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1. Introduction. Suppose each of X and Y is a linear normed space and

B=B[X, Y] is the space of bounded linear transformations from X into Y.

Following the notation in [3] and [4], we denote the weak sequential

extension of B by JB+ and of 7 by 7 + . We shall denote by C the space of

continuous functions on [0, 1] with values in X, the space having the uniform

norm topology, and by Co the subspace of C consisting of those functions /

such that /(O) = 0j-, the zero element of X.

For each # §: 0, Ca will denote Co if & > 0 and it will signify C if

a = 0. We shall suppose throughout that Φ = {̂ >fc}̂ =0 represents a sequence

of elements of B.

DEFINITION 1.

will be called the (n, tf)-Bernstein transform of / for each fz C. Here we

understand that

= 1 for k = n ,

= 0 for k > n ,

and Δ>* = Σ ( " ! Γ m ( ^ ) * W » for „, * = 0, 1, 2



CONVERGENCE THEOREMS AND MOMENT PROBLEMS 171

DEFINITION 2. The statement that Φ satisfies condition Aa means that
there exists a number Λ ί > 0 such that for any bounded sequence {xk}ΐ=0 of
elements of X and for each n = 0,1, 2, ,

J f c =

M max II xk

In case both X and Y are the real (or complex) numbers, <x = 0 and
φk — tk, then -BS[Φ,/*] is the ordinary Bernstein polynomial of f of order n.

The vector-valued case for a — 0 has been treated in [5] making use of
the results in [3] and [4]. It happens that, in that case, it is possible to give
a necessary and sufficient condition for the convergence for each f in C.
The condition is that Φ should satisfy condition AQ. This is equivalent to
the statement that Φ is a moment sequence, which is equivalent to the
statement that a certain Hausdorff summability method from X into Y+ is
convergence preserving. Furthermore, in the case in which Y = C, then
B°n[Φ,f] converges (uniformly) to f for each f in C, if and only if φk = tk

for k = 0,1, 2 , . . . .
Endl [1] and Jakimovski and Ramanujan [2] have treated moment problems

and summability methods of Hausdorff type for the case in which X=Y = the
scalar field and oi > 0. In this paper we consider the vector-valued case for
cc > 0 and treat the above questions, obtaining results similar to those for
a — 0. There is one distinct difference, however, and that is that in the case
for a > 0, the related Hausdorff type summability methods are regular
relative to an underlying linear transformation from X into Y.

2. Convergence Theorems.

LEMMA 1. If a > 0 and Φ satisfies condition Aa, then for each
non-negative integer i,

converges in B-norm to φQ as n—+oo.

REMARK. If a = 0, then we have the identity

and condition AQ is not necessary.
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P R O O F . Since

(2.1) ίn + a\ _ ίn\ \ n /
\n — k) \k) /k + a\

V * )

we have that \h) = \l_h) ^OΓ e v e r y n a n <^ ^ s u c n t n a t n^k and hence by

condition Aa we have that

(2.2)

< M max||xi|] ^ M

where (n_h)Xk = \k)Xk' Now consider the index of summation in (2.2) as

changed to q, then, if we choose xQ = θx for q^k and ||.z:'ifc|| = l, we have that

(2.3)

for n, k — 0,1, 2, , where n^k. An application of Stirling's formula
shows that

fn+

lim V M

n + cc\

\ k )

for each k ^ 0 and it then follows from (2.1) and (2. 3) that

Suppose £ > 0 and choose N such that if n^k> N, then

V n )
2ΛΓ

That this is possible follows from the fact that (* j
Γ(Λ+1) which
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follows from Stirling's formula. Now choose K so that

173

V n

CD
for n, k — 0,1, 2, , n^k, and finally choose N' such that if n > A/", then

n + ι )
<K

for k = 0,l, ,N. Now since

we have for n > N', ΛΓand ||x|| ^ 1,

( » :

v ^
\n + i

4- - i

• X

φk])

n+a\
n ' ( k + i Y

(k+a\
\ k )

\ k

- 1
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where xk = θv for k = 0,1, , N and xk = x for k = N + 1, , n

and hence

= sup

and the proof is complete.

REMARK. For the case z' = 0, one needs only that

THEOREM 1. (i) If a>0 and Φ satisfies condition Aa, then Ba

n[Φ, ta+ί]
converges in B-norm to <pu for i — 0,1, 2, .

