ENTIRE FUNCTIONS DEFINED BY GAP POWER SERIES AND SATISFYING A DIFFERENTIAL EQUATION

V. Marić and S. M. ShaH ${ }^{1)}$

(Received August 8, 1969)

1. Introduction. Let $f(z)$ be a transcendental entire function. Then $f(z)$ is said to be of bounded index if there exists a non-negative integer N such that

$$
\begin{equation*}
\max _{0 \leqq n \leqq N}\left\{\frac{\left|f^{(n)}(z)\right|}{n!}\right\} \geqq\left\{\frac{\left|f^{(k)}(z)\right|}{k!}\right\}, \quad k=0,1, \cdots \tag{1.1}
\end{equation*}
$$

for every complex number z. The index of $f(z)$ is then defined to be the smallest integer N such that (1.1) holds for every z (see [1], [2]).

It is known [3] that if $f(z)$ is of index N then

$$
\lim _{r \rightarrow \infty} \sup \frac{\log M(r, f)}{r} \leqq N+1
$$

It is also known [4] that any transcendental entire function $f(z)$ satisfying the differential equation

$$
\begin{equation*}
P_{0}(z) f^{(k)}(z)+P_{1}(z) \cdot f^{(k-1)}(z)+\cdots+P_{k}(z) f(z)=Q(z), \tag{1.2}
\end{equation*}
$$

where $P_{j}(z), j=0,1,2, \cdots, k, Q(z)$ are polynomials and $P_{0}(z)(\neq 0)$ is of degree not less than of any $P_{j}(z)$, is of bounded index.

We consider here functions of bounded index satisfying (1.2) and given by the power series expansion

$$
\begin{equation*}
f(z)=\sum_{\nu=0}^{\infty} a_{\nu} z^{m \nu}, \quad m \text { positive integer. } \tag{1.3}
\end{equation*}
$$

Our aim is to give a method for estimating the index of the given function $f(z)$ for which we need an additional hypothesis concerning the coefficients a_{ν} of its power series representation.

As an application of the procedure the index of the entire functon

[^0]$f(z)=z^{-k} J_{k}(z)$ for $0 \leqq k \leqq 0.21$ has been calculated, and for $k>0.21$ an upper bound for the index has been determined. (See Theorem 2.)
2. Gap power series. We prove the following

THEOREM 1. Let $F(z)=\sum_{\nu=0}^{\infty} a_{\nu} z^{m_{\nu}}$, where $m \geqq 1$ is an integer, be an entire function.

Suppose that $F(z)$ satisfies a differential equation of the form

$$
\begin{equation*}
z^{l} y^{(k)}+P_{1}(z) y^{(k-1)}+\cdots+P_{k}(z) y=0, \quad l \geqq 1 \tag{2.1}
\end{equation*}
$$

where

$$
\begin{equation*}
\operatorname{deg} P_{i}(z)=\lambda_{i} \quad \text { and } \quad \lambda_{i} \leqq l, \quad i=1,2, \cdots, k \tag{2.2}
\end{equation*}
$$

If

$$
\begin{equation*}
\frac{(m(n+1))!}{(m n)!}\left|\frac{a_{n+1}}{a_{n}}\right| \leqq \frac{1}{c^{m}}, \quad n=0,1,2, \cdots, \tag{2.3}
\end{equation*}
$$

where $c>1$ and

$$
\begin{equation*}
l \leqq c(\log 2)\left\{\log \left(2-\frac{2}{1+c^{m}(m+1)^{m}}\right)\right\} \tag{2.4}
\end{equation*}
$$

then $F(z)$ is of bounded index N and

$$
\begin{equation*}
N<\max \left(m, n_{0}\right) \tag{2.5}
\end{equation*}
$$

where $n_{0}=n_{0}\left(l, k, c, m, \lambda_{i}\right)$ can be determined.
Proof. Since $F(z)$ satisfies (2.1) it is of bounded index by Theorem 1 of [4] and we have to prove (2.5).

