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0. Introduction. Let M be a connected, complete and non-compact
Riemannian manifold of dimension 7=2 whose sectional curvature satisfies K, =0
for all plane sections o. By virtue of completeness and non-compactness, there
exists at least one ray starting from every point of M. Toponogov [12] proved
that if there is a straight line in such M, M is isometric to NxX R where N is
a totally geodesic hypersurface. And if there exist k& straight lines through a
point of such M, M is isometric to N"*x R¥ where N"* is an (n—k)
-dimensional totally geodesic submanifold. Recently, D. Gromoll and W. Meyer [4]
have investigated some structures of complete and non-compact Riemannian
manifold satisfying K, >0 for all plane sections o. Some results obtained in [4] is
stated as follows :

(1) Every geodesic I'= {Y(#)}(—o0 <t< o) in M has conjugate pairs,

especially M has no straight line.

(2) M does not contain any compact totally geodesic submanifold.

(3) M is contractible.

More recently J.Cheeger and D. Gromoll [3] investigated some structures of
complete and non-compact Riemannian manifold satisfying K,=0 for all plane
sections a. One of the main results obtained in [3] is stated in the following :

(4) There is a compact totally convex set SyCM which is a compact

totally geodesic submanifold of M without boundary (Theorem 3, [3])
which is called a soul of M.

The souls of M will give strong restrictions for the structures of M. Hence
it might be interesting to investigate the isometric structure of a complete and
non-compact Riemannian manifold with non-negative sectional curvature which
contains a compact totally geodesic submanifold N and the relation between N
and the souls of M. In this paper we only consider N being a hypersurface
where the inclusion map ¢: N— M is an imbedding. Our main results obtained
in the paper will be stated as follows.

THEOREM A. Let M be a connected, complete and non-compact Riemann-
ian manifold of class C* with non-negative sectional curvature which has
a compact totally geodesic hypersurface N. Suppose that there does not
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exist any normal vector field of N which is defined globally over N. Let
N, be defined by N,={x < M|d(x, N)=t} where d means the distance function
of M. Then N, is also a compact totally geodesic hypersurface for each
t>0, and every N, is the double covering of N and moreover M—N is
isometric to N;x (0, o). Moreover, N is a soul of M. Especially M is isometric
to an open Mbbiusband if dim M=2.

Considering the case where there is the unit normal vector field V of N
which is defined globally over N, it will be proved that M is isometric to
Nx R if there exists a point x € N at which two geodesics defined by t—exp,tV (x)
and t—exp,t(—V(x)) are rays from N to oo respectively (Proposition 5). In this
case the cut locus C(N) of N is vacuous. Therefore we shall next consider the
case C(N)= . Let F(N) be the first focal locus of N. Denoting the tangent
cut locus and the tangent focal locus of N by Cy and Fy respectively, we shall
prove :

THEOREM B. Let M be a connected, complete and non-compact Rieman-
nian manifold of class C* with non-negative sectional curvature. Let N be
a compact totally geodesic hypersurface of M. Suppose that N has a unit
normal vector field V which is defined globally over N. Assume that there
is a normal vector X to N such that X<Cy, X&Fy and |X|=d(N,C)).
Then there is a compact totally geodesic hypersurface N which is a soul
of M and coincides with C(N) as a set and we have F(N)= ¢. Moreover,
let N, be defined as N,={ze M|d(x,ﬁ)=t}. N, is isometric to N which is
the double covering of N for every t>0 and M—N is isometric to N % (0,00).
Especially M is isometric to an open Mobiusband if dim M=2.

Theorems stated above have the extreme property F(IN)= ¢ Hence we shall
lastly consider N satisfying F(N)=§.

As for a compact Riemannian manifold, many people have investigated the
structures of conjugate loci or cut loci of compact Riemannian manifolds under
suitable conditions of M. And they investigated some structures of compact
manifolds satisfying certain conditions for conjugate loci or cut loci. As an
intuitive condition which is of course an interesting one, we see the one that
the distance between a point (or a submanifold) of M and each point of its cut
locus or its first conjugate locus (or its first focal locus) is constant. The manifold
structures of compact manifold satisfying the above condition have been

investigated by Bott [2], Nakagawa [5], [6], [7] and [8], Omori [9], Warner [14]
and other people.

Turning to our situation that M is non-compact with non-negative sectional
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curvaure and F(N)= @, we shall consider M satisfying that for any tangent
vector X € Cy, | X| =/ holds, where [ is a positive constant. Then we shall prove
the following

THEOREM C. Let M be a connected, complete and non-compact Rieman-
nian manifold of class C* with non-negative sectional curvature. Let N be
a compact totally geodesic hypersurface of M. Assume that we have | X| =I
Sfor all XeCy and F(N)+ @¢. Then F(N) coincides with C(N) as a set in
M. Furthermore suppose that the multiplicity of the first focal point with
respect to every geodesic normal to N is constant k. Then C(N) becomes a
compact totally geodesic submanifold of dimension n—k—1, which is a soul
of M and every point of whose normal space is defined and diffeomorphic
to R**',

COROLLARY TO THEOREM C. If k=n—1, we have F(N)=C(N)= {q}
and M is diffeomorphic to R® where C(N)={q} becomes a pole. And C(N)
is a 0-dimensional soul. Moreover N is diffeomorphic to S™ .

