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HYPERSURFACES IN ALMOST CONTACT MANIFOLDS
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There have been several recent papers examining hypersurfaces in almost
complex manifolds (e. g. [3, 5, 7]) in particular Y.Tashiro [5] has shown that
an arbitrary hypersurface in an almost complex manifold is, in a natural way,
an almost contact manifold. It would be natural to ask if a hypersurface in an
almost contact manifold is an almost complex manifold. The study of this
question has been initiated by Eum [2] and the present authors independently.

The problem here is somewhat different than that of a hypersurface in an
almost complex manifold. In general it is not true that a hypersurface in an
almost contact manifold is almost complex, for example, the 4-sphere 5 4 is not
an almost complex manifold yet it can be realized as a hypersurface in the
almost contact (in fact normal contact metric) manifold S\

After several preliminaries we prove in §1 that a hypersurface in an almost
contact manifold possesses a natural /^-structure (Yano [6]) which is an almost
complex structure if the normal to the hypersurface is in the same direction as
the distinguished direction of the almost contact structure. In §2 we 'rotate'
an almost contact structure to obtain the main result. A hypersurface in an almost
contact manifold M2n + ι is almost complex if its normal is the restriction of a
non-vanishing vector field on Aί'2;iM.

Finally in §3 we show that if the almost contact manifold has additional
structure, for example, a "compatible" metric, a normal almost contact structure,
a quasi-Sasakian structure, then under some conditions a hypersurface inherits
the corresponding analogus structure (e.g. almost Hermitian, complex, Kaehler,
resp.).

1. A (2;z + l)-dimensional C°° manifold M'2n + ι is said to have an almost
contact structure if there exists on M2n+ι a tensor field φ of type (1,1), a vector
field ξ and a 1-form η satisfying

V(ξ)= 1,

φξ = 0, (1. 1)

ηφ = 0,

ψ'2 = —identity + ξ ®η.
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If MIn + 1 has an almost contact structure (<p, ξ, η) then we can find a Riemannian
metric g on M'2n + ι such that

g(ξ,X\ (1.2)

where X. and Y are vector fields on M2n+1 (Sasaki [4]). In this case we say

MAn+1 has an almost contact metric structure.

An almost contact structure (φ, ζ,Tl) is said to be normal if

[φ, φ](X, Y) + dη(X, Y)ξ = 0 (1. 3)

where [φ, φ\ is the Nijenhuis torsion of φ. An almost contact metric structure

(ψ > ζ> V, g) is called quasi-Sasaki an if it is normal and the fundamental 2-form

Φ, defined by Φ(X9Y) = g(X9φY) is closed [1].

The analogous structures on an even-dimensional manifold Mλn are well-

known. M2n is almost complex if there exists on Mln a tensor field J of type

(1, 1) such that J2 = —identity, almost Hermitian if there exists a metric G

satisfying G(JX, JY) = G(X, Y), complex if [J, J] = 0 and'Kaehlerian if [J,J] = 0

and J Ω - 0 where Ω(X, Y) = G(X, JT), X, Y vector fields on-M 2\

Suppose iW2w+1 has an almost contact structure (φ, ξ, η) and that M'2n is

an orientable C°° hypersurface imbedded in M2n+ι. Let TM271 denote the tangent

bundle of Mn and TRM2n+1 the restriction of the tangent bundle of M2n+1 to

M2n. We denote by B the differential of the imbedding so that B is a mapping

of TM2n into TRMn+ι. Let C be a vector field defined along M2'1 that is not

tangent to M2n anywhere, i.e., at each point of M2 '\ Cζ TRM'2n + v and C&TM211.

Then we can find a mapping B"1 of TRM'2n + ι into 77lί2/t and a 1-form C* defined

on M271 such that

.= B'ιC=09

where / is the identity on TM2 r ι or TRM2n+ι. If in addition, M n + 1 has a

Riemannian metric # satisfying (1, 2), then the induced metric G on il^w is

given by

,Y) = g(BX,BY)t

where X, Y are vector fields on M'2n.
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Throughout this paper X, Y, Z will denote vector fields on M2n or M 2 n + 1 ,
it being clear from the context which manifold is referred to. Furthermore, we
will only consider hypersurfaces M2n for which ξ restricted to M271 is everywhere
tangent to M2n or nowhere tangent to M2n. In the latter case, we may pick C
to be ξ.

THEOREM 1.1 If Mln is a hypersurface in an almost contact manifold
M2n+\ then there exists a tensor field f of type (1,1) on M2n such that

Γ+f=o

{Mln is then said to have an f-structure, Yano [6]) and the rank of f is
either 2n or 2/2 — 2.