Let

$$
\begin{equation*}
T=c \log \left\{2-\frac{2}{1+(m+1)^{m} c^{m}}\right\} \tag{2.6}
\end{equation*}
$$

(i) We first consider the case $|z| \leqq T$. By differentiating $F(z)\{(n-1) m+p\}$ times we obtain

$$
\begin{equation*}
\frac{F^{((n-1) m+p)}(z)}{((n-1) m+p)!}=a_{n} \beta_{n, p} z^{m-p} \sum_{\nu=0}^{\infty}\left(\frac{a_{n+\nu}}{a_{n}}\right) \frac{(m(\nu+n))!(m-p)!}{(m n)!(m(\nu+1)-p)!} z^{\nu m} \tag{2.7}
\end{equation*}
$$

where
(2.8) $\quad \beta_{n, p}=\frac{(m n)!}{(m(n-1)+p)!(m-p)!}, \quad n=1,2, \cdots, p=1,2, \cdots, m$.

Now

$$
\begin{equation*}
\frac{(m-p)!(\nu m)!}{(m(\nu+1)-p)!}=\frac{(m-p)(m-p-1) \cdots 1}{(m \nu+m-p) \cdots(m \nu+1)} \leqq 1 \tag{2.9}
\end{equation*}
$$

and we deduce from (2.3) that

$$
\begin{equation*}
\left|\frac{a_{n+\nu}}{a_{n}}\right| \leqq \frac{1}{c^{m \nu}} \frac{(m n)!}{(m n+m \nu)!}, \quad n=1,2, \cdots, \nu=0,1, \cdots . \tag{2.10}
\end{equation*}
$$

(2.7), (2.9) and (2.10) yield

$$
\begin{align*}
\frac{\left|F^{((n-1) m+p)}(z)\right|}{(m(n-1)+p)!} & \leqq\left|a_{n}\right| \beta_{n, p}|z|^{m-p} \sum_{\nu=0}^{\infty} \frac{1}{(m v)!}\left(\frac{|z|}{c}\right)^{m \nu} \tag{2.11}\\
& \leqq\left|a_{n}\right| \beta_{n, p}|z|^{m-p} e^{|z| / c}
\end{align*}
$$

On the other hand

$$
\begin{equation*}
\frac{\left|F^{((n-1) m+p)}(z)\right|}{(m(n-1)+p)!} \geqq\left|a_{n}\right| \beta_{n . p}|z|^{m-p}\left(2-e^{|z| / c}\right) \tag{2.12}
\end{equation*}
$$

and both relations (2.11), (2.12) hold for $n=1,2, \cdots, p=1,2, \cdots, m$. Write

$$
\begin{equation*}
\gamma_{n}=\frac{(m(n+1))!}{(m n)!} c^{m} \frac{\boldsymbol{\beta}_{n, p}}{\boldsymbol{\beta}_{n+1, p}} . \tag{2.13}
\end{equation*}
$$

Then from (2.3), (2.11), (2.12) and (2.13) we obtain

$$
\begin{equation*}
\frac{\left|F^{(m n+p)}(z)\right|}{(m n+p)!} \leqq \frac{\left|F^{((n-1) m+p)}(z)\right|}{(m(n-1)+p)!}, \quad n=1,2, \cdots, \quad p=1,2, \cdots, m \tag{2.14}
\end{equation*}
$$

(which gives (1.1) with $N=m$), provided that

$$
e^{|z| / c} \leqq \gamma_{n}\left(2-e^{|z| / c}\right), \text { that is }
$$

$$
\begin{equation*}
|z| \leqq c \log \frac{2 \gamma_{n}}{1+\gamma_{n}} \tag{2.15}
\end{equation*}
$$