1. Definitions and Notations. Throughout this paper let M be a conneted,
complete and non-compact Riemannian manifold of dimension 7(7n=2) and of class
C>= which has an isometrically imbedded, compact totally geodesic hypersurface
N. Geodesics are parametrized by arc-length. For any disjoint compact subsets
A and B in M, let G(A,B) be the set of all shortest geodesic segments
starting from x€ A and ending at y< B such that d(x,y)=d(A4, B), where
d means the distance function with respect to the Riemannian metric tensor
of M. For a compact subset A, there is a sequence of points {x;} in M
such that d(A,z;)>% by non-compactness of M. There is a shortest
geodesic segment I'y <€ G(A, x;) for each k. Then we can choose a subsequence
{';)} of {I't} in such a way that both {7,(0)} and {7,(0)} converge to a
point y€ A and a unit vector u<€ M, respectively. The geodesic T'y= {7,(¢)}
(0=t <o) satisfying 7,(0)=y and 7(0)=u defines a ray from A to oo. We
denote by G(A, o) the set of all rays from A to oo. A point pe M is called a
pole of M if exp,: M,— M has maximal rank [4], where M, is the tangent
space at p. For two tangent vectors u, v € M,, we denote by < («,v) the angle
between « and v. For a totally geodesic hypersurface N, we denote the tangent
space of N at a point x<€ N by N,. For any point x€ N, let Z be a unit
normal vector to N, and define a geodesic I', = {7,(¢)} (0=t=a), 7.(0) =z,
v, (0)=Z, where 7, (£) means the tangent vector to I',. A cut point g (g="7,(a))
of N along I'; is by definition the minimal point to N of I'; such that
I.|[0,2] € GIN, 7,(¢)) for any 0<t=a and I';|[0,a+&]EG(N, Y (a+E&)) for any
positive number & The cut locus C(IN) of N is by definition the set of all cut
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points of N along every I';, x €« N whose starting diréction is normal to N. The
tangent cut point of N with respect to Z is by definition a-Z and the tangent
cut locus Cy of N is defined by the set of all tangent cut points of N with
respect to every unit normal vector to N. A first focal point ¢=7,(b) of N
along T, is defined in such a way that there exists a non trivial Jacobi field Y
along I', such that <Y,7,’>=0 with the initial condition Y(0)e N,, Y'(0)=0
and which satisfies Y(6)=0, and there does not exist any other non trivial Jacabi
field Y, along I', such that <Y,,7,>=0 with the initial condition Y,(0)< N,,
Y,'(0)=0 whose zero point b, satisfies b, <b. The first focal locus F(N) of N
is defined by the set of all first focal points of N along every geodesic which
starts from N and normal to N at the starting point. The tangent focal locus
Fy of N is defined by the set of all normal vectors 57,(0). We have by
definition, C(IN)=expoCy and F(N)=expoFy.

The tools for proofs of our results are the basic Lemma investigated by
Gromoll and Meyer which plays an important role in [4] and the present paper,
the basic theorem on triangles of Toponogov [11] and some property on cut
locus of a submanifold investigated by Omori [9] which is stated in §3. In §2,
§3 and §4, we shall prove Theorems A, B and C respectively. Some applications
of the results will be stated in 85. Under our hypothesis of N, there is at least
one plane section o satisfying K,=0 by the statement (2) in §0.

2. The structure of M with certain condition for N. First of all, we
shall prove the following lemma. '

LEMMA 1. Let A, be a ray from N to oo such that M,(0)=p € N. Then
for any point q < N, there is a ray A, from N to oo which is obtained by
A,.

PROOF. Let 8>0 be the fundamental length of M on-the compact set N
and By(p) be the open ball in M with center p and radius 8. Take any fixed
point 7€ Bi(p)N N, I' e G(p, ) and 2, € G(r, My(¢)) for each t>>0. By definition
of A,, we have

(1) LALN0,2]) = t< L)  for all £>0.

Let (T, A, |[O, t],3,) be the triangle in R? corresponding to the geodesic triangle
(I, A,|[0,2],3,) with same side lengths, and the vertices be N,(¢), 7 and
respectively. The inequality obtained above shows us that <L(7, p, Ay(2)=
L(Ny(®), 7 p) for any £>0. When t— oo, we can choose a subsequence {a’(0)}
of {o}(0)}, t,<ty<<+++<tp,<<+++, lim#,=oc0 which converges to some tangent
vector o7(0) € M,. Putting A, = {A(#)} (0=¢<0), M(2) =exp,t-/(0), we see
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that A, € G(r, o) and moreover we must have J{(A(0), —7'(a))==/2 by virtue
of the basic theorem on triangles, where Y(a)=7. In fact for the sequence of
triangles (T, A,l10,2,),3,), we have lim(<L(, p, x,,(t,,))—i- LNy(tn)s 7 p))=7 and

7/2 = mL (7, P> Mpta)) = lim L (N,(2a), 7 p), from which we must have
(2) hm{(;: ;: Xp(tn)) = lim (Xp(tﬂ)’ ;; ;) =n/2.

The basic theorem on triangles implies L(A(0), —7'(@))=lim L(N,(tn), 7> P)=7/2.

Suppose that < (A/(0), —7'(a))>=/2. We shall derive a contradiction. In fact
there are x <€A, and ye N satisfying d(zx,y)=d(x, N)<d(z,r) if L(A(0),
—9Y(a)) > n/2. There exists sufficiently small & >0 satisfying the following :

(3) d(r, x) — d(y, x) > 2¢.