(ii) If a=0, then J3£[Φ, tι] converges in B-norm to <piy for i — 0,1, 2, ,
i.e., condition Ao is not needed.

PROOF. The proof is by induction on i. Lemma 1 establishes the result
for z = 0, hence we need only prove the induction step. In applying Lemma 1,
we have made use of condition Aa, if OL > 0, but have not used condition Ao

for the case a=0.
We shall give the proof for a ^ 0 and point out where condition Aa is

required only when d > 0.
Suppose the result holds for the integers 0,1, •••,£ — 1. Define b5 and

c5 by the formulas

(2.4)

(2.5)

then

k(k-ΐ)
0=1

ί-1

(k+a-i + V) = k(k-ΐ)
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(TΛ)
175

= Σ (TΛ) [A-

— Cn Λ- Bn.

We interchange the order of summation in Bn and apply the induction
hypothesis obtaining

The induction hypothesis requires condition Aa only if a > 0. Furthermore

r _ (n + ΰt) - (n±ct-i + ΐ) ^
n-k J k \" (k + ct) - (k + a-i

^ J ή j -* +ϊ)

Σ ( ί ίΣ ( ί -f) -̂  Σ

Note that for Λ = 0, we have that Dn = 0 and condition Aa is not needed.
The fact that l im| |£ Λ | | β = 0 can be demonstrated in much the same way that

n—>oo

lim||J3Λ | |5 = 0 was established and we omit the details.
n—>oo

In order to consider Fn, we choose x^X such that ||Λ:|| = 1 and set

for k = 0,l,

= θx
for k = i, i + 1 , — , n ,

then
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\\FJS = sup

= sup
11*11 =£1
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k V a U 7

< M max^ nί+a

by condition Aa. But by (2.5) the c/s are independent of n and hence the
right side of the inequality converges to zero as /z-*oo, thus ||Dn||β—•().

We now note that

n-i + a\ _ (n + a\
n-k )-\n-k)

(k + a-i (n + a

where the last equality defines (k, n, i), and hence k^n implies that

\ n-k )^\n-k) ss m c e

We may now write

k + i
n-

by replacing k by & + z in the summation. Then setting p— n—i, we obtain

k+i
p+i

The factor outside the summation converges to 1 as n —* <χ> and if we can
show that

max

holds for each bounded sequence {xk} in X, then Lemma 1 would show that
-An —* Ψt i n β-norm as n—>oo by simply replacing the original sequence
<Po,<Pi, ' > by <pi9<Pi+i, ' . Note that for # = 0, the remark following
Lemma 1 applies and the modified condition Ao is not required, i.e., the
proof of (ii) is complete.
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Suppose x0, , xp are given and set xk.i — θx for & = 0,1, , i— 1, then

Λ;=0 Y

< Mmax|(*,w, 01 11**11 < Mmax||j;J

by condition Λa and the fact that (k, n, i) ^ 1 for k^n. The proof is now
complete.

COROLLARY. If Φ satisfies condition Aa (in case ct>0) and

P{t) =Σaitι where α0, , av £ X,
i = 0

lim = 0.

REMARK. Theorem 1 is in form very much like formula (22), page 150,
of [2]. In a footnote on that same page the writers assert that indeed their
formula (22)

Ί

can be demonstrated with no restrictions on {μk}. The following example
shows this to be untrue.

Set μ0 = 1 and μk = 0 for k = 1, 2,3, , then Am~nμn = 1 if n = 0 and
Δm~nμn = 0 if n φ O . The formula then reduces to

m-\-a

For k = Q, we have

m /\m+a
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which is not always l = μ0.
It is, of course, for a=0 and a—I. Theorem 1 shows that the assertion

is always true for cc=0.

LEMMA 2. If cc}^0, fzCa and £ > 0 , then there exists a polynomial
Pit) with coefficients in X such that

\\t« Pit) - f(f)\\x < 8 for every t € [0,1] .

PROOF. For a — 0, the result follows from the fact that the Bernstein
polynomials for f converge uniformly to / for each fz C.

If cc>0, then βθ) = θ^. Let δ > 0 be chosen so that \\βt)\\ < £/3 for
0 =g t < δ. Let g{t) = fit) for δ ̂  t ^ 1 and g{t) = (t/δ)"f(t) for 0 ^ t < δ,
then git)/ta € C and we may choose Pit) such that \\I\t) - git)/ta\\ < 8/3 for
0 ^ t ^ 1. We now have that

-fit)\\ = r||P(ί)-^)A1ί < ^ if δ ̂  ί ^ l

and

\\t"P(t)-M\\^t*\\P(t)-g(t)/t*\\ 4- b(ί)|| + ||/(ί)||

< 3 + 3 + 3

if 0 :g ί < δ, and the proof is complete.

