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AND SATISFYING A DIFFERENTIAL EQUATION
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1. Introduction. Let f ( z ) be a transcendental entire function. Then f(z) is
said to be of bounded index if there exists a non-negative integer N such that

( I f(7°MI ) ( I Λ f c Y s Λ I )
(1.1) max \V—&± [> !/ ^ , k = 0, 1, -
V ' O^n^A ( H \ J — ( k \ }

for every complex number z. The index of f(z) is then defined to be the smallest
integer N such that (1.1) holds for every z (see [1], [2]).

It is known [3] that if f ( z ) is of index N then

It is also known [4] that any transcendental entire function f(z) satisfying the
differential equation

(1. 2) l\(z\Γ\z} + P,(s)/<*-'>(2) + H- P*(*)/(*) - Q(*),

where PX^), J = 0, 1,2, , k, Q(z) are polynomials and P0(^) (^0) is of degree
not less than of any Pj(z\ is of bounded index.

We consider here functions of bounded index satisfying (1. 2) and given by
the power series expansion

(1. 3) f(z) = Σ a»zmv> m positive integer.
υ = 0

Our aim is to give a method for estimating the index of the given function
f(z) for which we need an additional hypothesis concerning the coefficients av

of its power series representation.
As an application of the procedure the index of the entire functon
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f ( z ) = z~kJk(z) for 0^£^0.21 has been calculated, and for &>0. 21 an
upper bound for the index has been determined. (See Theorem 2.)

2. Gap power series. We prove the following

THEOREM 1. Let F(z)=Σ a»*mv> where ra^l is an integer, be an
v = 0

entire function.
Suppose that F(z) satisfies a differential equation of the form

(2.1)

where

(2.2)

If

(2.3)

τvhere c > 1

(2.4)

*y*> +

deg PfO) = λj

(raw)!

+ . . + P*(*)y = 0, / ̂  1,

λ, ̂  /, i = I, 2, , k.

^-^r, » = 0,1,2,. ,

/ ̂  c(log 2) log 2 - .

F( s) ί*5 o/ bounded index N and

(2. 5) N< max(m, τ/0)

where n0 = n0(l, ky c, m, λt) can &^ determined.

PROOF. Since F(z) satisfies (2. 1) it is of bounded index by Theorem 1 of
[4] and we have to prove (2. 5) .

Let

T- clog 2(2.6)

(i) We first cpnsider the case \z\ =gT, By differentiating F(̂ ) {(n — l)ra
times we obtaiη
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where

Now

( . (m-p}\(vm)\
V ; • p)\ (mv + m — p) (mv

and we deduce from (2. 3) that

1 (ί(2.10) f-ΓT, n = 1,2, • • - , * > = 0,1,

(2. 7), (2. 9) and (2. 10) yield

On the other hand

I 77l((w-
O Λ\ JΛ

and both relations (2. 11), (2. 12) hold for n = 1, 2, , p = 1, 2, , m. Write

(2.13) Ύm = (̂  + l ) ) » c . A L E l ,
v J (mn)\ βn+l,p

Then from (2. 3), (2. 11), (2. 12) and (2. 13) we obtain

(2.14)v ' ,(mn

(which gives (1. 1) with N = m), provided that

eWc^Ύv(2-ew/c), that i§
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(2.15)
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±g clog

Since Ύn = cm(mn + p)(mn + p - 1) (w(> - 1) 4- p + 1), 1 +
fti^2, ^>= 1, 2, , m and we deduce that

^l + (w + l)'V11,

(2.16)

so that (2. 14) holds for n^2, ρ= 1, , m and s| ̂  T.
In order to conclude that (2. 14) holds with the same T for n = 1 also, we

estimate

(2.17)

1and

^

more precisely by

p

\^/ 1— byJ

aα,

Let first />=w. Then (2.17) and (2.18) become by (2.3) and (2.8),

ml = (2/Λ)!

for any 2 such that \z\ ±i T.

Next, let 1 :g £5g m — 1 and put

v (m-p)\m\ I
x=72^7)τieχp-

then (2.17), (2,18) yield (2.14) with n = 1, provided that
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or that

cm(m +_ρ)_ \-p\ (2m - />)!_

We now use the following

LEMMA. Let c>l, p= 1,2, m. Then

=

The lemma shows that (2. 14) holds for \z\^T and n = 1 also.

We are left therefore with the

PROOF OF LEMMA. If m = 1 = p, (2. 19) reduces to an equality.

Let m = ρ> 1. Since (2m)! ^(m + l)m(m)!, we have

1 _ m\
[m + l)m — cm(2m)\ + m\

and so

2 2(m \)
~~ 1 + cm(m + l)m = ~~ cm(2m]Γ+m\

and (2.19) follows in this case also.

Let m ̂  2, p^ m — ~L. Then observe that

(2. 20) Γ ^ (m + 1) ̂  3v (m — p)\m\ v

and that

(2. 21) 3cm(m + ρ)\- 3ρ ! ̂  cm(m + />) ! 4- p !

which is true for, —^- (m + p)(m + p — 1) (/>-fl)> 1.

Therefore by (2. 20) and (2. 21)
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ι ,
m \ m\(m-p)\ " '

and the lemma is proved.
(ii) Let us next consider the case \z\^T. By differentiating (2.1) (n — k)

times, where n^k + l, we obtain

lF*n> + F^-" {(n - k}lzl~l + P,} +

n~k

and so

where

(«-!)! "ιτ (»-2)!

/«-A/(/-l).

