Tôhoku Math. Journ. 21(1969), 621-631.

ENTIRE FUNCTIONS DEFINED BY GAP POWER SERIES AND SATISFYING A DIFFERENTIAL EQUATION

V. MARIĆ AND S. M. SHAH¹⁾

(Received August 8, 1969)

1. Introduction. Let f(z) be a transcendental entire function. Then f(z) is said to be of bounded index if there exists a non-negative integer N such that

(1.1)
$$\max_{0 \le n \le N} \left\{ \frac{|f^{(n)}(z)|}{n!} \right\} \ge \left\{ \frac{|f^{(k)}(z)|}{k!} \right\}, \quad k = 0, 1, \cdots$$

for every complex number z. The index of f(z) is then defined to be the smallest integer N such that (1, 1) holds for every z (see [1], [2]).

It is known [3] that if f(z) is of index N then

$$\limsup_{r \to \infty} \frac{\log M(r, f)}{r} \leq N + 1.$$

It is also known [4] that any transcendental entire function f(z) satisfying the differential equation

(1.2)
$$P_0(z)f^{(k)}(z) + P_1(z)f^{(k-1)}(z) + \cdots + P_k(z)f(z) = Q(z),$$

where $P_j(z)$, $j=0, 1, 2, \dots, k, Q(z)$ are polynomials and $P_0(z) \ (\equiv 0)$ is of degree not less than of any $P_j(z)$, is of bounded index.

We consider here functions of bounded index satisfying (1.2) and given by the power series expansion

(1.3)
$$f(z) = \sum_{\nu=0}^{\infty} a_{\nu} z^{m\nu}, \quad m \text{ positive integer.}$$

Our aim is to give a method for estimating the index of the given function f(z) for which we need an additional hypothesis concerning the coefficients a_{ν} of its power series representation.

As an application of the procedure the index of the entire functon

¹⁾ The research of this author is supported by the National Science Foundation under Grant GP-7544,

V. MARIĆ AND S. M. SHAH

 $f(z) = z^{-k}J_k(z)$ for $0 \le k \le 0.21$ has been calculated, and for k > 0.21 an upper bound for the index has been determined. (See Theorem 2.)

2. Gap power series. We prove the following

THEOREM 1. Let $F(z) = \sum_{\nu=0}^{\infty} a_{\nu} z^{m\nu}$, where $m \ge 1$ is an integer, be an entire function.

Suppose that F(z) satisfies a differential equation of the form

(2.1)
$$z^{l}y^{(k)} + P_{1}(z)y^{(k-1)} + \cdots + P_{k}(z)y = 0, \quad l \ge 1,$$

where

(2.2)
$$\deg P_i(z) = \lambda_i \quad and \quad \lambda_i \leq l, \quad i = 1, 2, \cdots, k.$$

If

(2.3)
$$\frac{(m(n+1))!}{(mn)!} \left| \frac{a_{n+1}}{a_n} \right| \leq \frac{1}{c^m}, \quad n = 0, 1, 2, \cdots,$$

where c > 1 and

(2.4)
$$l \leq c(\log 2) \left\{ \log \left(2 - \frac{2}{1 + c^m (m+1)^m} \right) \right\},$$

then F(z) is of bounded index N and

$$(2.5) N < \max(m, n_0)$$

where $n_0 = n_0(l, k, c, m, \lambda_i)$ can be determined.

PROOF. Since F(z) satisfies (2.1) it is of bounded index by Theorem 1 of [4] and we have to prove (2.5).