It has been shown (Theorem 1, [4]) that if T is a bounded linear
transformation from C into Y, then there exists a function K on [0,1] such
that Kit)eB+ for each t, K has the Gowurin ω-property with W\K = ||T||

and for each / in C, T(f) — \ dK f where the integral converges in the Y+

norm. Hereafter when we refer to such a K we shall understand that K
does have the ω-property and generates such a T from C into Y. (In general
the ω-property implies only that T maps C into the metric completion of Y+).
We also assume without loss that K(0) = ΘB which in turn implies that
K(ΐ) € B.

We now state the main theorem of this section.

THEOREM 2. Suppose a^O, Φ= {φk}ΐ=0 where φkzB and that Y is
complete, then of the following four statements :

( 1) Φ satisfies condition Aa,
( 2 ) there exists a K such that
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Ψk = f <«£(*) ί*+<" / o r * = 0,1, 2, ,

(3) Bn[Φ,f] converges in Y-norm for each f^Ca {indeed, it converges

to f dK f), and
Jo

(4 ) there exists M' > 0 such that

M max||α;J

for every bounded sequence {xk}k=n inX and n = 0,1, 2, ,

(1) is equivalent to (2) and (1) implies (3). Furthermore, if X is complete,
then for a > 0, (3) implies (4) and for a = 0, (3) implies (1).

V

PROOF, (a) (1)=4>(3). Suppose /<= Cβ, £ > 0 and P(ί) = Σ > < + α a t is

such that ||P(ί) - /(ί)IU < θ/3M for 0 ^ t ^ 1. By the above corollary, there
exists N> 0 such that if nl9 n2> N, then

\\B«nι[Φ,P]- B«n2[Φ,

we then have for nun2> N that

\\B«nι[ΦJ]-B«n2[Φ,f]\\γ

\\B*nM[Φ,f-P}\\r

Γmax f(±λ - P(A)MΓmax
L

m a x

Therefore B"[Φ,f] is Cauchy and since Y is complete, it converges. From
what we have just shown, we know that £^[Φ,/] converges for each fe Ca.
Denote the limit by L(f). L is clearly linear in f and (1) implies that

If a=0, we apply Theorem 1 of [4] at once. If oί>0, then we must take
an extra step. Suppose a > 0 and for each fz C, define L\f) — L{f— /(0)).
L' is clearly linear in / and agrees with L on C«. Furthermore,

\\L'(f)\\γ = ^ 2Λf | |/ | |
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and hence L is bounded by 2M. In either case there exists K such that

L'(f) = I dK f for each / € C and for / s Ca we now have that lim B%[Φ9f]
Jo

= f dK{t) fκt).
Jo

(b) (1) — > (2). In the particular case that fit) = ία+fc Λ: for some fixed
x € X, then by Theorem 1 and the above remarks we have that

<pk x = f dK(t) [ta+k -x] = \f dK(t) ta+k J J:

and since this is true for each x € X, we have (2).

(c) (2) — > (1). Suppose φk = Γ έ/X(ί) ίfc+α ̂  J5 where X has Gowurin

Jo
constant M, then if we define L(f) = I dK f, we have that

Jo

We shall now demonstrate that

(2.6) g max 1

which is a special case of condition Aα, namely the case in which Φ = Φ(i)
— {tk+a}£=o and Y = X. This will be of fundamental importance in the
remainder of this paper.

Setting v = n—k we obtain

λ;=0
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It is clear that for 0 < t < 1, each term of fV (n + OCλtn'v(l— t)υ is non-

negative and Endl [1, p. 441] has shown that the sum is not greater than 1,
hence by convexity, (2. 6) follows and (1) holds.

(d) a > 0, (3)=φ(4). Define LJf) = BftΦ,f] for each / € C«.
For a > 0, we then have, since /(0) = θx, that

= sup
l | l ί ^

II/Ik

where the last equality defines Mn which is clearly finite since each <pk e B.
Now suppose 6 > 0. There exist points xux2, ,xn in X such that

Nil ^ 1 and

Define f(k/ή) — xk for £ = 1, 2, , n, f(0) = θx and / linear otherwise so that
fzCa. We then have that \\f\\Oa^l and | |L n / | | > Mn-S. It follows that
||Ln | | = Mn. The assumption that X is complete implies that Ca is a Banach
space and (3) then allows us to invoke the uniform boundedness principle.
Hence, there exists an M > 0 such that Mn ^ M for all n and the result
follows.