( j 7\ I ^Ίc H- I
n — k —1)1

Now we have

and so from PI(Z) = ̂  A^V1 " , and
v = Q

- v - 1) . - . (x, - v - j + ιy«—J, y = i, 2, - - - ,

we get
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(2. 23) a, + a, + - + ak+l ̂  II + -^r) -1 + 5

where
1 I k I,-}

c _ _A_ V V V^ κaw-1+λi-v-j

n ^ ̂  ̂  J

and

VJ " 1 I A[ί} |(λt - *>) (λt - P- / 4-1) otherwise

^ is a positive integer, and λi ̂  /.
Now choose nQ as the smallest integer nH^k + l such that for n^>

I 1 \ l

ll+γ-1 ^2; then we have from (2.22) and (2.23) that

(2.24)

and all j — 1,2,—, |s ^ T, and n^nQ .
Formulas (2. 14), (2. 24) together prove Theorem 1.

3. Bessel functions. As an application of a slight refinement of the above
procedure we prove here the following

THEOREM 2. Let N denote the index of the entire function

Then

( a ) N - 1 if 0 ̂  k ̂  0. 21.

( c ) l^N^ max ] 4, ^pr^ | otherwise.

REMARK. The function /"(jε) satisfies a differential equation

zy" + (1 + 2̂ )3;' + ̂  = 0

of the form (1. 2) and is therefore of bounded index.
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PROOF. Since

00 ( — lYjs2" c^ °°
(A 1) /w — A^ 027 ;̂ΓΓ^TTTΓTT^ ~ Z^ α^" >

the condition (2. 3) of Theorem 1 holds with c = 1 so that the theorem cannot
be applied directly.

Therefore we improve the estimates (2.11) and (2.12) to

(3.2)
(2n)!

= I an I cosh r, /z = 1, 2, ,

(3.3) ^2n-ffi =2n\an\ sinhr> w = 1,2,

and

(3.4) |/(*)|;

(3.5)

where, and in what follows, we write \z\ — r.
Hence, from (3. 2) and (3. 4) we get

(3.6) ^^^\f(z)\

provided that

(3.7)

and

(3.8)

provided that

(3 9> exP (4(^+1)) + w/ΆJ.ι
1VfcJ.oΛ cosh r =
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and

31 = 1ι

provided that

(3. 11) sinh r ̂  4(£ + 2)(2r - sinh r)

and

(312) J/^W^.ιz; (2n-l)!

provided that

- sinhr

To prove (a) we calculate that (3. 6) -(3. 13) hold for r^r,(k) if £^0. 21

where

r^K) = 1. 28 when 0 ̂  k ̂  0. 14

- 1. 35 when 0. 14 < £ ̂  0.175

- 1. 40 when 0. 175 < k ̂  0. 2

- 1. 42 when 0. 2< * ̂  0. 21 .

Hence for | z \ ±S rt(£), ^ ̂  0. 21 we have

(3.14)

Let next \z\ ^rx. By differentiating (n — 2) times the equation satisfied by

f(z), we get by the argument of Theorem 1,

(3.15) n\ ~(n^\ *1+ (n-2)! ^2+ (n-3)! ^3

where

(3.16) a, = , z — , , 3 -ς-
nr n(n — iy n(n — ί)r



630 V. MARIC AND S. M. SHAH

and a3 = 0 when n = 2 .
Now for £^g0.21, n — 2 and r^r1? Λ l + Λ2^l and for n^3,

Hence the inequality (3.14) holds for all z, when &±g0.21 and so N^l. Since
/"(s) has simple zeroes, N^ 1 and the part (a) is proved.

To prove (b), again we note that the relations (3. 8) - (3. 13) hold for
^r2 = l. 65 when &i^0.21, and so we have for \z\^r2, £^0.21

(3. 17) max |/(*) | , f - , ^ , w = 1, 2,

For 1 2; I Ξgr2 we note that

( i )

(3.18) ?

provided n^3 and ^^0.8125. The formulae (3.15), (3.16) and (3.17) show
that N^2 if k^ 0.8125.

(ii) If k> 0.8125 then (3.17) holds. Also (3.18) is satisfied if n^4 and
£^8.15/6. Hence N^3 if ^^8.15/6.

(iii) If k > 8.15/6 then (3. 8) - (3. 13) are satisfied for r^rs = 2.02 and so
(3.17) holds when \z\^r3. For \z\>r3 (3.18), with r2 replaced by r3, is
satisfied provided τz^4 and &ίg 12. 22/6.

Hence in this case N^3.
(iv) For k > 12. 22/6 again (3. 8), (3. 9), (3. 12) and (3. 13) are satisfied for

1 2 1 = A — 2. 17. Consequently we have for \z\ ̂  r4

(3.19)

The inequality (3. 18), with r2 replaced by r4, is satisfied if k ̂  13. 87/6
= 2.311- and n^4. Hence in this case also jVrg3, and (b) is proved.

( c ) Let k > 13. 87/6, n ̂  5, n ̂  (2k) /(r, - 1). Then (3. 19) holds for \z\^
and (3. 18), with r2 replaced by r4 is also satisfied for

Hence N < max 14,±i= max -j 4
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and ( c ) is proved.

4. Remarks and Examples.
(i ) It the relation (2.3) in Theorem 1 holds for n^nv only then also the

same procedure is valid but the index N will now depend on nl also.
(ii) Write the equation (2.1) as Ly = 0. If F does not satisfy this equation

but satisfies the equation Ly=f(z) where f(z) is an entire function satisfying
an equation of the form (1. 2) and hence of bounded index Nf, then also our
argument gives an upper bound for NF which will now depend on Nf also.

(iii) Example. Let

f(z) — cos = 1 -
c

Then πι — 2 and f satisfies the equation

The condititions (2. 3) and (2. 4) are satisfied if we choose c^3. Thus there
exist entire functions satisfying the conditions of Theorem 1.
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