The equality (2) is equivalent to lim (d(7, Ny(£,))—£,)=0 from the argument in
[10]. Then there is a large number % such that

(4) 0<d(r, Np(#0)) — 2 < E for all n>4.

On the other hand, there is a point x;, € 3;, for every n satisfying d(r, x:,)
=d(r,x) and lim x;,=x. Hence there is a number %, such that

Nn—>00

(5) dx,x,)<& for all n>k,.
Then we must have for every n>Max{k, &,},

Ay Moltn))
= d(y, .’L‘) + d(x’ xt,.) + d(xt,’ )\'p(tn))
< (d(r,x)—28) + &+ d(x1,, My(22)),  (3) and (5)
= d(r, x,) + A(x1,, My(ta)) — €
= d(rv 7\'z:(t'n)) —&€<t, = d(P ’ 7\'p(t'n)) ’ ( 4 )
which contradicts that A, is a ray from N to oo.
Next, we shall prove that A, is a ray from N to oo. Suppose that A,

is not a ray from N to oo. There are points £ €A, and y<e N such that
d(x,r)>d(x, y)=d(x, N). The argument developed above leads us to A, & G(N,o0).
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Hence there is at least one ray from N to oo through each point ¢ € N by
compactness of N. Q.E.D.

We shall denote a ray from N to oo through a point x€ N by A,. Let us
note the following ; We see from the convexity condition due to Alexandrov
and Toponogov [11], that there are at most two rays starting from every point
x< N to o and we can observe that every ray in G(x, ), x£< N becomes a
ray from N to oo.

Now let £ € N be a fixed point and Z be the unit normal vector field to
N defined in an open neighborhood U,C N of x which is differentiably defined by
Z(x) = N;'(0). For every point x € N, assume that there is an open neighborhood
U,cU, in which every geodesic defined by ¢— expytZ(y), y<cU, is a ray from
N to oo, By virtue of compactness of N and Lemma 1, we have under the
assumption three cases for N and M as follows:

(a) There does not exist any normal vector field to N which is defined

globally over N.

(b) N has a unit normal vector field V' which is defined globally and the
geodesics ¢t —expytV(y) and t— expyt(—V(y)) are rays from N to oo
for some point x € N.

(c) N has a unit normal vector field V which is defined globally and
V(x) coincides with A,;(0) for each xe N while the geodesic t—
exp,t(—V(x)) is no more a ray from N to oo for every x € N.

Now, for each point x<N we shall prove the existence of an open
neighborhood U, of N in which the unit normal vector field Z is defined
differentiably by Z(x)=A,(0) and for each point y < U, the geodesic defined by
t—expytZ(y) is a ray from N to oo.

" THEOREM 2. For every point x < N there is an open neighborhood U,
of N in which the unit normal vector field Z is defined by Z(x)=N\.(0)
and for each point y<cU,, the geodesic t—expytZ(y) is a ray from N to oo.

PROOF. We shall argue by contradiction. Suppose that there is a point
x € N where there is no neighborhood with the property of Theorem 2. Let Z
be a normal vector field to N defined in the convex neighborhood U at x such
that Z(x)=2,'(0) and & be taken in the proof of Lemma 1. By the assumption
of z, there is a point y € U at which the geodesic #—expy£Z(y) is not a ray.
Then there is the unique ray from y to oo whose starting direction is —Z(y).
Put 3* € G(\y(u), N (¢)) where £ >0 and u<(—38,0) are arbitrary taken. For
every fixed u € (—39,0), we have a subsequence {3} of 3} converging to a ray
% € G(\y(u), ) as t;—oo. Then there is a small number a<(—38,0) which
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satisfies L (N (w), 6%(0)) <7/2 for any w<(a,0) and any 3% € G(\y(#), ). In
fact, if otherwise stated there is a sequence {u;} converging to 0 and a sequence
of rays {3%}, 2% e G(\y(u;), ) such that <L (N (%;), 0(0)=n/2. Then we
can choose a subsequence of {3¥} converging to a ray 3 from y to oo which is
different from A,. But this is a contradiction.

We may consider « is taken so small that Ay(a) is contained in a convex
normal neighborhood centered at x. Next, fix u, € (@, 0) in such a way that the
angle L (\y(wo), x, Ni(2)) is less than 7/2 for ¢ >0. Consider a geodesic triangle
with vertices (Ny(%o), z, Mo(2)) for each £>0. Then L(Ny(uo), x, Ns(2))<<7/2 implies
the existence of a positive number & which satisfies tlim [2—d(N(uo), No(2))] = €.

Consider another geodesic triangle with vertices (Ay(24), ¥, Ao(¢)). The sequence of
geodesics from y to A,(¢), £>0 has the limit ray Ay, as £— oo, and we can
choose a subsequence {37} of {3} which converges to some ray % € G(\y(u,),

o). Then we have from above discussion <{(Ay' (o), o' (0)<7/2 for sufficiently
large i, where Ay|[uo,0] and St are sides of triangle in R? with vertices

(Mo(20), 3, Ma(2)) corresponding to Ay |[uo, 0] and 34 respectively. But this contradicts
the basic theorem on triangles. Q.E.D.