(e) a = 0, (3) — > (1). Since it need not be true that /(0) = θx, we must
sum from & = 0 and the required modifications to the argument in (d) are
obvious.

COROLLARY. If both X and Y are complete, then (1), (2) and (3) are
equivalent.

PROOF. We need only show that (3) implies (1) for a > 0. Again we
set Ln(f) = B%[Φ,f] and then (3) implies that LJJ) -> L{f) where the Ln
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are uniformly bounded and hence L is bounded on the Banach space CΛ.
Suppose ||L|| = M, then as in (a) above, we may extend L to U on C such
that \\L'\\ ^ 2M whence we may again apply the representation theorem of

[4] and obtain L'(/) = [ dK f for each ft C where W\K = ||L'||, and
Jo

before, Theorem 1 applies to show that φk— I dK(t) ta+k for k = 0,1, 2,
Jo

as

Therefore, we may write

- Xi

^ 2M max | | ^ ||

by (2. 6) and thus (1) holds.

3. The Case in which Y is a Function Space. We shall now consider
some special cases of the above results. These considerations will equip us
with the tools to attack some questions in summability theory that are related
to the convergence and moment theorems obtained in the previous section.

Suppose X is a Banach space, £ is a Banach space and Y is the space of
bounded functions from [0, 1] into E, endowed with the uniform norm
topology. Y is then a Banach space. Φ = {<pk}ΐ=o is again a sequence in
B[X, Y] and clearly each <pk may be considered as a bounded function from
[0,1] into B[X, E\. For example, if each φk is a continuous function from
[0,1] into B[X, E], then Theorem 2 above generalizes the main result in [5],
where the case a — 0 was considered. We now obtain a generalization of the
corollary of that paper.

THEOREM 3. // E is X, then B%[Φ,f] converges uniformly to f for
each fz Ca, if and only if φk = tk+a for k = 0,1,2, . Furthermore, the
uniform convergence to f for each f^C implies that cί = 0.

PROOF. In order to obtain the sufficiency we note that equation (2.6)
shows that Φ={ta+1c}ΐ=0 satisfies (1) of Theorem 2, and hence by (3) of Theorem

2 we have that lim££[Φ,/] = L(/) = I dK(t,s)f(s) for each/s Ca. However,

by the corollary to Theorem 1 and Lemma 1, we have that for each polynomial



CONVERGENCE THEOREMS AND MOMENT PROBLEMS 183

7.'

P(t)=Σtί+aaί, L(P) — P and these polynomials are dense in Cα, hence
ΐ = 0

IJJ) = / = lim BRΦ,f] for each fz Ca.
n-->oo

In order to obtain the converse, we observe that from Theorem 2,

convergence for each fe Ca implies that <pk(t) = I dK(t, s) sa+k and that

Λ
B"[Φ,f] converges to I dK(s,t) f(s). However, since by hypothesis, B%[Φ,f]

Jo

converges to/, we have that f(t)= I dK(t,s) f(s) for each f^Ca and the
Jo

result follows.
The final statement follows from the fact that for a > 0, JB"[Φ,/](S) = θx

at 5 = 0 when Φ = {tk+a}™=0. This completes the proof of the theorem.

In the present setting we may also consider the question of pointwise
convergence. If we consider s, 0 :g s ίg 1 as a parameter and apply the corollary
to Theorem 2 at each point s, we obtain :

THEORExM 4. For each cc^O and each s e [0,1], the following three
statements are equivalent:

( 1') Φ(s) satisfies condition Aa where M = M(s),
(2') For each sz [0,1], there exists a K(s, •) such that

φk(s)= [ dK(s,u)uk+« for 4 = 0 ,1 ,2 , . . . ,

and

(3') Bn[Φ(s),f] converges in E norm for each / € Ca {and it converges to

fdK{s,u)-βμ)).
Jo

It happens, that in certain cases, pointwise convergence implies uniform
convergence. Suppose £ is X and JB*[Φ(S), tk+a] converges in B-noτm, for each

