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UNRAMIFIED EXTENSIONS OF QUADRATIC NUMBER FIELDS, 1
K&j1 UCHIDA

(Received November 20, 1969)

In this paper we study equations of type X®"—aX+5b =0, and give examples
of (non-solvable) unramified extensions of quadratic number fields. “Unramified”
means that any finite prime is unramified.

1. Proof of Theorem 1.

THEOREM 1. Let k be an algebraic number field of finite degree. Let a
and b be integers of k. K denotes the splitting field of a polynomial

FX) = X"—aX+b,

i.e, K=ka,,---,a,) where a,,--+,a, are the roots of f(X)=0.If (n—1)a
and nb are relatively prime, any prime ideal of K has the ramification
index 1 or 2 over k.

PROOF. Let p be a prime of 2 and let ¥ be a prime of K over p. We
consider splitting of the polynomial f(X) over a local field &,. If the congruence
equation f(X)=0 (mod p) has no multiple roots, f(X) splits as

F(X) =fiX) -+ - f(X)

over k,, where fiX) are irreducible over %, and also mod ». Then Ky is
unramified over k,. Now we assume f(X)=0 (mod p) has multiple roots. As

XF(X)—nf(X) = (n—1)aX—nb

and (n—1)a,nb) =1, pf (n—1)a holds. Then the (n—1)aX—nb is the g.c.d.
of f(X) and f'(X) modp. So

fX) = {(n—1)aX—nb}*7(X) - -+ 7(X)  (mod¥p)

holds, where each §(X) is irreducible and relatively prime to §(X), j #7, and -
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to (n—1)aX —nb. By Hensel’s lemma f(X) splits over %, in the form
F(X) = g(X)gs(X) - - - 9(X),

where ¢(X)=74(X) (mod p), i=2. The roots of g(X)=0, i=2, generate
unramified extensions of k,. As ¢g,(X) is of degree 2, the ramification index of
K5 /k, is at most 2.

COROLLARY. Let k=Q be the field of the rational numbers. Let

D=1 (ai—ay)

i<j

be the discriminant of f(X)=0. Assume that any prime number which
appears in D appears odd times. Then K=Q(a,, -, a,) is unramified over

Q(«/ D).

PROOF. Every prime number which is ramified in K/Q appears in D. By
assumption it is ramified in Q(a/D)/Q. As the ramification index is 2, it is
unramified in K/Q(+/D).

2. As applications of Theorem 1, we obtain some examples of unramified
extensions of quadratic fields.

THEOREM 2. AX)=X"—X+1 (n=5,6,7) satisfy the condition of
Corollary of Theorem 1. Galois groups of f(X)=0 are symmetric groups.
Therefore there exist unramified extensions of quadratic fields with
alternating groups As;, As, A, or symmetric groups Ss, Ss, S: as Galois
groups.

PROOF. 1) We first show that the condition of Corollary is satisfied. In
the general case,

D=1l (@—ay = (~D)" 1 fa,

and

H flla) = ]I (na,*"'—a)

3

= [l ((m=1)ax;,—nb)/ H a;
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hold. Let Dy, D, and D; be discriminants D corresponding to n=>5,6 and 7
respectively. Then

D, =5°—4* = 3125—256 = 2869 = 19%x 151

D, = 5°—6°% = 3125—46656 = —43531 = —101 x 431

and

D; = 6°—7"=46656—823543 = —776887 (prime)

hold.

2) Now we find the Galois groups of these equations. If n=>5(resp. n=7), f(X)
is irreducible mod 5 (resp. mod 7). If n=6, it is irreducible mod 2. So f(X) is
irreducible in each case. When 7 is a prime number, a transitive permutation
group of 7 letters is a symmetric group if it contains a transposition.

X—X+1=X-X+1)X*+X*+1) (mod 2)
and

X —X+1=X—X-1D)(X*+X*—X*—X—1) (mod 3)

are factorizations into prime factors mod 2 and mod 3 respectively. So in these
cases Galois groups contain transpositions, and they are symmetric groups. When
n==~o6,

X—-X+1=X+1DX*+X-1D(X*+X?+ X —1) (mod 3)
and

X0 —X+1=(X—2)(X*+2X*—3X*+ X*+2X+3) (mod 7)

hold. The last factor of degree 5 is irreducible, because X®—X+1 and X*—X
have no common factors except X—2. So the Galois group is a symmetric group
by [3. §61].

3) In every case K/Q(»/D) is an unramified extension with an alternating
group as the Galois group. Let p be a prime number which does not appear

in D. Then each K(z/2)/Q(/pD) is unramified and its Galois group is a
symmetric group.

REMARK. The case =5 has been proved by Fujisaki [2]. Frohlich [1]
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proves that every finite group appears as a Galois group of some unramified
extension. Our theorem suggests that many non-solvable groups can be Galois
groups of unramified extensions of quadratic fields. More numerical examples
will be given in the forthcoming paper.

THEOREM 3. There exist infinitely many real quadratic field with
class numbers divisible by 3.

PROOF. If a cubic irreducible equation X*—aX+56=0 (a,b<c Z) satisfies
the condition of Theorem 1, the Galois group of K/Q is a symmetric group
of three letters. Then K/Q(+/D) is an unramified abelian extensions, and so
the class number of Q(+/D) is divisible by 3, where D=4a®—27b* is the
discriminant of a given equation. Therefore it is enough to prove there exist
infinitely many different Q(5/D) with positive D.

If we assume ¢=2, a=1 (mod 3) and b =1, X*—aX+1 is irreducible and
satisfies the condition of Theorem 1 and D>0. Then if p+#2, 3 is a prime
number, the necessary and sufficient condition for p|D for some a is that 4 is
a cubic residue mod p. If p=2 (mod 3), any number is a cubic residue. So
there exists a, >2 such that

plda® —27.
As the equation

a; +rp=1 (mod 3)

has an integral solution », we may assume that a;=1 (mod 3). If 4a,*—27 is
divisible by p? we replace a, by a=a,;+3p. Then 4a®*—27 is divisible by p but
not by p®. So p is ramified in Q(5/D)/Q. As there exist infinitely many p
satisfying the above condition, there exist infinitely many different Q(2/D).
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