PROOF. Let

f=B'1φB.

Then f is a tensor field of type (1, 1) on M2n and we only have to show that
this / has the required properties. If X is a vector field on M2n, then

(f3+f)(X)=f\X)+f(X)

= B-'φB B-'φB B-1φB(X)+B-ι<pB(X)

= B- V(J- C® C*V(7- C® C*)(φBX) + B-ιφB'κX)

= B'ιφ{I- C® C*)(φ\BX) - C*{φBX)φC) + B~ιφB(X)

= B-ίφ{I-C®C*X-BX+η(BX)ξ-C*(φBX)φC)+B-ιφB(X)

= - B'ιφ(BX) - C*{φBX)B~ιcpίC-C\ - BX+ n{BX)ξ

- C*(φBX)φC)B-1φC+ B~

Now there is no loss in generality in assuming C*(<pC) = 0 since, with any
associated metric g, the tensor Φ defined by Φ (Λ',Y) = g(X,φY) is a 2-form.
Hence, we have

Now if ξ = C, then B~^ = 0, φC=0 and so f*-\-f=0. In this case, we can see
that fX) = 0 implies X = 0, since f(X) = B~ιφ{BX) and B maps no vector into
the C direction. Hence, f is of rank 2n.

Consider the case where ξ is everywhere tangent to M2n. Let g be an
associated metric on M2n+1 and assume C is the normal to M2n. Then η(C)
= C*(£)=0 and t h u s / 3 + / = 0 (note that the metric is not necessary to get
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this /-structure). In this case, since B is of maximum rank, B will map some

direction Xλ into the ξ direction. Then φ{BXx) = Q so f(X1) = 0. Also, since φC

is tangent to M w , there is a direction X2 such that BX2 = φC so that fX2 = 0.

Now let X3 be any direction tangent to M2n and orthogonal to Xί and X2

with respect to the induced metric on M2n. Then there is a direction X4 such

that <pBX± = BX3 and thus fXA = X3. Hence / is of rank 2n — 2. This finishes

the proof of the theorem.

Yano [6] has shown that an /-structure of maximal rank is an almost

complex structure if this rank is even or an almost contact structure if this

rank is odd. We then have the following corollary.

COROLLARY 1.2. Let M2n+1 be a manifold with almost contact structure

(φ> £> v) and let M2n be a hypersurface of M*n+1. Then the natural tensor

field φ\M2n = B'1 φB defines an almost complex structure on M2n if and

only if ξ is nozvhere tangent to M"2n.

PROOF. The 'if part is given by the first of the proof of Theorem 1.1. If

ξ is everywhere tangent to Λf2 "(recall that we are only considering hypersurfaces

M2n where ξ is everywhere or nowhere tangent to M2n) then B~ιφB is an

/-structure of rank 2n—2 and hence is not an almost complex structure on

M2n.

2. The 'rotation' of an almost contact structure requires the existence of

a certain tensor field which essentially produces the 'rotation'. Again let Mιn+ι

be an almost contact manifold with structure tensors φ, ξ, η.

LEMMA 2.1. For every non-vanishing vector field ξ' on M2n+ι that is

nowhere in the ξ direction there exists a non-singular tensor field μ of type

(1,1) such that

μ? = ?.

PROOF. Let g be an arbitrary positive definite Riemannian metric on M2n+\

Let {Ua} be an open covering of Mln+1 by coordinate neighborhoods and in each

Ua choose 2n—2 vector fields XU) such that {X(̂ )} are orthogonal to the span

°f %'•> ψζ'> ζ o n Ua. Letting [V{A), V\ V"> V"} denote the dual basis, we define

μ on Ua by

μ) = Έ X'wiuu + ξ% + ξ'W'/ + (ψξJWΊj (2. 1).
A=--l

Then μ) ξ'} = ξ\ i,j = 1,2, , 2n + l.
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Now similarly construct a basis {X(A), £', φζ\ ζ] on Uβ, then on UaΓ)Uβ

we have

B = l

/here (CAB) is non-singular. We now have

2n-2 2π-2 /2n-2

( -̂  CABCAc
A = l \B,C = l

from which we see that μ \ Ua and μ \ Uβ agree on Ua Π L̂ g, giving us the desired
tensor field μ (cf. Sasaki [4]).

THEOREM 2.2. Define a tensor field φ and a 1-form η on the almost
contact manifold M2n+ι by

φ'X = μ~ιφμX,

η\X) = η(μX)

-where μ is the tensor field of Lemma 2.1. Then (φ\ ξ\ η) is an almost
contact structure on M2n+ί.

PROOF. We show that φ, ξ\ η satisfy equations (1.1).