Let

(2.6)
$$T = c \log \left\{ 2 - \frac{2}{1 + (m+1)^m c^m} \right\};$$

(i) We first consider the case $|z| \leq T$. By differentiating $F(z) \{(n-1)m+p\}$ times we obtain

(2.7)
$$\frac{F^{((n-1)m+p)}(z)}{((n-1)m+p)!} = a_n \beta_{n,p} z^{m-p} \sum_{\nu=0}^{\infty} \left(\frac{a_{n+\nu}}{a_n}\right) \frac{(m(\nu+n))!(m-p)!}{(mn)!(m(\nu+1)-p)!} z^{\nu m}$$

where

(2.8)
$$\beta_{n,p} = \frac{(mn)!}{(m(n-1)+p)!(m-p)!}, n = 1, 2, \cdots, p = 1, 2, \cdots, m.$$

Now

(2.9)
$$\frac{(m-p)!\,(\nu m)!}{(m(\nu+1)-p)!} = \frac{(m-p)(m-p-1)\cdots 1}{(m\nu+m-p)\cdots (m\nu+1)} \leq 1,$$

and we deduce from (2.3) that

(2.10)
$$\left|\frac{a_{n+\nu}}{a_n}\right| \leq \frac{1}{c^{m\nu}} \frac{(mn)!}{(mn+m\nu)!}, \quad n = 1, 2, \cdots, \nu = 0, 1, \cdots.$$

(2.7), (2.9) and (2.10) yield

(2.11)
$$\frac{|F^{((n-1)m+p)}(z)|}{(m(n-1)+p)!} \leq |a_n|\beta_{n,p}|z|^{m-p} \sum_{\nu=0}^{\infty} \frac{1}{(m\nu)!} \left(\frac{|z|}{c}\right)^{m\nu} \leq |a_n|\beta_{n,p}|z|^{m-p} e^{|z|/c}.$$

On the other hand

(2.12)
$$\frac{|F^{((n-1)m+p)}(z)|}{(m(n-1)+p)!} \ge |a_n|\beta_{n,p}|z|^{m-p}(2-e^{|z|/c})$$

and both relations (2.11), (2.12) hold for $n = 1, 2, \dots, p = 1, 2, \dots, m$. Write

(2.13)
$$\Upsilon_n = \frac{(m(n+1))!}{(mn)!} c^m \frac{\beta_{n,p}}{\beta_{n+1,p}} .$$

Then from (2.3), (2.11), (2.12) and (2.13) we obtain

(2.14)
$$\frac{|F^{(mn+p)}(z)|}{(mn+p)!} \leq \frac{|F^{((n-1)m+p)}(z)|}{(m(n-1)+p)!}, \quad n = 1, 2, \cdots, p = 1, 2, \cdots, m,$$

(which gives (1, 1) with N = m), provided that

$$e^{|\boldsymbol{z}|/c} \leq \gamma_n(2-e^{|\boldsymbol{z}|/c}),$$
 that is

$$(2.15) |z| \leq c \log \frac{2\gamma_n}{1+\gamma_n} .$$

Since $\gamma_n = c^m (mn+p)(mn+p-1)\cdots (m(n-1)+p+1)$, $1 + \gamma_n \ge 1 + (m+1)^m c^m$, $n \ge 2$, $p = 1, 2, \cdots, m$ and we deduce that

(2.16)
$$\frac{2\gamma_n}{1+\gamma_n} \ge 2\left(1 - \frac{1}{1+(m+1)^m c^m}\right),$$

so that (2.14) holds for $n \ge 2$, $p = 1, \dots, m$ and $|z| \le T$.

In order to conclude that (2.14) holds with the same T for n = 1 also, we estimate $\frac{|F^{(p)}(z)|}{p!}$ more precisely by

(2.17)
$$\frac{|F^{(p)}(z)|}{p!} \ge |a_1|\beta_{1,p}|z|^{m-p} \left\{ 1 - \frac{(m-p)!m!}{(2m-p)!} \left(\exp \frac{|z|}{c} - 1 \right) \right\}$$

and
$$\frac{|F^{(p+m)}(z)|}{(p+m)!}$$
 by

(2.18)
$$\frac{|F^{(p+m)}(z)|}{(p+m)!} \leq |a_2|\beta_{2,p}|z|^{m-p} \left\{ 1 + \frac{(m-p)!m!}{(2m-p)!} \left(\exp \frac{|z|}{c} - 1 \right) \right\}.$$

Let first p = m. Then (2.17) and (2.18) become by (2.3) and (2.8),

$$\frac{|F^{(m)}(z)|}{m!} \ge \frac{|F^{(2m)}(z)|}{(2m)!}$$

for any z such that $|z| \leq T$.