Since $\gamma_{n}=c^{m}(m n+p)(m n+p-1) \cdots(m(n-1)+p+1), \quad 1+\gamma_{n} \geqq 1+(m+1)^{m} c^{m}$, $n \geqq 2, p=1,2, \cdots, m$ and we deduce that

$$
\begin{equation*}
\frac{2 \gamma_{n}}{1+\gamma_{n}} \geqq 2\left(1-\frac{1}{1+(m+1)^{m} c^{m}}\right), \tag{2.16}
\end{equation*}
$$

so that (2.14) holds for $n \geqq 2, p=1, \cdots, m$ and $|z| \leqq T$.
In order to conclude that (2.14) holds with the same T for $n=1$ also, we estimate $\frac{\left|F^{(p)}(z)\right|}{p!}$ more precisely by

$$
\begin{equation*}
\frac{\left|F^{(p)}(z)\right|}{p!} \geqq\left|a_{1}\right| \beta_{1, p}|z|^{m-p}\left\{1-\frac{(m-p)!m!}{(2 m-p)!}\left(\exp \frac{|z|}{c}-1\right)\right\} \tag{2.17}
\end{equation*}
$$

and $\frac{\left|F^{(p+m)}(z)\right|}{(p+m)!}$ by

$$
\begin{equation*}
\frac{\left|F^{(p+m)}(z)\right|}{(p+m)!} \leqq\left|a_{2}\right| \boldsymbol{\beta}_{2, p}|z|^{m-p}\left\{1+\frac{(m-p)!m!}{(2 m-p)!}\left(\exp \frac{|z|}{c}-1\right)\right\} \tag{2.18}
\end{equation*}
$$

Let first $p=m$. Then (2.17) and (2.18) become by (2.3) and (2.8),

$$
\frac{\left|F^{(m)}(z)\right|}{m!} \geqq \frac{\left|F^{(2 m)}(z)\right|}{(2 m)!}
$$

for any z such that $|z| \leqq T$.
Next, let $1 \leqq p \leqq m-1$ and put

$$
X=\frac{(m-p)!m!}{(2 m-p)!}\left(\exp \frac{|z|}{c}-1\right) ;
$$

then $(2.17),(2,18)$ yield (2.14) with $n=1$, provided that

$$
\frac{1}{p!}(1-X) \geqq \frac{1}{c^{m}(m+p)!}(1+X)
$$

or that

$$
|z| \leqq c \log \left\{1+\frac{c^{m}(m+p)!-p!}{c^{m}(m+p)!+p!} \frac{(2 m-p)!}{m!(m-p)!}\right\}
$$

We now use the following
Lemma. Let $c>1, p=1,2, \cdots m$. Then

$$
\begin{equation*}
2-\frac{2}{1+(m+1)^{m} c^{m}} \leqq 1+\frac{\left(c^{m}(m+p)!-p!\right)((2 m-p)!)}{\left(c^{m}(m+p)!+p!\right)(m!(m-p)!)} \tag{2.19}
\end{equation*}
$$

The lemma shows that (2.14) holds for $|z| \leqq T$ and $n=1$ also.
We are left therefore with the
Proof of Lemma. If $m=1=p,(2.19)$ reduces to an equality.
Let $m=p>1$. Since $(2 m)!\geqq(m+1)^{m}(m)$!, we have

$$
\frac{1}{1+c^{m}(m+1)^{m}} \geqq \frac{m!}{c^{m}(2 m)!+m!}
$$

and so

$$
1-\frac{2}{1+c^{m}(m+1)^{m}} \leqq 1-\frac{2(m!)}{c^{m}(2 m)!+m!}
$$

and (2.19) follows in this case also.
Let $\quad m \geqq 2, \quad p \leqq m-1$. Then observe that

$$
\begin{equation*}
\frac{(2 m-p)!}{(m-p)!m!} \geqq(m+1) \geqq 3 \tag{2.20}
\end{equation*}
$$

and that

$$
\begin{equation*}
3 c^{m}(m+p)!-3 p!\geqq c^{m}(m+p)!+p! \tag{2.21}
\end{equation*}
$$

which is true for, $\frac{c^{m}}{2}(m+p)(m+p-1) \cdots(p+1)>1$.
Therefore by (2.20) and (2.21)