φξ'=μ-ιφμξ' = μ~ιφξ = 0,

η\φ'X) = η(μμ~ιφμX) = η(φμX) = 0,

φ'2X = μ~ιφμμ~ιφμX

= μ~ιφ2μX

= μ-1(-μX+η(μX)ξ)

= -X+η'(X)ξ'.

Combining Corollary 1. 2 and Theorem 2. 2 we obtain the main theorem.

THEOREM 2. 3. // M2n is a hypersurface in an almost contact manifold
M2n+ι such that there is a non-vanishing vector field ξ' on M2n+1 such that
ξ' restricted to M2n is nowhere tangent to M2n, then M2n has an almost
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complex structure given by J satisfying JX — B~ιφ'BX.

REMARK. The example of 5 4 considered as a hypersurface in S5 shows
that in general some condition on the hypersurface is needed. The condition in
Theorem 2. 3 is sufficient but not necessary, for example S2 and SQ are almost
complex hypersurfaces in Ss and S\ respectively but their unit normals are not
the restrictions of a tangent vector field on the higher dimensional sphere.

PROPOSITION 2. 4. // (φ, ξ, η) and (φ\ ξ', η') are the almost contact

structures of Theorem 2. 2, then the tensor field f defined by f — {φ — φ')/^ 2

is an f-structure on M'2n+ι.

PROOF. The proof involves examining the action of μ on TM2n+1. As in
the proof of Lemma 2.1 we will assume μ is chosen such that μξ = ξ' and
K<P£Ί — Φ%'- Then viφξ) = v(<pξ') — 0. Also, we may assume η(ξ') = 0 since ξ
and ξ' are linearly independent. First we show that (/ 3+/)(£) = (/ 3+/)(£')
= 0. Since fξ = -2'1/2φ'ξ and fξ' = 2~1/2<pξ', we see that (f'

+ φ'ξ) = -2-V\2-^f{φφξ + ξ) + φξ)= -2-V\(-φξ
2-ιβφ'φφξ/2. Now φ'φφ'ξ = φφμ~ιφμξ = φ'φμ~ιφξ' =

= -φ'ξ'= 0. Similarly, we can show that (/ 3+/)(£') = 0.
Now, /^r - 2-χιχ-ξ'-φφξ') - 2-*X-ξ-μryμφξ) = 2^\-ξ + ξ\ where

we have made use of the fact that μφξ' = φξ and μξ = ξ' as can be seen
from (2. 1).

Also, f2ξ =~(φ- φ)φξ/2 = - (φφξ + ξ)/2 = - ( - f + ξ)/2 and
/ 2 r = {φ-φ)φξ'/2 = -(ξ'+φφξ)/2 = -(ξ'-ξ)/& Therefore, {f+f)(φξ) = 0.
If X is a vector with no component in the ξ, ξ' or φξ' directions then φ'X
= μ~ιφμX— μ~ιφX = φX so that fX — 0. Putting everything together we see
that / is an/-structure. Furthermore, since φ'ξ = μ~1φμξ = μ~ιφξ', we see that
/ maps TM2n+1 onto the subspace spanned by φξ' and ξ — ξ'. Hence, / is an
/-structure of rank 2.

3. If M2n+ι has almost contact metric structure (φ, ξ, η, g) we define a
new meric g on M'2n+ι using the map μ by

g'(X,Y) = g(μX,μY).

THEOREM 3.1. The tensors φ\ ξ\ η\ g given above are an almost
contact metric structure on M2n+1.

PROOF : We have seen that φ\ ξ\ η give M2n+ι an almost contact structure,
hence it remains only to show that g satisfies equations (1.2). We have
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= η\X)

and

gXφ'XφΎ) = g(μφ'X, μφ'Y)

= g(φμ>X, φμY)

= g(μX,μY)-η(μX)η(μY)

= gXX,Y)-vXX)v'(X).

We now prove that the induced metric on the hy per surf ace M2n is (almost)
Hermitian.

THEOREM 3.2. Let M2n+ι have an almost contact metric structure
(<p, ξ, η, g) and let M2n be a hypersurface of M2n+1. If ξ is orthogonal to
M2n then M2n is an almost Hermitian manifold.

PROOF. By Corollary 1. 2, M2n has an almost complex structure given by
J = B~ιφB. Using the induced metric G on M2n we see that

G(JX, JY) = g{BJX, BJY)

= g(φBX,φBY)

= g{BXyBY)-η{BX)η(BY)

= G(X,Y).

THEOREM 3.3. Let M2n+1 have an almost contact metric structure
(φ> £> V, g) and let M2n be a hypersurface of M2n+1. If there is a non-
vanishing vector field ξ' on M2n+1 orthogonal to ξ and to M2n, then M2n is
an almost Hermitian manifold.