Next, let $1 \leq p \leq m - 1$ and put

$$X = \frac{(m-p)!\,m!}{(2m-p)!} \left(\exp \frac{|z|}{c} - 1 \right);$$

then (2.17), (2.18) yield (2.14) with n = 1, provided that

$$\frac{1}{p!}(1-X) \ge \frac{1}{c^m(m+p)!}(1+X)$$

or that

$$|z| \leq c \log \left\{ 1 + \frac{c^m(m+p)! - p!}{c^m(m+p)! + p!} \frac{(2m-p)!}{m!(m-p)!} \right\}$$

We now use the following

LEMMA. Let c > 1, $p = 1, 2, \cdots$ m. Then

(2.19)
$$2 - \frac{2}{1 + (m+1)^m c^m} \le 1 + \frac{(c^m (m+p)! - p!)((2m-p)!)}{(c^m (m+p)! + p!)(m!(m-p)!)}.$$

The lemma shows that (2.14) holds for $|z| \leq T$ and n = 1 also. We are left therefore with the

PROOF OF LEMMA. If m = 1 = p, (2.19) reduces to an equality. Let m = p > 1. Since $(2m)! \ge (m + 1)^m (m)!$, we have

$$\frac{1}{1 + c^m (m+1)^m} \ge \frac{m!}{c^m (2m)! + m!}$$

and so

$$1 - \frac{2}{1 + c^m (m+1)^m} \leq 1 - \frac{2(m!)}{c^m (2m)! + m!}$$

and (2.19) follows in this case also.

Let $m \ge 2$, $p \le m-1$. Then observe that

(2.20)
$$\frac{(2m-p)!}{(m-p)!m!} \ge (m+1) \ge 3$$

and that

(2.21)
$$3c^m(m+p)! - 3p! \ge c^m(m+p)! + p!$$

which is true for, $\frac{c^m}{2}(m+p)(m+p-1)\cdots(p+1)>1$.

Therefore by (2.20) and (2.21)

V. MARIĆ AND S. M. SHAH

$$1 + \frac{c^{m}(m+p)! - p!}{c^{m}(m+p)! + p!} \frac{(2m-p)!}{m!(m-p)!} \ge 2,$$

and the lemma is proved.

(ii) Let us next consider the case $|z| \ge T$. By differentiating (2.1) (n-k) times, where $n \ge k+l$, we obtain

$$z^{l}F^{(n)} + F^{(n-1)}\{(n-k)lz^{l-1} + P_{1}\} + \cdots$$

$$F^{(n-k)}\left\{\binom{n-k}{k}l(l-1)\cdots(l-k+1)z^{l-k} + \binom{n-k}{k-1}P_{1}^{(k-1)} + \cdots + \binom{n-k}{0}\right\}P_{k} + \cdots + F^{(n-k-l)}\left\{\binom{n-k}{l}P_{1}^{(l)}\right\} = 0,$$

and so

(2.22)
$$\frac{|F^{(n)}|}{n!} \leq \frac{|F^{(n-1)}|}{(n-1)!} \alpha_1 + \frac{|F^{(n-2)}|}{(n-2)!} \alpha_2 + \cdots + \frac{|F^{(n-k-l)}|}{(n-k-l)!} \alpha_{k+l}$$

where

$$\begin{aligned} \alpha_{j} &= \frac{1}{n(n-1)\cdots(n-j+1)} \left\{ \binom{n-k}{j} \frac{l(l-1)\cdots(l-j+1)}{|z|^{j}} + \binom{n-k}{j-1} \frac{|P_{1}^{(j-1)}|}{|z|^{l}} + \cdots \right. \\ & \cdots + \binom{n-k}{0} \frac{|P_{j}|}{|z|^{l}} \right\}, \ 1 \leq j \leq l, \\ \alpha_{k+l} &= \frac{1}{n(n-1)\cdots(n-k-l+1)} \left\{ \frac{(n-k)\cdots(n-k-l+1)}{l!} \frac{|P_{k}^{(l)}(z)|}{|z|^{l}} \right\}. \end{aligned}$$