Now take a point zx€ N and let U, be stated in Theorem 2. It is not
certain whether A, coincides with the geodesic t— exp,z-Z(y) or not, where Z
is the unit normal vector field which is differentiably defined in U, such that
Z(x)=2n;'(0). In the following we shall denote the geodesic ¢ — expyt-Z(y) which
is a ray from N to o by A} for any point ycU,.

If N has a unit normal vector field V' which is defined globally over N,
the case (b) or (¢) holds and we may consider V|U, coincides with the normal
vector field Z which is defined in a small neighborhood U,CcN. We see from
Theorem 2 that any geodesic starting from any point of N and normal to N
at the starting point is a ray from N to oo if N has not a normal vector field
defned globally over N.

In any case, we shall prove the following lemma which is essentially due
to Lemma 1 of [4].

LEMMA 3. Let Af e G(N, ) be defined by ANy (0)=Z(y) for any point
yeU,. Then for any t=0 and any tangent vector X &M, « which is
normal to N (t), we have K(X,N\;'(¢))=0.

PROOF. Suppose that there are £,>0 and X ¢ Mpwn) such that K(X, Af'(2,))>0
holds. Let X(¢#) be the parallel vector field along A¥ defined by X(z,)=X.
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Putting K(#)=K(X(2), Ay" (2)), there is a differentiable function H(#)=0 satisfying
H(#)=K(¢t) for all t=¢t, and H{(¢,) << K(#). Consider the following differential

equations :
¢’ +Hp =0
v+ Ky =0

with the initial conditions @(t,) =(£,) =1 and @'(¢,) =4'(¢,) =0. There exists
7,>0 such that @(¢,+7,)=0. Let Y be a vector field along A}|[0,£,+7,] such

that

Y(t)_l X&) 0=t=t,
e X® bh=t=t,+T.

Then we have

to+7y

IY,Y) = f (<Y, Y'> — KY, M ()<Y, Y>)|, dt
0

Lo+ 71

Lo
- f KX, () di + f (92— Ko?) dt
[} to

Lo+ 71

<@gl — | ple"+Kp)dt

to

Lo+

<—| @-(p"+Hp)dt=0.

to
This fact contradicts that AJ|[0, £,+7,]1 € GIN, AMF(to+7))). Q.E.D.

Theorem 2 implies together with Lemma 3 the following

COROLLARY TO THEOREM 2. Let M be a connected, complete and
non-compact Riemannian manifold with non-negative curvature. Let N be
a compact totally geodesic hypersurface of M. Suppose that there does
not exist any normal vector field which is defined globally over N. Then
both C(N) and F(N) are vacuous.

We see that if the orientation of N is coherent with that of M, the unit
normal vector field Z defined in a small neighborhood U, of N is extendable
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to one of the unit normal vector field V' which is globally defined over N.
Consider the map x—A}(0) of N into TM. Then the map is at most
two-valued.

PROPOSITION 4. For every t >0, let N* be the set in M defined in
such a way that N,* consists of all point Ni(t) for all Af, x€ N. Then
following statements hold for every t > 0.

(1) N.* is a compact totally geodesic hypersurface.

(2) N* is locally isometric to N.

PROOF. For any fixed point x ¢ N, let Bs(x) be a sufficiently small convex
ball in N with center x and radius 8 which is contained in U,. For any point
y € By(x), there is the unique geodesic I' € G(x, y) such that I'= {¥(s)} (0=5=a),
Y(0) = z, ¥(a) =y. The vector field s— Z(¥(s)) along I' is a parallel vector
field along I' and normal to N. Let X, be the unit parallel vector field along
A¥s defined by X,(0) =7 (s) for each s<[0,a]l. Then K(X,(), A% () = 0 holds
for all s€[0,a] and all #=0, which implies that AZX; has no focal point.
Because X, is a Jacobi field along A¥; with the initial conditions X(0) € N,
and X;(0) =0 where X,(0) can be considered as an arbitrary unit tangent
vector to N at Y(s). By virtue of Warner’s metric comparison theorem [13],
we have for any fixed £ >0, d(x,¥(s)) = d\¥(2), M) for any s<[0, a], and
moreover the curve s— A¥,(#) is a geodesic in M which is also contained in
N,*. Since x and y are any points in a convex ball, N,* is a totally geodesic
hypersurface which is locally isometric to N. It is easily shown that N,* is
complete. Furthermore the map x— A¥(#) of N into M is also a continuous
map of N onto N,* and at most two-valued, which implies that N,* is compact.

Q.E.D.

REMARK. N;* coincides with N, which is defined in Theorem A (or N,
which is defined in Theorem B) if the case (a) or the case (b) occur. If the
case (a) occurs N,* will be connected, on the other hand N, will have two
components if the case (b) occurs. In the case (c¢), N, might have two
components while N;* is connected. The last case seems to be more complicated

than (a) or (b).

PROPOSITION 5. Suppose that N has a unit normal vector field V

which is defined globally over N, and the case (b) occurs. Then M is
isometric to NXR.

PROOF. For any fixed £ >0, consider the map f;,: N— M defined by
fi(x) = exp, t-V(x). Then f,; is one-to-one because for any points x,y <€ N, A}
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and AJ never intersect each other. By the hypothesis that A,|[0, )€ G(N, o)
and A,|(—o0,0]€ GV, o) hold for some point p<N, we see that every
geodesic starting from N and whose starting direction is normal to N is a ray
from N to oo by Theorem 2. Proposition 4 leads f; is a global isometry of N
onto N,*. We can define N*,={A*(—¢)|x e N} = {exp,(—tV(x)(|x € N}, which
is also isometric to N. Of course we have N, = N,*UN¥*,. Hence we get

M = NxR. Q.E.D.