V

se [0,1], to sk+a. Then for each P(f) - ^ i i + a a t we have that Bi[Φ(s), P]

converges in E norm to P(s) for each s € [0,1]. Since these polynomials are
uniformly dense in Ca and Ca is a Banach space, we have by the uniform
boundedness principle that the operators defined by Ln>s(/) = B%[Φ(s),f] are
uniformly bounded for each s and as in the proof of Theorem 2, can be
extended to all of C. Then also as in that proof we conclude that there exists
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K(s, ) such that φk(s)= [ dK(s,u) u«+k = hmB:[Φ(slu«+k]. We further

conclude as in Theorem 3, that indeed ψids) = sk+a for k = 0, 1, 2 and hence
for each fz Cα, Bn[Φ,f] converges uniformly to f We state this result as a
theorem.

THEOREM 5. / / 2J;[Φ(s), tk+a] converges in B-norrn to the limit sk+a,
for each s£ [0,1], then φk(s) = sk+a for k = 0,1, 2, , and Bi[Φ,f] converges
uniformly to f for each fz Ca.

As we have seen, the case in which Φ={ίfc+α}Γ=o plays a particular role in
this type of approximation for then we obtain uniform convergence to f for
each f ^ Ca. We have also seen that, in this case, the added requirement of
uniform convergence to f for each f^C demands that a — 0. We shall now
show that for a > 0 we obtain, on each interval [δ, 1], 0 < δ < 1, uniform
convergence to f for each fzC. In order to establish this we need a lemma
which proves to be essential in our later considerations of summability
methods.

We define

for n ^ i -

«.X )̂ = ("I?)[Δ-Vί] for n^j.

LEMMA 3. For each t e (0,1], and a > 0

(ii) lim ha

nΛ(tk+") = lim(n+f)Δn-lctk+« = 0,

the limits holding uniformly in t over [δ, 1] for any δ € (0,1). In addition,

REMARK. This is a Toeplitz type result and shows that for each t € (0,1],
the matrix summability method A(t) = (αn>Jfc(ί)) = (Ktk(tk+a)) is regular.
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PROOF. We first observe that (iii) is a special case of (2.6) where we
take xk — l.

In order to establish the uniform convergence in (i) we write

d

dt-/;(*•)
Ac = 0

* + β _ v l _ . n_ t _ f, Γ(w + « + l ) , + g _ i n

) ( l - δ ) " for ίe[8, l ]

as

Hence • • fZ(t") converges uniformly to zero in [δ, 1] and it follows that
atat

ί ί du =
converges uniformly to zero in [δ, 1] and (i) is established.

The uniform convergence in (ii) follows from the fact that

(n + a\ An_k k+a _ (n + ot\ n\ Y(μ+Ϊ)
[n-k)A l -\ n ) (n-k)\ TΪk

which converges to zero for 0 < δ < 1.

THEOREM 6. // a > 0, Φ = {ίβ+*}Γ,0 and fz C, then B*n[Φ,f] converges
uniformly to f on [δ, 1] for δ £ (0,1).

PROOF. By Theorem 5, B%[Φ, tι x] converges uniformly on [0,1] to tι x
for each i ^ 1 and each x € X. By (i) of Lemma 3, l?n[Φ, 1 x] converges
uniformly on [δ, 1] to 1 x for each x € X. The theorem is, therefore, true
for polynomials.

Now for a fixed f^C and £ > 0, choose a polynomial P such that
\\f(t)- P(t)\\ < ε/2 for t e [0,1], then
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\\B;,[Φ,f]-f\\ <; \\B«t[Φ,f- P)\\ + ^B:[Φ,P] - p\\ + \\p-f\\

< - | - + \\B:IΦ,P]-P\\ + ε

2

where the first 8/2 follows from (2. 6) and the second term converges uniformly
to zero by the first part of the proof.

4. Summability Methods of Hausdorff Type. We suppose X and Y to
be complete throughout this section.

Let δ(α) = ( ( - i W ^ ί f ) ) * t h e n δ(α° i s a n involutory matrix. If a = 0, then

δ(Λ) is the classical differencing matrix associated with Hausdorff summability
methods. As before, Φ= {<pk]k=o is a sequence in B and we define H{a) = (h*.k(cpk)).

It is then true that H(a) = δ(fl5)Φδ(α) =

In this section we shall discuss the questions of convergence preserving
and regularity of such methods. The case ci — 0 has been treated in [3] and
the notions of convergence preserving and regularity are as in [3]. The scalar
case has been treated in considerable detail by Endl [1].