Now we have

$$\alpha_1 + \alpha_2 + \cdots + \alpha_{k+l} \leq \left(1 + \frac{1}{T}\right)^l - 1 + \frac{1}{n} \sum_{j=0}^l \sum_{i=1}^k \max_{|z|=T} |P_i^{(j)}(z)/z^l|,$$

and so from $P_i(z) = \sum_{\nu=0}^{\lambda_i} A_{\nu}^{(i)} z^{\lambda_i - \nu}$, and

$$P_{i}^{(j)}(z) = \sum_{\nu=0}^{\lambda_{i}-j} A_{\nu}^{(i)}(\lambda_{i}-\nu)(\lambda_{i}-\nu-1)\cdots(\lambda_{i}-\nu-j+1)z^{\lambda_{i}-\nu-j}, \ j=1,2,\cdots,$$

we get

(2.23)
$$\alpha_1 + \alpha_2 + \cdots + \alpha_{k+l} \leq \left(1 + \frac{1}{T}\right) - 1 + S$$

where

$$S = \frac{1}{n} \sum_{j=0}^{l} \sum_{i=1}^{k} \sum_{\nu=0}^{\lambda_{i-j}} B_{\nu,j}^{(i)} T^{-l+\lambda_{i}-\nu-j}$$

and

$$B_{\nu,j}^{(i)} = \begin{cases} |A_{\nu}^{(i)}| \text{ for } j = 0, \quad 0 \leq \nu \leq \lambda_i, \quad 1 \leq i \leq k, \\ |A_{\nu}^{(i)}|(\lambda_i - \nu) \cdots (\lambda_i - \nu - j + 1) \text{ otherwise }; \end{cases}$$

k is a positive integer, and $\lambda_i \leq l$. Now choose n_0 as the smallest integer $n \geq k+l$ such that for $n \geq n_0$, $S + \left(1 + \frac{1}{T}\right)^{l} \leq 2$; then we have from (2.22) and (2.23) that $\max\left\{|F(z)|, \frac{|F^{(1)}(z)|}{1!}, \cdots, \frac{|F^{(n-1)}(z)|}{(n-1)!}\right\} \ge \frac{|F^{(j)}(z)|}{j!}$ (2.24)

and all $j = 1, 2, \dots, |z| \ge T$, and $n \ge n_0$.

Formulas (2.14), (2.24) together prove Theorem 1.

3. Bessel functions. As an application of a slight refinement of the above procedure we prove here the following

THEOREM 2. Let N denote the index of the entire function

$$f(z) = f_k(z) = z^{-k} J_k(z), \quad k \ge 0.$$

Then

(a)
$$N = 1$$
 if $0 \le k \le 0.21$.
(b) $1 \le N \le 3$ if $0.21 < k \le 2.31$.
(c) $1 \le N \le \max \left\{ 4, \left[\frac{2k}{1.17} \right] \right\}$ otherwise

REMARK. The function f(z) satisfies a differential equation

$$zy'' + (1+2k)y' + zy = 0$$

of the form (1.2) and is therefore of bounded index.

V. MARIĆ AND S. M. SHAH

PROOF. Since

(3.1)
$$f(z) = \sum_{\nu=0}^{\infty} \frac{(-1)^{\nu} z^{2\nu}}{2^{2\nu+k} \nu! \Gamma(k+\nu+1)} \stackrel{\text{def}}{=} \sum_{\nu=0}^{\infty} a_{\nu} z^{2\nu},$$

the condition (2.3) of Theorem 1 holds with c = 1 so that the theorem cannot be applied directly.