Now we shall prove Theorem A.

PROOF OF THEOREM A. It is evident from Theorem 2 that every
geodesic starting from a point of N and normal to N is a ray from N to oo.
We see that the map of N into TM, x— a¥(0) is differentiable and
two-valued. Hence N,* is a connected and compact totally geodesic hypersurface
for each £ > 0. Let m: N*—> N be defined by (A (=¢) = z. We see that
7 is a local isometry of N,* onto N and for any x <N, there is an open
neighborhood W,C N such that #=%(W,) consists of two disjoint neighborhoods
of exp,t+-V(x) and exp.(—tV(x)) each of which is isometric to W,. Therefore
7 is the covering map and N,* is the double covering of N for each # > 0.
It is easy to see that N;* is globally isometric to N for any ¢, %, > 0.
Hence M — N is isometric to N, X (0, ). We easily see that N is a soul of
M. Q.E.D.

3. The structure of M with C(N)= ¢ and F(IN)=¢. Throughout this
section let M satisfy the assumption of Theorem B. If there is a point x€ N
at which both A}|(—o0,0) and A¥|[0, o) are rays from N to oo, then every
geodesic starting from any point of N and normal to it becomes a ray from N
to co by Theorem 2. Therefore A¥|(—o0,0] has a cut point to N along it
for each point x€ N. And moreover for any point pe M, a ray from p to
oo is contained in some A} or coincides with its extension because the set
AN¥@)|xeN, t >0} is of the form N X (0, ). Let V be defined in §2 in
such a way that A¥(0) = V(x) and V' is defined globally over N. Then M is
decomposed into two components {AX(¢)|xe N, t =0} and M — {A¥(E#)|x<c N,
t =0} because {A¥(£)lxeN,t =0} forms NX[0, ) with boundary N. Note
that M—{A*¥(¢)|x € N, ¢t =0} is bounded.

Now we shall state an intersting theorem investigated by Omori which
plays an important role for a proof of Theorem B.

THEOREM. (3.4 Proposition in [9]) Let M be a connected and compact
Riemannian manifold of class C* and N be a connected, compact and
differentiable Riemannian submanifold of M. Suppose that there is a point
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pe C(N) at which d(p, N) = d(C(N), N) holds and there exist two different
geodesics T,y € G(p, N) satisfying 7/'(0) = =v,0). Then, putting
[ = d(C(N), N), we have exp,lveN for any a=0, b=0 and the tangent
a",/'(0)+57,'(0)

vector v < My, defined by v= 5o o))

Hence p must be a focal

paint of N.

COROLLARY TO THE THEOREM. Let M be a connected, complete
and differentiable Riemannian manifold and N be a connected, compact
and differentiable Riemannian submanifold. Suppose that there is a point
pe C(N) at which d(p, N) = d(C(N), N) holds and there is 1I"e G(N, p),
defined by I' = {(¥(t)} 0=t =), V() = p, 0)e N along which p is not a
Socal point of N. Then there is 1" e GIN, P) satisfying L(Y'(),7, () = =.

A proof of Corollary follows immediately from the fact that there exists
a I'e GIN, p) which is different from I' by p& F(N). Of course these
Theorem and Corollary hold for the cut locus and conjugate locus of a point
(in case dim N = 0).

We shall prepare a few lemmas for a proof of Theorem B. Let X
be the normal vector to N at x € N such that X ¢ Cy, X & Fy and
= |X||=dN,CWN)). Let I', be the geodesic defined by I',={7,(¢)} 0=¢=)),
Vt) = exp, tX/||X|. Theorem of Omori and our assumption imply that v,(2/)
is a point of N and 7,(2/) is normal to N at 7,(2/). Hence we see both
I',|[, o) and I'y|(—oo,!] are rays from 7,/) to co. By the hypothesis of
Theorem B, there is a unit normal vector field V' defined globally over N
satisfying —V(x)=X/[X| and V(y)=Ay(0) for any y € N where A} € G(N, o).
Let us denote the geodesic through a point y € N with tangent vector —V(y)
at vy by I'y= (7@} 0=¢=1[). We note that the inverse extension
I'y|(—o0,0] of I’y coincides with AjF which is a ray from N to co. Recall
that every ray in M is either containd entirely in some AJ or an extension
of it.

LEMMA 6. Let I', be defined by I',= {7, ()} O=¢=(), V.(t)=exp.tX/|| X]|,
For any point y < N and any geodesic ® < G(V, (1), Vy(1)), ®= {p(5)} (0=s5=a),
we have <@'(0), Y ([)> = 0.

