ESTIMATES FOR THE MAXIMAL FUNCTION OF HARDY-LITTLEWOOD AND THE MAXIMAL HILBERT TRANSFORM WITH WEIGHTED MEASURES

Makoto Kaneko

(Received September 26, 1969)

Introduction. When we consider the Hilbert transform $\widetilde{f}(x)=$ v. p. $\int_{-\infty}^{\infty} \frac{f(t)}{x-t} d t$ of a function f, we have to treat the function $\widetilde{f}_{t}(x)=\int_{|x-t| \geqq c} \frac{f(t)}{x-t} d t$. In particular, it is interesting to estimate the maximal Hilbert transform $\widetilde{f^{*}}(x)$ $=\sup _{e}\left|\widetilde{f}_{t}(x)\right|$ by the measure $m(e)=\int_{e} \frac{1}{\delta+|t|^{\alpha}} d t$, where $\delta=0$ or 1 and $0 \leqq \alpha<1$. S. Koizumi [4] shows that the operator $f \rightarrow \widetilde{f}$ is of weak type (1,1) with respect to the measure $m(e)$ where $\delta=1$. He says also that the operator $f \rightarrow \widetilde{f}^{*}$ is of weak type (1,1) with respect to the same measure and the proof is carried over by the same method. However the latter proposition does not seem to be proved as the former proposition ${ }^{1)}$. The purpose of this paper is to give the complete proof of this proposition.

We estimate the maximal function of Hardy-Littlewood with respect to the measure $m(e)$ in $\S 1$ and then \widetilde{f}^{*} in $\S 2$ with the same measure.

I wish to express my gratitude to Messrs. G. Sunouchi, S. Igari and K. Yabuta for guidance and encouragement during preparation of this paper.

1. Maximal function of Hardy-Littlewood. For a non-negative locally integrable function f on $(-\infty,+\infty)$; the maximal function is defined by

$$
(\Theta f)(x)=\sup _{\varepsilon} \frac{1}{\varepsilon} \int_{|x-t| \leqq \subseteq} f(t) d t
$$

where $d t$ is the Lebesgue measure, $d m$ is a measure on $(-\infty,+\infty)$ defined by

$$
\begin{equation*}
m(e)=\int_{e} \frac{1}{\delta+|t|^{\alpha}} d t, \quad 0 \leqq \alpha<1, \delta=0 \text { or } 1 \tag{1.1}
\end{equation*}
$$

[^0]and L_{m}^{p} represents the set of all functions such that $\int_{-\infty}^{\infty}|f(t)|^{p} d m<+\infty$.
In the following, c denotes a constant depending only on α, and may be different in each occurence.

THEOREM 1. If a non-negative function f belongs to L_{m}^{1}, we have for any $\lambda>0$

$$
m(\{x ;(\Theta f)(x)>\lambda\}) \leqq \frac{c}{\lambda} \int_{-\infty}^{\infty} f(t) d m(t)
$$

To prove this theorem, it is sufficient to show the following proposition on θf :

$$
(\theta f)(x)=\sup _{-\infty \lll x} \frac{1}{x-\xi} \int_{\xi}^{x} f(t) d t
$$

Proposition 1. If a non-negative function f belongs to L_{m}^{1}, we have for any $\lambda>0$.

$$
m(\{x ;(\theta f)(x)>\lambda\}) \leqq \frac{c}{\lambda} \int_{-\infty}^{\infty} f(t) d m(t)
$$

Proof. Since

$$
\frac{1}{x-\xi} \int_{\xi}^{x} f(t) d t=\frac{1}{m(\xi, x)} \int_{\xi}^{x} \frac{m(\xi, x)\left(\delta+|t|^{\alpha}\right)}{x-\xi} f(t) d m(t)
$$

where $m(\xi, x)$ means the m-measure $m([\xi, x])$ of the interval $[\xi, x]$. let us estimate

$$
I=\frac{m(\xi, x)\left(\delta+|t|^{\alpha}\right)}{x-\xi}
$$

under the condition $\xi<t \leqq x$.
(1) Case $0 \leqq \xi<x$. Since $1 /\left(\delta+S^{a}\right)$ is decreasing in $0<S<+\infty$,

$$
I=\frac{\delta+t^{a}}{x-\xi} \int_{\xi}^{x} \frac{d S}{\delta+S^{a}} \leqq \frac{\delta+t^{a}}{x} \int_{0}^{x} \frac{d S}{\delta+S^{a}} \leqq \frac{\delta+x^{a}}{x} \int_{0}^{x} \frac{d S}{\delta+S^{a}}
$$