$$
1+\frac{c^{m}(m+p)!-p!}{c^{m}(m+p)!+p!} \frac{(2 m-p)!}{m!(m-p)!} \geqq 2
$$

and the lemma is proved.
(ii) Let us next consider the case $|z| \supseteqq T$. By differentiating (2.1) ($n-k$) times, where $n \geqq k+l$, we obtain

$$
\begin{gathered}
z^{l} F^{(n)}+F^{(n-1)}\left\{(n-k) l z^{l-1}+P_{1}\right\}+\cdots \\
F^{(n-k)}\left\{\binom{n-k}{k} l(l-1) \cdots(l-k+1) z^{l-k}+\binom{n-k}{k-1} P_{1}^{(k-1)}+\cdots\right. \\
\left.+\binom{n-k}{0}\right\} P_{k}+\cdots+F^{(n-k-l)}\left\{\binom{n-k}{l} P_{1}(l)\right\}=0,
\end{gathered}
$$

and so

$$
\begin{equation*}
\frac{\left|F^{(n)}\right|}{n!} \leqq \frac{\left|F^{(n-1)}\right|}{(n-1)!} \alpha_{1}+\frac{\left|F^{(n-2)}\right|}{(n-2)!} \alpha_{2}+\cdots+\frac{\left|F^{(n-k-l)}\right|}{(n-k-l)!} \alpha_{k+l} \tag{2.22}
\end{equation*}
$$

where

$$
\begin{aligned}
& \alpha_{j}= \frac{1}{n(n-1) \cdots(n-j+1)}\left\{\binom{n-k}{j} \frac{l(l-1) \cdots(l-j+1)}{|z|^{j}}+\binom{n-k}{j-1} \frac{\left|P_{1}^{(j-1)}\right|}{|z|^{l}}+\cdots\right. \\
&\left.\cdots+\binom{n-k}{0} \frac{\left|P_{j}\right|}{|z|^{l}}\right\}, 1 \leqq j \leqq l, \\
& \alpha_{k+l}=\frac{1}{n(n-1) \cdots(n-k-l+1)}\left\{\frac{(n-k) \cdots(n-k-l+1)}{l!} \frac{\left|P_{k}^{(l)}(z)\right|}{|z|^{l}}\right\} .
\end{aligned}
$$

Now we have

$$
\alpha_{1}+\alpha_{2}+\cdots+\alpha_{k+l} \leqq\left(1+\frac{1}{T}\right)^{l}-1+\frac{1}{n} \sum_{j=0}^{l} \sum_{i=1}^{k} \max _{|z|=T}\left|P_{i}^{(j)}(z) / z^{l}\right|
$$

and so from $P_{i}(z)=\sum_{\nu=0}^{\lambda_{t}} A_{\nu}^{(i)} z^{\lambda_{i}-\nu}$, and

$$
P_{i}^{(j)}(z)=\sum_{\nu=0}^{\lambda_{i}-j} A_{\nu}^{(i)}\left(\lambda_{i}-\nu\right)\left(\lambda_{i}-\nu-1\right) \cdots\left(\lambda_{i}-\nu-j+1\right) z^{\lambda_{i}-\nu-j}, j=1,2, \cdots,
$$

we get

$$
\begin{equation*}
\alpha_{1}+\alpha_{2}+\cdots+\alpha_{k+l} \leqq\left(1+\frac{1}{T}\right)-1+S \tag{2.23}
\end{equation*}
$$

where

$$
S=\frac{1}{n} \sum_{j=0}^{l} \sum_{i=1}^{k} \sum_{\nu=0}^{\lambda_{i}-j} B_{\nu, j}^{(i)} T^{-l+\alpha_{i}-\nu-j}
$$

and

$$
B_{\nu, j}^{(i)}=\left\{\begin{array}{l}
\left|A_{\nu}^{(i)}\right| \text { for } j=0, \quad 0 \leqq \nu \leqq \lambda_{i}, \quad 1 \leqq i \leqq k \\
\left|A_{\nu}^{(i)}\right|\left(\lambda_{i}-\nu\right) \cdots\left(\lambda_{i}-\nu-j+1\right) \text { otherwise }
\end{array}\right.
$$