PrROOF. First of all we shall prove that the inverse geodesic I'y|(—oo, (]
is a ray from Yy({) to co. In fact, let ® = {#(¢)} (0 =¢ = ) be a ray such
that © < G(7y([), =0). ® must intersect N at some point A(/)e N with right
angle. Because [ = d(IN, C(N)), we must have [ =/ from which the statement
above is shown,
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Without loss of generality, we can assume that <(7.()), (0)) = /2. For
a geodesic triangle with vertices (v, ([+2),7.({),",(])), let us denote the
corresponding triangle in R? with same side length by (7,({+%), Y.(]), V4(!)). The
basic theorem on triangles implies that ltLT LT +8), 7, Vo) = lerB L@ (+2),

Yu(), ¥,(0)) = /2 because of }im [T (L+8), T (D)) — dT (L +2), 7y(1))] = O.
Therefore the proof is completed from the inequality < (Vi(), »'(0)) = ltim X
(Tl +8), To(1), V(D)) = /2. Q.E.D.

LEMMA 7. For any fixed point ¢(s) on ®={g(s)} (0 =s = a), we have
d(@(s), N) = L.

PROOF. For any fixed point ¢(s), take any W e G(g(s), N), ¥ = {42}
O0=t=/["). Then V][0, c©) becomes a ray from @(s) to oo. As a first step,
suppose that [" >/ For a geodesic triangle with vertices (7, (2{+%), @(s),
(" +1)), it follows from ltim L(@(s), V2L +8), Yl +1) = lim Llpls), vl +1).
V.2l +%)) = n/2 for t >0 that }im [d(g(s), V.2l +8) — (" +t)] = 0. Then we

must have (7, (20+1¢), ¥.(1),P(s)) > n/2 for sufficiently large ¢ >0, which
contradicts the basic theorem on triangles. Next, suppose that [ <. We may
assume that <((@'(s),¥'(0)) = 7/2 without loss of generality. An analogous
argument for a geodesic triangle (Y(I” +£), V4(J), @(s)) leads us to a contradiction.

Q.E.D.

We note that for any s<[0,a) and any ¥ e G(p(s), N) stated in the proof
of Lemma 7, we have J(¢'(s), ¥'(0)) = 7/2. Moreover, we have K(X(¢), ' ()= 0
for all £=0 where X is thes unit parallel vector fied along ¥ defined by
X(0)=p'(s). This fact follows from Lemma 3.

LEMMA 8. There exists a totally geodesic hypersurface of M which is
defined locally as a small piece containing V().

PROOF. Since X&Fy, the map (7, exp): TM — MxX M has maximal rank
in a neighborhood Wc TM of X, where TM is the tangent bundle of M and
7 is the projection map of TM onto M. We may consider that (z, exp)|W
is a diffeomorphism of W onto #(W)x exp(W). There is a small neighborhood
Wc W of X defined by W={ZecTM, =(Z)<N, |Z|=1 and Z is normal to N
at 7(Z)}. Then, it is clear that W is an (n—1)-dimensional submanifold of
TM. Hence, exp(W) becomes a hypersurface in M. By virtue of Lemmas 6
and 7, the hypersurface exp(W) is contained in the hypersurface S defined by
S = {expyw svl|vl]| =1, veM,q, <v,Y()>=0, —8<s<3}, where & is
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the convex radius at v,([). Making use of Lemma 3 for the surface S and the
geodesic I',|[/, 0), we see that K(Y:(l+%),Z)=0 for any t=0 and any
yAS M7z(t+t)-

On the other hand, let X, € M,, be the normal vector to N at the point
x, = V(2l) e N satisfying |X,| =7 and v,(2]) = —X,/||X,|. There is a small
neighborhood W, CTM of X, which is defined in the same way as W for X.
Then the hypersurface exp(W,) is also contained in S.

Consider the connected component S¥*CS of exp(W)Nnexp(W)) containing
7.(!) and let W*C W, W *C W, be defined such that exp(W*) = exp(W,¥*)= S*.
Then we find that for any point y in the neighborhood #(W¥*)CN of z,
there is a point y, in the neighborhood #(W,*)C N of x, satisfying 7y(I)=",,)
and both 7,(/) and 7,(/) are normal to the hypersurface S* at v;(!). Though
it might occur that —IV(y,) € Fy for some y, € z(W7), the geodesic I'y|(— oo, o0)
is able to take place for I',|(—oo0, ) in both Lemmas 6 and 7. Hence for
any two points y, z € 7(W*) and ¥ € G(7,(), .(l)) we get WC S* as a set. This
fact shows that S* is a piece of totally geodesic hypersurface. Q.E.D.

REMARK. For any tangent vector X € M, o, <X, 7()> = 0, and for the
parallel vector field X along TI'y|(—oo, o0) satisfying X()= X we have
K(X(2),7(t)) =0 for all £ e (—o0, ). Hence we get —I-V(y)&Fy and
—[-V(y)eCy by the argument stated above. Therefore we also have
—1-V(y) & Fy.

Lemma 8 has stated that there exists an open neighborhood z(W*) in which
for any point y, exp,(—2{V(y)) € N holds. We also see by Theorem of Omori
that for any point 7(/) <€ S*, we have just two rays from 7,(/) to oo which are
defined by TI|[/, ) and T,|(—oo,l]. A theorem investigated by Sugimoto
(stated in §4) implies that for any points Y4({), V.() in S* there is a piece of
two-dimensinal totally geodesic submanifold of M with constant curvature zero
and boundaries I'y|(— o0, o) and T,|(— oo, o).

We shall prove that the set 7(W¥*) is closed in N. Remark stated above
will play an important role for the proof.