(2) Case $\xi<x \leqq 0$. Similarly to (1), we have

$$
I \leqq \frac{\delta+|\xi|^{\alpha}}{|\xi|} \int_{0}^{|\xi|} \frac{d S}{\delta+S^{\alpha}}
$$

(3) Case $\xi<0<x$. Setting $N=\operatorname{Max}(|\xi|, x)$,

$$
I=\frac{\delta+|t|^{\alpha}}{x-\xi}\left(\int_{\xi}^{0}+\int_{0}^{x}\right) \frac{d S}{\delta+|S|^{\alpha}} \leqq \frac{2\left(\delta+N^{\alpha}\right)}{N} \int_{0}^{N} \frac{d S}{\delta+S^{\alpha}}
$$

Therefore in any cases,

$$
\begin{equation*}
\frac{m(\xi, x)\left(\delta+|t|^{\alpha}\right)}{x-\xi} \leqq \frac{2\left(\delta+N^{\alpha}\right)}{N} \int_{0}^{N} \frac{d S}{\delta+S^{\alpha}} \leqq c \tag{1.2}
\end{equation*}
$$

Consequently we get

$$
(\theta f)(x) \leqq c \sup _{-\infty<\xi<x} \frac{1}{m(\xi, x)} \int_{\xi}^{x} f(t) d m(t) .
$$

Thus we shall have Proposition 1, if we show the next proposition on Λf :

$$
(\Lambda f)(x)=\sup _{-\infty<k<x} \frac{1}{m(\xi, x)} \int_{\xi}^{x} f(t) d m(t) .
$$

Proposition 2. If a non-negative function f belongs to L_{m}^{1}, we have for any $\lambda>0$

$$
m(\{x ;(\Lambda f)(x)>\lambda\}) \leqq \frac{c}{\lambda} \int_{-\infty}^{\infty} f(t) d m(t)
$$

This is a consequence of the Theorem 2.1. in [2].

REMARK. Theorem 1 is false for $\alpha>1$. Let $f(t)=t^{\beta}$ for $t>1$ and $f(t)=0$ for $t \leqq 1$, where $0<\beta<\alpha-1$, then we find that $(\Theta f)(x)=+\infty$ for all x. Thus we get that $m(\{x ;(\Theta f)(x)>\lambda\})=$ constant $(\delta=1),=\infty(\delta=0)$, which is impossible.

2. Maximal Hilbert transform.

THEOREM 2. If a function f belongs to L_{m}^{1}, we have for any $\lambda>0$

$$
m\left(\left\{x ; \widetilde{f}^{*}(x)>\lambda\right\}\right) \leqq \frac{c}{\lambda} \int_{-\infty}^{\infty}|f(t)| d m(t) .
$$

In order to prove this theorem, we start with the following lemma which is stated in [3] when $\delta=0$ and, when $\delta=1$, it can be shown similarly.

Lemma 1. For any $f \in L_{m}^{1}$ and $\lambda>0$, we get the following decomposition :

$$
\begin{equation*}
f(t)=v(t)+\sum_{n} w_{n}(t)=v(t)+w(t), \tag{2.1}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{supp} w_{n} \subset I_{n}, \tag{2.2}
\end{equation*}
$$

(2.3) I_{n} do not contain the origin in their insides and are mutually disjoint,

$$
\begin{equation*}
|v(t)| \leqq c \lambda, \tag{2.4}
\end{equation*}
$$

$$
\begin{equation*}
\int_{-\infty}^{\infty}|v(t)| d m(t)+\sum_{n} \int_{-\infty}^{\infty}\left|w_{n}(t)\right| d m(t) \leqq c \int_{-\infty}^{\infty}|f(t)| d m(t), \tag{2.5}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{n} m\left(I_{n}\right) \leqq \frac{1}{\lambda} \int_{-\infty}^{\infty}|f(t)| d m(t) \tag{2.6}
\end{equation*}
$$

$$
\begin{equation*}
\int_{-\infty}^{\infty} w_{n}(t) d t=0 \tag{2.7}
\end{equation*}
$$