k is a positive integer, and $\lambda_{i} \leqq l$.
Now choose n_{0} as the smallest integer $n \geqq k+l$ such that for $n \geqq n_{0}$, $S+\left(1+\frac{1}{T}\right)^{\imath} \leqq 2$; then we have from (2.22) and (2.23) that

$$
\begin{equation*}
\max \left\{|F(z)|, \frac{\left|F^{(1)}(z)\right|}{1!}, \cdots, \frac{\left|F^{(n-1)}(z)\right|}{(n-1)!}\right\} \geqq \frac{\left|F^{(j)}(z)\right|}{j!} \tag{2.24}
\end{equation*}
$$

and all $j=1,2, \cdots,|z| \geqq T$, and $n \geqq n_{0}$.
Formulas (2.14), (2.24) together prove Theorem 1.
3. Bessel functions. As an application of a slight refinement of the above procedure we prove here the following

THEOREM 2. Let N denote the index of the entire function

$$
f(z)=f_{k}(z)=z^{-k} J_{k}(z), \quad k \geqq 0 .
$$

Then
(a) $N=1$ if $0 \leqq k \leqq 0.21$.
(b) $1 \leqq N \leqq 3$ if $0.21<k \leqq 2.31$.
(c) $1 \leqq N \leqq \max \left\{4,\left[\frac{2 k}{1.17}\right]\right\}$ otherwise.

REMARK. The function $f(z)$ satisfies a differential equation

$$
z y^{\prime \prime}+(1+2 k) y^{\prime}+z y=0
$$

of the form (1.2) and is therefore of bounded index.

Proof. Since

$$
\begin{equation*}
f(z)=\sum_{\nu=0}^{\infty} \frac{(-1)^{\nu} z^{2^{\nu}}}{2^{2 \nu+k} \nu!\Gamma(k+\nu+1)} \stackrel{\text { def }}{=} \sum_{\nu=0}^{\infty} a_{\nu} z^{2 \nu}, \tag{3.1}
\end{equation*}
$$

the condition (2.3) of Theorem 1 holds with $c=1$ so that the theorem cannot be applied directly.

Therefore we improve the estimates (2.11) and (2.12) to

$$
\begin{align*}
& \frac{\left|f^{(2 n)}(z)\right|}{(2 n)!}<\left|a_{n}\right|\left(1+\sum_{\nu=1}^{\infty} \frac{|z|^{2 v}}{(2 \nu)!}\right) \tag{3.2}\\
& =\left|a_{n}\right| \cosh r, n=1,2, \cdots,
\end{align*}
$$

$$
\begin{equation*}
\frac{\left|f^{(2 n-1)}(z)\right|}{(2 n-1)!} \leqq 2 n\left|a_{n}\right| \sinh r, n=1,2, \cdots, \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
|f(z)| \geqq \frac{1}{2^{k} \Gamma(k+1)}\left\{2-\exp \left(\frac{r^{2}}{4(k+1)}\right)\right\}, \tag{3.4}
\end{equation*}
$$

$$
\begin{equation*}
\left|f^{\prime}(z)\right| \geqq 2\left|a_{1}\right|(2 r-\sinh r) \tag{3.5}
\end{equation*}
$$

where, and in what follows, we write $|z|=r$.
Hence, from (3.2) and (3.4) we get

$$
\begin{equation*}
\frac{\left|f^{(2)}(z)\right|}{2!} \leqq|f(z)| \tag{3.6}
\end{equation*}
$$

provided that

$$
\begin{equation*}
\exp \left(\frac{r^{2}}{4(k+1)}\right)+\frac{1}{4(k+1)} \cosh r \leqq 2 \tag{3.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\left|f^{(2 n)}(z)\right|}{(2 n)!} \leqq|f(z)| ; \quad n=2,3, \cdots \tag{3.8}
\end{equation*}
$$