THEOREM 7. If H{a) is a convergence preserving (or regular) method,
then Φ satisfies conditicn Au and hence (by Theorem 2) is a solution to the
moment problem.

PROOF. It suffices to note that by Theorem 1 (or Theorem 2) of [3], that the
hypothesis implies that condition A of [3] must hold, and this is just condition AΛ.

We now turn our attention to a converse for Theorem 7. Suppose that Φ
satisfies condition AΛ (with ct>0), then by Theorem 2 above, there exists a K

such that φk = J dK(f) ta+k for k = 0,1, 2, . We wish to consider the
Jo

question of regularity of H{a) relative to some linear transformation L from X
into Y or possibly into some larger space. It is sufficient to check conditions
A', B' and C" of [3] and to apply Theorem 2 of that paper. It is shown in
[3] that conditions A' and A are equivalent and condtion A is just condition
Aa in the present situation.

In order to check condition B', suppose x e X, k is fixed, y € Y' and
consider

= lim [ (n*T
«^°° JO ^

"'k tk+xdy K{f) x .



CONVERGENCE THEOREMS AND MOMENT PROBLEMS 187

Denote the scalar-valued function y K(t) x by git). By the Lemma in [4], g
is of bounded variation on [0,1] and for 0 < 8 < 1, we have by (ii) of Lemma
3 above that

Since the integrand is continuous and has the value zero at t = 0, there is no
change in the value of the integral if we change (if necessary) the value of
g(0) to be g(0 + ) to make g continuous at t = 0. The integrand has its
maximum value at t = (k + oί)/(n + oί) which is less than δ for sufficiently large

values of n. Applying Stirling's formula to \ _ΊΛ we can then write

( ) τ 7 δ

= 0(l) V*og

which converges to zero with 8 and hence condition B' holds.
We now check condition C\ Suppose x^X and y' € Y' and set

lim f Σ (Ztΐ) X>-H«+« dy'K(t) x
n~>°° J o fc=0 '

Km f Σ.(Z + ΐ)Δn-kt«+«dy'K{t) x

+ urn f Σ (l + f) Δ"^ tk+«dy'K(t) x

x + y'K(l) x - y'K(β) x

where we have applied (i) of Lemma 3 in the second integral. The remaining
integral has a non-negative integrand which, by (2. 6), is bounded above by 1
and hence if we again adjust y'K(0) x to be y'K(§ + ) x we obtain

v = y'KQ) x - yX(0+) x
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by an argument like that for condition B'.
For fixed x^X, this limit then exists for each y and since each

φk e B[X, Y] we see that

and hence we have that L(x) — K(V) x — K(0 + ) x can be considered as a
point in Y". It is understood, of course, that in the equation L(x) = K(l) x
— K(0 + ) x, K(0 + ) is considered only as a suggestive symbol, being defined
by the equation itself, L(x) having been defined by the limit process which
yields v. (Recall that K(O) = ΘB and K(ΐ) were already elements of B[X,Y]).

Hence we now see by considering Y as a subspace of Y' under the
natural mapping, we have that H{a) is regular relative to L as a summability
method from X into Y" where the convergence in Y" is that of its weak*-
topology.

If it happens that K is continuous at t — 0 in the sense that y'K(0-\-) x
— y'K($$) x — 0 for each pair y, x, then we would actually have regularity
relative to K(l) from X into Y with the convergence being in the weak
topology on Y. We state these results formally as a theorem.

THEOREM 8. If Φ satisfies condition Aa, a > 0, then H{a) is regular
relative to L(x) = K(l) x—K(0+) x from X into Y" where the convergence
in Y" is in the weak*-topology. Furthermore, if y'K(0+)'X = 0 for each
pair y',x, then H{a) is regular relative to K(ΐ) from X into Y where the
convergence in Y is in the weak topology.

We may now summarize our main results as follows :
If X and Y are Banach spaces and ct>0, then the following four statements

are equivalent:

( 1) Φ satisfies condition Aa,

( 2 ) φk= f
Jo

( 3 ) B%[Φ,f] converges for each / in Ca

and

( 4 ) H{a) is regular relative to L(x) = K(l) x - K(0+) - x from X into Y"

with the weak*-topology on Y".
The case a = 0 is different in that (4) must be replaced by "H{a) is

convergence preserving" since condition B' may not hold. These results are
contained in [3] and [5].
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