Corresponding the above decomposition, we get $\widetilde{f}^{*}(x) \leqq \widetilde{\mathfrak{v}}^{*}(x)+\widetilde{w}^{*}(x)$. We see $v \in L_{m}^{2}$ by virtue of (2.4) and (2.5). By [5] we get

$$
\int_{-\infty}^{\infty} \widetilde{v}^{*}(x)^{2} d m(x) \leqq c \int_{-\infty}^{\infty}|v(t)|^{2} d m(t) .
$$

So we get, taking (2.4) in consideration,

$$
m\left(\left\{x ; \tilde{v}^{*}(x)>\frac{\lambda}{2}\right\}\right) \leqq \frac{c}{\lambda} \int_{-\infty}^{\infty}|f(t)| d m(t) .
$$

Next we turn our attention to $\widetilde{w}^{*}(x)$. We denote by a_{n} the center of I_{n} in the Lemma 1, and I_{n}^{*} the interval which is obtained by magnifying I_{n} two times with center a_{n} and set $Q^{*}=\bigcup_{n} I_{n}^{*}$. Let us investigate $\widetilde{w}_{n}(x)$ for x in
$C Q^{*}$.
Setting $B(x, \varepsilon)=\{t ;|x-t| \leqq \varepsilon\}$, we get by (2.7)

$$
\begin{aligned}
\widetilde{w}_{n_{0}}(x) & =\int_{|x-t| \geqq \bullet} \frac{w_{n}(t)}{x-t} d t \\
& = \begin{cases}\int_{-\infty}^{\infty}\left(\frac{1}{x-t}-\frac{1}{x-a_{n}}\right) w_{n}(t) d t, & \text { if } I_{n} \cap B(x, \varepsilon)=\emptyset \\
\int_{|x-t| \geq<} \frac{w_{n}(t)}{x-t} d t, & \text { if } I_{n} \cap B(x, \varepsilon) \neq \emptyset .\end{cases}
\end{aligned}
$$

If $I_{n} \cap B(x, \varepsilon) \neq \emptyset, \quad I_{n} \subset B(x, 3 \varepsilon)$, so that

$$
\int_{|x-t| \geqq c} \frac{\left|w_{n}(t)\right|}{|x-t|} d t \leqq \frac{1}{\varepsilon} \int_{-\infty}^{\infty}\left|w_{n}(t)\right| d t=\frac{1}{\varepsilon} \int_{|x-t| \leqq 3 s}\left|w_{n}(t)\right| d t
$$

and that we find

$$
\left|\widetilde{w}_{n \varepsilon}(x)\right| \leqq \int_{-\infty}^{\infty}\left|\frac{1}{x-t}-\frac{1}{x-a_{n}}\right|\left|w_{n}(t)\right| d t+\frac{1}{\varepsilon} \int_{|x-t| \leq 3 \varepsilon}\left|w_{n}(t)\right| d t .
$$

Summing up with respect to n, we get

$$
\begin{aligned}
\left|\tilde{w}_{\bullet}(x)\right| & \leqq \sum_{n} \int_{-\infty}^{\infty}\left|\frac{1}{x-t}-\frac{1}{x-a_{n}}\right|\left|w_{n}(t)\right| d t+\frac{1}{\varepsilon} \int_{|x-t| \leq s c}|w(t)| d t \\
& \leqq \sum_{n} \int_{-\infty}^{\infty}\left|\frac{1}{x-t}-\frac{1}{x-a_{n}}\right|\left|w_{n}(t)\right| d t+3(\Theta w)(x),
\end{aligned}
$$

where Θw stands for $\Theta(|w|)$. Consequently,

$$
\begin{equation*}
w^{*}(x) \leqq \sum_{n} \int_{-\infty}^{\infty}\left|\frac{1}{x-t}-\frac{1}{x-a_{n}}\right|\left|w_{n}(t)\right| d t+3(\Theta w)(x) \tag{2.8}
\end{equation*}
$$

for $x \in C Q^{*}$.
Hence

$$
\begin{equation*}
\int_{C Q \cdot}\left(\sum_{n} \int_{-\infty}^{\infty}\left|\frac{1}{x-t}-\frac{1}{x-a_{n}}\right|\left|w_{n}(t)\right| d t\right) d m(x) \tag{2.9}
\end{equation*}
$$

$$
\leqq \sum_{n} \int_{c I_{n}^{*}} d m(x) \int_{-\infty}^{\infty}\left|\frac{1}{x-t}-\frac{1}{x-a_{n}}\right|\left|w_{n}(t)\right| d t
$$