provided that

$$
\begin{equation*}
\exp \left(\frac{r^{2}}{4(k+1)}\right)+\frac{1}{32(k+1)(k+2)} \cosh r \leqq 2 \tag{3.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\left|f^{(3)}(z)\right|}{3!} \leqq \frac{\left|f^{\prime}(z)\right|}{1!} \tag{3.10}
\end{equation*}
$$

provided that

$$
\begin{equation*}
\sinh r \leqq 4(k+2)(2 r-\sinh r) \tag{3.11}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\left|f^{(2 n-1)}(z)\right|}{(2 n-1)!} \leqq \frac{\left|f^{\prime}(z)\right|}{1!}, \quad n=3,4, \cdots \tag{3.12}
\end{equation*}
$$

provided that

$$
\begin{equation*}
\frac{\sinh r}{r}+\frac{2}{1+2^{5}(k+2)(k+3)} \leqq 2 \tag{3.13}
\end{equation*}
$$

To prove (a) we calculate that (3.6)-(3.13) hold for $r \leqq r_{1}(k)$ if $k \leqq 0.21$ where

$$
\begin{aligned}
r_{1}(k) & =1.28 \text { when } 0 \leqq k \leqq 0.14 \\
& =1.35 \quad \text { when } \quad 0.14<k \leqq 0.175 \\
& =1.40 \quad \text { when } \quad 0.175<k \leqq 0.2 \\
& =1.42 \text { when } \quad 0.2<k \leqq 0.21
\end{aligned}
$$

Hence for $|z| \leqq r_{1}(k), \quad k \leqq 0.21$ we have

$$
\begin{equation*}
\max \left(|f(z)|, \frac{\left|f^{\prime}(z)\right|}{1!}\right) \geqq \frac{\left|f^{(n)}(z)\right|}{n!}, n=1,2, \cdots \tag{3.14}
\end{equation*}
$$

Let next $|z| \geqq r_{1}$. By differentiating ($n-2$) times the equation satisfied by $f(z)$, we get by the argument of Theorem 1 ,

$$
\begin{equation*}
\frac{\left|f^{(n)}(z)\right|}{n!} \leqq \frac{\left|f^{(n-2)}(z)\right|}{(n-1)!} \alpha_{1}+\frac{\left|f^{(n-2)}(z)\right|}{(n-2)!} \alpha_{2}+\frac{\left|f^{(n-3)}(z)\right|}{(n-3)!} \alpha_{3} \tag{3.15}
\end{equation*}
$$

where

$$
\begin{equation*}
\alpha_{1}=\frac{n-1+2 k}{n r}, \quad \alpha_{2}=\frac{1}{n(n-1)}, \quad \alpha_{3}=\frac{1}{n(n-1) r}, n=2,3, \cdots \tag{3.16}
\end{equation*}
$$

and $\alpha_{3}=0$ when $n=2$.
Now for $k \leqq 0.21, n=2$ and $r \geqq r_{1}, \alpha_{1}+\alpha_{2} \leqq 1$ and for $n \geqq 3, \alpha_{1}+\alpha_{2}+\alpha_{3} \leqq 1$. Hence the inequality (3.14) holds for all z, when $k \leqq 0.21$ and so $N \leqq 1$. Since $f(z)$ has simple zeroes, $N \geqq 1$ and the part (a) is proved.

To prove (b), again we note that the relations (3.8)-(3.13) hold for $r \leqq r_{2}=1.65$ when $k \geqq 0.21$, and so we have for $|z| \leqq r_{2}, k \geqq 0.21$

$$
\begin{equation*}
\left(\max |f(z)|, \frac{\left|f^{(1)}(z)\right|}{1!}, \frac{\left|f^{(2)}(z)\right|}{2!}\right) \geqq \frac{\left|f^{(n)}(z)\right|}{n!}, n=1,2, \cdots . \tag{3.17}
\end{equation*}
$$

