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UNRAMIFIED EXTENSIONS OF QUADRATIC NUMBER FIELDS, I

K ό j l UCHIDA

(Received November 20, 1969)

In this paper we study equations of type Xn—aX-\-b = 0, and give examples
of (non-solvable) unramiίied extensions of quadratic number fields. "Unramified"
means that any finite prime is unramified.

1 Proof of Theorem 1.

THEOREM 1. Let k be an algebraic number field of finite degree. Let a
and b be integers of k. K denotes the splitting field of a polynomial

i. e.y K = k(au , otn) where au ,an are the roots of f(X) = 0. If (n — ϊ)a
and nb are relatively prime, any prime ideal of K has the ramification
index 1 or 2 over k.

PROOF. Let p be a prime of k and let $ be a prime of K over p. We
consider splitting of the polynomial f(X) over a local field kp. If the congruence
equation f(X) = 0 (modp) has no multiple roots,/(X) splits as

/(X)=/,(X) Λ(X)

over kp, where f{X) are irreducible over kp and also mod p. Then K% is
unramified over kp. Now we assume /(X) = 0 (modp) has multiple roots. As

Xf(X)-nf(X) = (n-l)aX-nb

and ((n-l)a,nb) = l, p \{n—l)a holds. Then the (n—l)aX—nb is the g. c. d.
of/(X) and/XX) mod p. So

/(X) = {(n-l)aX-nbγΐ2(X)... ^(X) (mod p)

holds, where each (ft(X) is irreducible and relatively prime to jj/X), j Φ i, and
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to (n—l)aX—nb. By HensePs lemma/(X) splits over k? in the form

where gt{X) = ]lX) (mod p), z ^ 2 . The roots of gt(X) = 09 z ^ 2 , generate
unramified extensions of &j,. As gx(X) is of degree 2, the ramification index of
K^/kp is at most 2.

COROLLARY. Lei k = Q be the field of the rational numbers. Let

D= Π (flfc-α,)'

be the discriminant of f(X)=0. Assume that any prime number which
appears in D appears odd times. Then K=Q(au , an) is unramified over

PROOF. Every prime number which is ramified in K/Q appears in D. By

assumption it is ramified in Q(<s/D)/Q. As the ramification index is 2, it is

unramified in K/Q(*JD).

2. As applications of Theorem 1, we obtain some examples of unramified
extensions of quadratic fields.

THEOREM 2. f(X) = Xn-X+l (w = 5,6,7) satisfy the condition of
Corollary of Theorem 1. Galois groups of f(X)=0 are symmetric groups.
Therefore there exist unramified extensions of quadratic fields with
alternating groups A5, A6, A7 or symmetric groups 55, 56, S7 as Galois
groups.

PROOF. 1) We first show that the condition of Corollary is satisfied. In
the general case,

and

Π / ' ( Λ i ) = Π

Π {{?ι-l)a^-nb)l Π Λi
t ί
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= nnbn-ί-(n-l)n-1an

hold. Let Z)5, D 6 and D7 be discriminants D corresponding to rc=5,6 and 7

respectively. Then

A = 5 5 -4 4 = 3125-256 = 2869 = 19x151

D6 = 5 5 -6 6 = 3125-46656 = -43531 = -101x431

and

DΊ = 66-77=46656-823543 = -776887 (prime)

hold.

2) Now we find the Galois groups of these equations. If w=5(resp. n=7)> f(X)

is irreducible mod 5 (resp. mod 7). If τz = 6, it is irreducible mod 2. So f{X) is

irreducible in each case. When n is a prime number, a transitive permutation

group of n letters is a symmetric group if it contains a transposition.

X5 - X + l = (X2 - X + 1)(X3 + X2 +1) (mod 2)

and

X 7 - X + 1 = ( X 2 - X - 1 ) ( X 5 + X 4 - X 3 - X - 1 ) (mod 3)

are factorizations into prime factors mod 2 and mod 3 respectively. So in these

cases Galois groups contain transpositions, and they are symmetric groups. When

n = 6,

+ X2 + X - 1 ) (mod 3)

and

X6 - X + 1 = (X-2)(X 5 +2X 4 - 3X3 + X2 + 2 X + 3) (mod 7)

hold. The last factor of degree 5 is irreducible, because X6 — X + l and X49—X

have no common factors except X—2. So the Galois group is a symmetric group

by [3. §61]. _

3) In every case K/Q(\/D ) is an unramified extension with an alternating

group as the Galois group. Let p be a prime number which does not appear

in D. Then each K(Λ/p)/Q(.\/pD) is unramified and its Galois group is a

symmetric group.

REMARK. The case w = 5 has been proved by Fujisaki [2]. Frδhlich [1]
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proves that every finite group appears as a Galois group of some unramified

extension. Our theorem suggests that many non-solvable groups can be Galois

groups of unramified extensions of quadratic fields. More numerical examples

will be given in the forthcoming paper.

THEOREM 3. There exist infinitely many real quadratic field with
class number's divisible by 3.

PROOF. If a cubic irreducible equation X3 — aX+b=Q (a,bzZ) satisfies

the condition of Theorem 1, the Galois group of K/Q is a symmetric group

of three letters. Then K/Q(ΛJD) is an unramified abelian extensions, and so

the class number of Q(*JD) is divisible by 3, where D = 4a3—27b2 is the

discriminant of a given equation. Therefore it is enough to prove there exist

infinitely many different Q(*/D) with positive D.

If we assume α ^ 2 , α = l (mod 3) and b = l, X3— aX+l is irreducible and

satisfies the condition of Theorem 1 and D > 0 . Then if pΦ 2, 3 is a prime

number, the necessary and sufficient condition for p\D for some a is that 4 is

a cubic residue mod p. If p=2 (mod 3), any number is a cubic residue. So

there exists α x > 2 such that

ιx

3 - 27 .

As the equation

ax +rp=l (mod 3)

has an integral solution r, we may assume that αx = l (mod 3). If Aa3 — 27 is

divisible by p2

y we replace ax by <z=α! + 3̂ >. Then 4α3—27 is divisible by p but

not by ^>2. So p is ramified in Q(Λ/D)/Q. AS there exist infinitely many p

satisfying the above condition, there exist infinitely many different Q(*/D).
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