LEMMA 9. For any sequence of points {y.} satisfying y,<n(W¥*) and
’lcimy,c =y,€N, let T, = (M)} (0=t=1) be the geodesic defined by Y(t)

= exp,(—tV(yr), (k=1,2,+-+,). Then we have the following statements :

(1) 7(2)eN and Vv(2l) is normal to N at Y(20).

(2) For any te(—oo, ) and tangent vector X< M, orthogonal to
Y(t), we have K(X,Y(t))=0 and hence —![-V(y,) & Fy and
—1-V(y,) e Cy hold.

(3) For each point z€ N, we have exp.(—2lV(z))c N and —1V(2)& Fy.
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PROOF. Since 1}}21 7:(0) = 7(0) and for every £=1,2,---, we have
Y(2l)e N and 7x(2l) is normal to N at 7,(2), the first statement is evident.
Suppose that there is < (—oco, ) and X< M, such that <X, v(¢z)> =0
and K(X,v(t))>0. Let X, be the parallel vector field along I',|(—oco, o)
defined by X,(¢) = X. There is a large number %, such that for any %k > k,,
there exists a unique W, € G(7,(0), 7,(0)). Translating X(0) parallely along W¥,,
we get X, € M, . Let X,(¢) be the parallel vector field along I'; defined by
Xix(0) = X;. Then it is clear that for each £ ¢ (—o0, o), 15152 Xi(t) = Xo(¢) and

}im'Y}c(t) = Y§t). Therefore we must have K(X(t), V«(¢)) > 0 for sufficiently

large %, from which we lead a contradiction. This fact implies —7-V(y,)& Fy
and —[-V(y,)€ Cy. Then TI', takes place for I', in Lemma 8 which implies
that there is a neighborhood W cTM of —IV(y,), where exp(W¥) becomes
a piece of totally geodesic hypersurface as is stated in Lemma 8 and it is
contained in C(IN). By compactness of N, C(N) is covered by finitely many
open neighborhoods 7#(W¥*) defined as stated above. Hence the last statement
is evident. Q.E.D.

PROOF OF THEOREM B. It suffices to show that the set N defined by
N = {(7(0)|y< N} becomes a compact totally geodesic hypersurface of M. We
have found that for any point ye N, I'y has the properties v4(2])e N and
—IV(y)e Cy—Fy. Then for any point 7,(!) € N, there exists a piece of totally
geodesic hypersurface S} which is contained entirely in N and C(N). This

fact implies that the set N is a hypersurface of M. Because every point
¥,(1) e N has an open neighborhood S;‘U(L,CN which is isometric to some open

neighborhood of y< N in N, every geodesic in N is able to extend infinitely in

N. Therefore N is complete and clearly compact. We also see that every
geodesic starting from a point of N and normal to it at the starting point is
a ray from N to co. Then N satisfies the hypothesis of Theorem A. So the
proof is completed by Theorem A. Q.E.D.

4. The structure of M with certain focal locus. Throughout this
section let M satisfy the assumption of Theorem C. The assumption F{N)= ¢
implies that N has a unit normal vector field V' which is defined globally over
N. In fact, a contrapositive of Corollary to Theorem 2 implies the statement.
Then there exists a family of rays {A¥|xe N} from N to oo stated in §3 in
such a way that Af'(0)=V(x) for any x€ N. The set defined by {AX(¢)|x< N,
t =0} C M forms Nx[0, o) which is unbounded. On the other hand the set
M—{\}(#)|xeN,t =0} is bounded and has boundary N, the form of which
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we shall study in the following.

LEMMA 10. For any tangent wvector X satisfying X< Cy, we have
XeFy. And G(exp X, N) contains at least two geodesics.

PROOF. Suppose that there is XeCy such that X & Fy. Then the
hypothesis of Theorem B is satisfied from which we get F{IN) = @. But this
contradicts the assumption of Theorem C. Putting x = #(X), p = exp, X and
T, ={7,(t)} O=¢t=1[) such that 7,0) = X/|X|, where I = d(N, C(N)), we
have a geodesic I'y € G(IN, p) which satisfies J(7:()), =V, () ==/2. In fact,
there are sequence {#;} such that lim #,=0 and sequence of geodesics {W;} such

i—o0

that ¥, € G(V,({+¢), N) satisfying <{(V{ + £,), ¢ (0)) = n/2. For otherwise
stated, there exists a point 7, ((+#) on T, satisfying d(7,(I+%,), N)>1 by
virtue of the first variation formula. But this is a contradiction. By choosing
a subsequence of {W¥;} converging to geodesic ¥, € G(p N), we have
L (Wr«0), v(D)) = m/2. Therefore the proof is completed. QED.

Lemma 10 implies that C(N) coincides with F(IN) as a set without the
assumption that the multiplicity of each focal point of N is constant k.

In the following let pe C(IN) be a fixed point and A,y be the set of all
unit tangent vectors at p such that for any ve A,y we have exp,lveN.
Lemma 10 shows that A, y contains at least two elements. Suppose that for
every point g € C(N), A,y consists of just two elements. Then we must have
A,y={w, —w} by use of Omori’s Theorem, where w < M,, |w|=1. Because
we have a piece of totally geodesic surface of constant curvature zero with
boundaries T', and Ty, (Remark after Lemma 8), we have again F{(N)=@ from
the argument developed in §3. This contradicts our assumption. Hence there
is a point pe C(IN) at which A, » contains at least three distinct vectors.