Therefore we improve the estimates (2.11) and (2.12) to

(3.2)
$$\frac{|f^{(2n)}(z)|}{(2n)!} < |a_n| \left(1 + \sum_{\nu=1}^{\infty} \frac{|z|^{2\nu}}{(2\nu)!}\right)$$
$$= |a_n| \cosh r, \ n = 1, 2, \cdots,$$

(3.3)
$$\frac{|f^{(2n-1)}(z)|}{(2n-1)!} \leq 2n |a_n| \sinh r, \ n = 1, 2, \cdots,$$

and

(3.4)
$$|f(z)| \ge \frac{1}{2^k \Gamma(k+1)} \left\{ 2 - \exp\left(\frac{r^2}{4(k+1)}\right) \right\},$$

(3.5)
$$|f'(z)| \ge 2|a_1|(2r - \sinh r)$$

where, and in what follows, we write |z| = r. Hence, from (3.2) and (3.4) we get

(3.6)
$$\frac{|f^{(2)}(z)|}{2!} \le |f(z)|$$

provided that

(3.7)
$$\exp\left(\frac{r^2}{4(k+1)}\right) + \frac{1}{4(k+1)}\cosh r \le 2$$

and

(3.8)
$$\frac{|f^{(2n)}(z)|}{(2n)!} \leq |f(z)|, \quad n = 2, 3, \cdots$$

provided that

(3.9)
$$\exp\left(\frac{r^2}{4(k+1)}\right) + \frac{1}{32(k+1)(k+2)}\cosh r \le 2$$

and

(3.10)
$$\frac{|f^{(3)}(z)|}{3!} \leq \frac{|f'(z)|}{1!}$$

provided that

(3.11) $\sinh r \le 4(k+2)(2r-\sinh r)$

and

(3.12)
$$\frac{|f^{(2n-1)}(z)|}{(2n-1)!} \leq \frac{|f'(z)|}{1!}, \quad n = 3, 4, \cdots$$

provided that

(3.13)
$$\frac{\sinh r}{r} + \frac{2}{1+2^5(k+2)(k+3)} \leq 2.$$

To prove (a) we calculate that (3.6)-(3.13) hold for $r \leq r_1(k)$ if $k \leq 0.21$ where

$$r_1(k) = 1.28$$
 when $0 \le k \le 0.14$
= 1.35 when $0.14 < k \le 0.175$
= 1.40 when $0.175 < k \le 0.2$
= 1.42 when $0.2 < k \le 0.21$.

Hence for $|z| \leq r_1(k)$, $k \leq 0.21$ we have

(3.14)
$$\max\left(|f(z)|, \frac{|f'(z)|}{1!}\right) \ge \frac{|f^{(n)}(z)|}{n!}, n = 1, 2, \cdots.$$

Let next $|z| \ge r_1$. By differentiating (n-2) times the equation satisfied by f(z), we get by the argument of Theorem 1,

(3.15)
$$\frac{|f^{(n)}(z)|}{n!} \leq \frac{|f^{(n-2)}(z)|}{(n-1)!} \alpha_1 + \frac{|f^{(n-2)}(z)|}{(n-2)!} \alpha_2 + \frac{|f^{(n-3)}(z)|}{(n-3)!} \alpha_3$$

where

(3.16)
$$\alpha_1 = \frac{n-1+2k}{nr}, \ \alpha_2 = \frac{1}{n(n-1)}, \ \alpha_3 = \frac{1}{n(n-1)r}, \ n=2, 3, \cdots$$

and $\alpha_3 = 0$ when n = 2.

Now for $k \leq 0.21$, n=2 and $r \geq r_1$, $\alpha_1 + \alpha_2 \leq 1$ and for $n \geq 3$, $\alpha_1 + \alpha_2 + \alpha_3 \leq 1$. Hence the inequality (3.14) holds for all z, when $k \leq 0.21$ and so $N \leq 1$. Since f(z) has simple zeroes, $N \geq 1$ and the part (a) is proved.

