMARK 1. If dim M = 2, then condition (**) is trivial.

In fact, we have R, = ag for some differentiable function a on M. Then
the Ricci identity (3.1) shows that condition (¥¥) is satisfied always.

REMARK 2. If dim M =3, then condition (**) is equivalent to
condition (*).

In fact, if dim M = 3, then we have
4.1) RX,Y)=RXANY+XARY—Q1Q/2SXNY,
where S is the scalar curvature and R' is defined by Ry(X,Y)= g(R'X,Y).

If we take an orthonormal basis {e,} such that R'e, = v,e,, 1=h=2, then
condition ( *) is equivalent to

(4.2) (Y — v)@v; + ;) — S) =0,

which is also equivalent to condition (¥¥).
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