For $|z| \geqq r_{2}$ we note that
(i)

$$
\begin{equation*}
\frac{n-1+2 k}{n}+\frac{1}{n(n-1)} \leqq r_{2}\left(1-\frac{1}{n(n-1)}\right) \tag{3.18}
\end{equation*}
$$

provided $n \geqq 3$ and $k \leqq 0.8125$. The formulae (3.15), (3.16) and (3.17) show that $N \leqq 2$ if $k \leqq 0.8125$.
(ii) If $k>0.8125$ then (3.17) holds. Also (3.18) is satisfied if $n \geqq 4$ and $k \leqq 8.15 / 6$. Hence $N \leqq 3$ if $k \leqq 8.15 / 6$.
(iii) If $k>8.15 / 6$ then (3.8)-(3.13) are satisfied for $r \leqq r_{3}=2.02$ and so (3.17) holds when $|z| \leqq r_{3}$. For $|z|>r_{3}$ (3.18), with r_{2} replaced by r_{3}, is satisfied provided $n \geqq 4$ and $k \leqq 12.22 / 6$.

Hence in this case $N \leqq 3$.
(iv) For $k>12.22 / 6$ again (3.8), (3.9), (3.12) and (3.13) are satisfied for $|z| \leqq r_{4}=2.17$. Consequently we have for $|z| \leqq r_{4}$

$$
\begin{equation*}
\left(\max |f(z)|, \frac{\left|f^{\prime}(z)\right|}{1!}, \frac{\left|f^{(2)}(z)\right|}{2!}, \frac{\left|f^{(3)}(z)\right|}{3!}\right) \geqq \frac{\left|f^{(n)}(z)\right|}{n!}, n=1,2, \cdots . \tag{3.19}
\end{equation*}
$$

The inequality (3.18), with r_{2} replaced by r_{4}, is satisfied if $k \leqq 13.87 / 6$ $=2.311 \cdots$ and $n \geqq 4$. Hence in this case also $N \leqq 3$, and (b) is proved.
(c) Let $k>13.87 / 6, n \geqq 5, n \geqq(2 k) /\left(r_{4}-1\right)$. Then (3.19) holds for $|z| \leqq r_{4}$ and (3.18), with r_{2} replaced by r_{4} is also satisfied for

$$
\left(1+\frac{2 k}{n}-r_{4}\right)-\frac{1}{n}\left(1-\frac{1+r_{4}}{n-1}\right) \leqq 0
$$

Hence

$$
N \leqq \max \left\{4,\left[\frac{2 k}{r_{4}-1}\right]\right\}
$$

and (c) is proved.

4. Remarks and Examples.

(i) If the relation (2.3) in Theorem 1 holds for $n \geqq n_{1}$ only then also the same procedure is valid but the index N will now depend on n_{1} also.
(ii) Write the equation (2.1) as $L y=0$. If F does not satisfy this equation but satisfies the equation $L y=f(z)$ where $f(z)$ is an entire function satisfying an equation of the form (1.2) and hence of bounded index N_{f}, then also our argument gives an upper bound for N_{F} which will now depend on N_{f} also.
(iii) Example. Let

$$
f(z)=\cos \frac{z}{c}=1-\left(\frac{z}{c}\right)^{2} \frac{1}{2!}+\cdots
$$

Then $m=2$ and f satisfies the equation

$$
z f^{\prime \prime}+\frac{z f}{c^{2}}=0
$$

The condititions (2.3) and (2.4) are satisfied if we choose $c \geqq 3$. Thus there exist entire functions satisfying the conditions of Theorem 1.

References

[1] Fred Gross, Entire functions of bounded index, Proc. Amer. Math. Soc., 18(1967), 974-980.
[2] B. Lepson, Differential equations of infinite order, Hyperdirichlet series and entire functions of bounded index, Lecture Notes, 1966, Summer Institute on entire functions, La Jolla.
[3] S. M. Shah, Entire functions of bounded index, Proc. Amer. Math. Soc., 19(1968), 1017-1022.
[4] S. M. Shat, Entire functions satisfying a linear differential equation, J. Math. Mech., 18(1968), 131-136.

Department of Mathematics
University of Kentucky
Kentucky, U.S.A.

[^0]: 1) The research of this author is supported by the National Science Foundation under Grant GP-7544,