PROOF. By Theorem 2. 3, M2n has an almost complex structure given by
J — B~ιφ'B, where φ = μ~ιφμ. Using the metric g of Theorem 3.1 define a
metric G on M2n by G(X, Y) = gXBX, BY). Then we see that

G(JX, JY) = gXBJX, BJY)

= gXφ'BX, φ'BY)

= gXBX,BY)-vXBX)vXBY)

= G(X,Y)-η(μBX)v(μBY).
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We can write BX = Z+aξ where g(Z,ξ) = O. Then η(μBX) = g(μBX, ξ) = g(Z
+ ctξ\ ξ) = 0 since, as can be seen from the proof of Lemma 2.1, μ can be
chosen so that μ{Z) = Z. Thus, we have shown that G is an (almost) Hermitian
structure.

If Φ, Φ' denote the fundameatal 2-forms of the almost contact metric
structures {φ, ξ, η, g), {φ, ξ', η, g') respectively, then an easy computation
shows that Φ'(X, Y) = Φ(μX,μY). However, in general, μ[X, Y] Φ [μX, μY]
hence we do not have dΦ\X, Y, Z) = dΦ(μX, μY, μZ). Similarly the tensor of
the normality condition (1. 3) is not invariant under μ. However for the
hypersurface of Corollary 1. 2 we have the following results.

THEOREM 3. 4. If M2n is an almost complex hypersurface in M2n+1 as
in Corollary 1.2 and if the almost contact structure on M2n+1 is normal,
then the almost complex structure on M2n is integrable. Furthermore if M2n+ι

is quasi-Sasakian then M2n is Kaehlerian.

PROOF. We need only show that equation (1. 3) implies [J, J] = 0 and that
dΦ = 0 implies da = 0.

[J, J](X, Y) = -[X, Y] + [JX, JY]-J[JX, Y\-J[X, JY]

= -B~ι[BX, BY] + B~1[φBX, φBY\-B-λφ[φBX, BY]

-B-ιφ[BX,φBY]

= B-\[φ, φ](BX, BY)-η[BX, BY])ξ)

= B-\[φ, φ\BX, BY) + dη(BX, BY)ξ)

= 0.

dίl(X, Y, Z) = XΩQΓ, Z) + YΩ(Z, X) + ZΩ(X, Y)

-Ω([X, Y], Z)-Cl([Y, Z], X)~Ω([Z, X], Y)

= BXΦ{BY, BZ) + BYΦ{BZ, BX) + BZΦ(BX, BY)

-Φ(B[X, Y], BZ)-Φ{B[Y, Z\ BX)-Φ(B[Z, X], BY)

= dΦ(BX, BY, BZ)

- 0

where we have used the fact B[X, Y] = [BX, BY].
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We close this section with an example of a quasi-Sasakian manifold M2nfl

with a Kaehlerian hypersurface M2n whose normal is not the distinguished
direction ξ. Let M2n+ι be a quasi-Sasakian manifold with structure tensors φ,
ξ, η, g such that η/\dη^0 but that (dη)2 = 0. Now there exist maps Ψ and
θ [1] such that g(X,ΨY) = dη(X,Y) and Θ = φ-Ψ and we assume [0, θ] = 0.
Then as was shown in [1], M2n+ι is locally the product of a Sasakian (normal
contact metric) manifold iV3 and a Kaehler manifold N2n~2. Now let M2n be a
hypersurface whose normal ξ' is the restriction of a non-zero vector field on
M2n+ι which is locally a vector field on N3.

The projection maps of the locally product structure on M2n + ι are — Ψ2-\-ξ® V
and -θ2 [1]. Define maps P and Q on M 2 w by PX = B~ι(-Ψ2 + ξ® η)BX,
QX = B-ι(-θ2)BX, then P2 = P,Q2 = Q,P+Q = identity, PQ = QP = 0. We
now show that M272 is locally the product of a surface N2 and N2n~2.

[Q, Q](X, Y) = Q2[X, Y] + [QX, QΓ] - Q[QX, Y]- Q[X, QΓ]

= β - i ( - ί a ) a [ β χ , β y ] + β - i [ - s 2 β χ , -Θ2BY]

-B~\-θ2)[-θ2BX,BY]-B-\-θ2)\BX, -Θ2BY]

= B~ι[-θ2,-θ2](BX,BY)

= 0.

Hence, giving the surface N'2 a Kaehler structure, M2n has the 'non-naturaΓ
Kaehler structure of the local Kaehlerian product of N2 and N'2n~2.

The authors would like to express their appreciation to the referee for his
useful suggestions.
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