By virtue of the following Lemma 2, the last sum does not exceed

$$
c \sum_{n} \int_{-\infty}^{\infty}\left|w_{n}(t)\right| d m(t)=c \int_{-\infty}^{\infty}|w(t)| d m(t) .
$$

Lemma 2. For a function g whose support is contained in an interval $[a-k, a+k]$ not containing the origin in its inside, it holds that

$$
\int_{|x-a| \geq 2 k} d m(x) \int_{-\infty}^{\infty}\left|\frac{1}{x-t}-\frac{1}{x-a}\right||g(t)| d t \leqq c \int_{-\infty}^{\infty}|g(t)| d m(t) .
$$

Proof.

$$
\begin{aligned}
& \int_{|x-a| \geq 2 k} d m(x) \int_{-\infty}^{\infty}\left|\frac{1}{x-t}-\frac{1}{x-a}\right||g(t)| d t \\
& \quad=\int_{-k}^{k}|g(a+t)| d t \int_{|x| \sum 2 k}\left|\frac{1}{x-t}-\frac{1}{x}\right| \frac{d x}{\delta+|x+a|^{\alpha}} \\
& \quad=\int_{-k}^{k}|g(a+t)| d t\left(\int_{(|x| \geqq 2 k) n(|x+a| \leqq|a| / 2)}+\int_{(|x| \geqq 2 k) \cap(|x+a|>|a| / 2)}\right) \\
& \\
& \quad\left|\frac{1}{x-t}-\frac{1}{x}\right| \frac{d x}{\delta+|x+a|^{\alpha}}
\end{aligned}
$$

For $|t| \leqq k$ and $x \in(|x| \geqq 2 k) \cap(|x+a|>|a| / 2), \quad|a+t| \leqq|a|+|t|<2|a|$ $\leqq 4|x+a|$, so that $1 /\left(\delta+|x+a|^{\alpha}\right)<4 /\left(\delta+|t+a|^{\alpha}\right)$. We get

$$
\begin{aligned}
& \int_{(|x| \geq 2 k) n(|x+a|>|a| / 2)}\left|\frac{1}{x-t}-\frac{1}{x}\right| \frac{d x}{\delta+|x+a|^{\alpha}} \leqq \frac{4}{\delta+|t+a|^{\alpha}} \int_{|x| \geqq 2 k}\left|\frac{1}{x-t}-\frac{1}{x}\right| d x \\
& \leqq \frac{c}{\delta+|t+a|^{\alpha}} .
\end{aligned}
$$

While, if $\quad(|x| \geqq 2 k) \cap(|x+a| \leqq|a| / 2) \neq \emptyset, \quad$ then $k \leqq 3|a| / 4, \quad$ so that $|a+t|<2|a|, \quad$ and $\quad|x-t| \geqq k$ and $|x| \geqq|a| / 2 \quad$ for $|t| \leqq k$ and
$x \in(|x| \geqq 2 k \cap(|x+a| \leqq|a| / 2)$. So we get $|1 /(x-t)-1 / x| \leqq 2 /|a|$. Consequently, by (1.2)

$$
\begin{aligned}
& \int_{(|x| \geq 2 k) \cap(|x+a| \leqq|a| / 2)}\left|\frac{1}{x-t}-\frac{1}{x}\right| \frac{d x}{\delta+|x+a|^{\alpha}} \leqq \frac{2}{|a|} \int_{|x+a| \leqq|a| / 2} \frac{d x}{\delta+|x+a|^{\alpha}} \\
& \quad=\frac{2}{(|a| / 2)} \int_{0}^{|a| / 2} \frac{1}{\delta+|x|^{\alpha}} d x \leqq \\
& \delta+(|\stackrel{a}{a}| / 2)^{\alpha}<\frac{c}{\delta+(2|a|)^{\alpha}}<\frac{c}{\delta+|a+t|^{\alpha}} .
\end{aligned}
$$