To prove (b), again we note that the relations $(3.8) \cdot (3.13)$ hold for $r \leq r_2 = 1.65$ when $k \geq 0.21$, and so we have for $|z| \leq r_2$, $k \geq 0.21$

(3.17)
$$\left(\max|f(z)|, \frac{|f^{(1)}(z)|}{1!}, \frac{|f^{(2)}(z)|}{2!}\right) \ge \frac{|f^{(n)}(z)|}{n!}, n = 1, 2, \cdots$$

For $|z| \ge r_2$ we note that

(3.18)
$$\frac{n-1+2k}{n} + \frac{1}{n(n-1)} \leq r_2 \left(1 - \frac{1}{n(n-1)}\right)$$

provided $n \ge 3$ and $k \le 0.8125$. The formulae (3.15), (3.16) and (3.17) show that $N \le 2$ if $k \le 0.8125$.

(ii) If k > 0.8125 then (3.17) holds. Also (3.18) is satisfied if $n \ge 4$ and $k \le 8.15/6$. Hence $N \le 3$ if $k \le 8.15/6$.

(iii) If k > 8.15/6 then $(3.8) \cdot (3.13)$ are satisfied for $r \le r_3 = 2.02$ and so (3.17) holds when $|z| \le r_3$. For $|z| > r_3$ (3.18), with r_2 replaced by r_3 , is satisfied provided $n \ge 4$ and $k \le 12.22/6$.

Hence in this case $N \leq 3$.

(iv) For k > 12.22/6 again (3.8), (3.9), (3.12) and (3.13) are satisfied for $|z| \leq r_4 = 2.17$. Consequently we have for $|z| \leq r_4$

(3.19)
$$\left(\max|f(z)|, \frac{|f'(z)|}{1!}, \frac{|f^{(2)}(z)|}{2!}, \frac{|f^{(3)}(z)|}{3!}\right) \ge \frac{|f^{(n)}(z)|}{n!}, n = 1, 2, \cdots$$

The inequality (3.18), with r_2 replaced by r_4 , is satisfied if $k \le 13.87/6$ = 2.311... and $n \ge 4$. Hence in this case also $N \le 3$, and (b) is proved.

(c) Let k > 13.87/6, $n \ge 5$, $n \ge (2k)/(r_4-1)$. Then (3.19) holds for $|z| \le r_4$ and (3.18), with r_2 replaced by r_4 is also satisfied for

$$\left(1+\frac{2k}{n}-r_{4}\right)-\frac{1}{n}\left(1-\frac{1+r_{4}}{n-1}\right) \leq 0.$$

$$N \leq \max\left\{4, \left[\frac{2k}{r_{4}-1}\right]\right\}$$

Hence

and (c) is proved.

4. Remarks and Examples.

(i) If the relation (2.3) in Theorem 1 holds for $n \ge n_1$ only then also the same procedure is valid but the index N will now depend on n_1 also.

(ii) Write the equation (2.1) as Ly = 0. If F does not satisfy this equation but satisfies the equation Ly = f(z) where f(z) is an entire function satisfying an equation of the form (1.2) and hence of bounded index N_f , then also our argument gives an upper bound for N_F which will now depend on N_f also.

(iii) Example. Let

$$f(z) = \cos\frac{z}{c} = 1 - \left(\frac{z}{c}\right)^2 \frac{1}{2!} + \cdots$$

Then m = 2 and f satisfies the equation

$$zf''+\frac{zf}{c^2}=0.$$

The condititions (2.3) and (2.4) are satisfied if we choose $c \ge 3$. Thus there exist entire functions satisfying the conditions of Theorem 1.

References

- FRED GROSS, Entire functions of bounded index, Proc. Amer. Math. Soc., 18(1967), 974-980.
- [2] B. LEPSON, Differential equations of infinite order, Hyperdirichlet series and entire functions of bounded index, Lecture Notes, 1966, Summer Institute on entire functions, La Jolla.
- [3] S. M. SHAH, Entire functions of bounded index, Proc. Amer. Math. Soc., 19(1968), 1017-1022.
- [4] S. M. SHAH, Entire functions satisfying a linear differential equation, J. Math. Mech., 18(1968), 131-136.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF KENTUCKY KENTUCKY, U.S.A.