Thus we get

$$
\begin{gathered}
\int_{|x-a| \geq 2 k} d m(x) \int_{-\infty}^{\infty}\left|\frac{1}{x-t}-\frac{1}{x-a}\right||g(t)| d t \leqq c \int_{-k}^{k}|g(a+t)| \frac{1}{\delta+|a+t|^{\alpha}} d t \\
\quad=c \int_{-\infty}^{\infty}|g(t)| d m(t) . \quad \text { (q.e.d.) }
\end{gathered}
$$

Since $\widetilde{w}^{*}(x)$ satisfies the inequality (2.8) for $x \in C Q^{*}$,

$$
\begin{aligned}
\{x & \left.\in \subset Q^{*} ; w^{*}(x)>\frac{\lambda}{2}\right\} \\
& \subset\left\{x \in C Q^{*} ; \sum_{n} \int_{-\infty}^{\infty}\left|\frac{1}{x-t}-\frac{1}{x-a_{n}}\right|\left|w_{n}(t)\right| d t>\frac{\lambda}{4}\right\} \\
& \cup\left\{x \in C Q^{*} ;(\Theta w)(x)>\frac{\lambda}{12}\right\} \equiv E_{1} \cup E_{2}, \quad \text { say } .
\end{aligned}
$$

From (2.9), we get

$$
m\left(E_{1}\right) \leqq \frac{c}{\lambda} \int_{-\infty}^{\infty}|w(t)| d m(t) \leqq \frac{c}{\lambda} \int_{-\infty}^{\infty}|f(t)| d m(t) .
$$

While, from Theorem 1,

$$
m\left(E_{2}\right) \leqq \frac{c}{\lambda} \int_{-\infty}^{\infty}|w(t)| d m(t) \leqq \frac{c}{\lambda} \int_{-\infty}^{\infty}|f(t)| d m(t) .
$$

Sọ that, if we shọw that $m\left(Q^{*}\right) \leqq \frac{c}{\lambda} \int_{-\infty, 9}^{\infty}|f(t)| d m(t)$, then we get

$$
m\left(\left\{x ; \widetilde{w}^{*}(x)>\frac{\lambda}{2}\right\}\right) \leqq \frac{c}{\lambda} \int_{-\infty}^{\infty}|f(t)| d m(t)
$$

and the proof of Theorem 2 is completed. To prove that $m\left(Q^{*}\right) \leqq \frac{c}{\lambda} \int_{-\infty}^{\infty}$ $|f(t)| d m(t)$, it is sufficient to show $m\left(I_{n}^{*}\right) \leqq c m\left(I_{n}\right)$ due to (2.6). But this is clear from the following lemma.

Lemma 3. If we put $I=(a-k, a+k), a>k>0, I^{*}=(a-2 k, a+2 k)$, then $m\left(I^{*}\right) \leqq c m(I)$.

PROOF. $m(a, a+2 k)=m(a, a+k)+m(a+k, a+2 k) \leqq m(a-k, a+k)$, so that we need only to show that $m(a-2 k, a) \leqq c m(a-k, a)$. But this comes from an elementary calculation; for example, consider the two cases $0<k<a / 4$ and $a / 4<k<a$.

References

[1] Y. M. ChEN, Some asymptotic approximation methods. II, Proc. London Math. Soc., (3) 16(1966), 241-263.
[2] L. HÖrmANDER, L^{p} estimates for (pluri) subharmonic functions, Math. Scand., 20(1967), 65-78.
[3] S. IGARI, On the decomposition theorems of Fourier transforms with weighted norms, Tôhoku Math. J., 15(1963), 6-36.
[4] S. KoIZUMI, On the Hilbert transform I, J. of Faculty Science of Hokkaido University, series I, 14(1959), 153-224.
[5] P. Kree, Sur les multiplicateurs dans $\mathscr{F}^{p}{ }^{p}$ avec poids, Ann. Inst. Fourier(Grenoble), 16(1966), 91-121.

Mathematical Institute
TÔHOKU UNIVERSITY
SENDAI, JAPAN

[^0]: 1) For example, see Y. M. Chen [1], in particular, p. 243 footnote.