Making use of the theorem investigated by Omori (see §3), we see that for
any point g € C(N), A, » has the following properties :

(1) For u,ve A,y and any non-negative numbers a and b, we have

(au+bv)/|au+bv| € A, 5.

(2) For any tangent vector Ze M, there exists wve A,y satisfying

<Z,v>=0.

(3) Agn is closed in M,.

From these properties for A,y we find, after developing the same argument
as [1].

(4) There exists v, € A, » which satisfies —v, € Ag n.

As a first step of a proof of Theorem C, we shall prove that A,y is a
k-dimensional unit sphere in M, centered at origin. Taking account of the
properties (1) and (4) of A, y, it will suffice to prove that for any we A,y
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we have —ve A, y.
For the purpose stated above we shall prepare the following theorem and
lemmas.

THEOREM. (Sugimoto [10]) Let M be a connected and complete
Riemannian manifold of class C* whose curvature is bounded below by a
constant 8. Let (I, A,3) and (F, A, i) be geodesic triangles in M and the
plane of constant curvature & respectively which satisfy L) = (I,
L(A)=_LA) and LE)=L(3).

Suppose that the angle between I and A is equal to the angle between
I' and K. Then there exists a piece of surface in M with boundaries T\,
A and 3, which is a two dimensional totally geodesic submanifold of M
with coastant curvature 8, where 2, is a shortest geodesic segment with
same extremals as 3.

LEMMA 11. Assume that there exists —v, € A, y which satisfies v, & Ay y.
Then for any s<(0,¢), we have d(exp,sv,,N)<<I, where c¢ is a positive
number such that exp,cv, is the cut point to p along the geodesic s— exp,

sv,.

PROOF. Suppose that there is s,€(0,c) satisfying d(exp,sov, N)= ..
The hypothesis of Theorem C for C(IN) implies that d(exp,s,v,, N) =1. Let
I'y={Y,(#)} (0=t = oo) be defined by Y,(t) = exp, tv,, A = {Ms)} (0=5=5)
be defined Ms)=exp,sv, and =, € G(A(s,), ¥o(¢)). Then for each # > 0, we must
have {(‘73(0),%'(0)) = /2 by the convexity theorem of Toponogov [11], where

(T10.£], A, S)) is the triangle in R? defined by _£(T,[[0,£]) = LT[0, £)
=t, L(A)=_L(A) and L&) = _£(3). Therefore we have a piece of surface in

M with boundaries Ty, A and 3 which is a totally geodesic surface of constant
curvature 0, where 3 is a ray from A(s,) to oo obtained by a converging
subsequence of {%,}, £>0. Consider the Jacobi field Y along T', defined by
Y(0)=0, Y'(0)=v,. Let V, be the unit parallel vector field along T', defined by
V.(0)=v,. Then we have Y(¢) = ¢-V,(¢) because of K(Y{(t), V,(#)) = 0 for all
t=0. Hence Y'(¢) % 0 holds for all £ =0.

On the other hand, by virtue of property (1) of A, ., {exp,t(v,cosa
— v, sina)|t =0, 0<a <z} becomes a surface in M with boundary
I'y|(—o0, o0). For any ac(0,7), let I'y = {v.(£)] (0=1¢t= o) be defined by
V.(t) = exp, t(v,cos a—v, sina) and Y, be the Jacobi field along I', defined by
Y.(0)=0, Y.(0) = —(v,sina+v, cos &). Then we have Y.(¢)=0 for any ¢t =1
and any a< (0, 7). Hence lirrol Y.(l) =0 follows, but we have limY, = —Y,

a—=0

from which we derive a contradiction, Q.E. D,



92 K.SHIOHAMA

Lemma 11 implies that for any se€(0,c¢), there is a unique geodesic
@, « G(A(s), N) whose extension is defined by ®, = {p,(t)} (0=t < ), @,(8;)
=A(s) and @,(!) ¢ N. There is a small positive number s, such that for any
5s€(0,s,), there exists unique geodesic segment ¥, € G(p, ,(0)). We get a piece
of totally geodesic surface of constant curvature 0 with boundaries T', ¥, and
®, for all s<(0,s,). Because this surface is flat and contains A|[O0, s], the sum
of all angles of the geodesic triangle (A |[0, s], ¥,, ®,|[0, B,]) is just equal to
7. But since the angle between ¥, and ®, at ¢,(0) is just eqal to =/2, we
get together with Lemma 11 <(p,(8:), M'(s)) < 7/2 for all s<(0,s,).

LEMMA 12. Assume that there exists —v,<€ A,y which satisfies
0,&Apn. Then there exists ®,c G(p, N) with the properties ®, +# A and
L@i(0), N (0) < 7/2.

PROOF. Because v&A,y, the point @,(0) is different from p for all
s€(0,s,). From the discussion stated in the proof of Lemma 11, there is a
Jacobi field Y along T, defined by Y (0)=0 and Y,’(0)=n,'(0) which is expressed
by Y, (¢)=t-V() where V, is the unit parallel vector field along I’y defined by
V(0) = 4’(0). We note again that K(V(¢#), 7(z)) =0 holds for all £ =0 and
s€(0,s,). Suppose that there is a subsequence {yr;(0)} of the sequence {r;'(0)}
which satisfies ilim Y, (0)=A(0). Then we get a Jacobi field Y along T, defined

by Y(¢)=¢t-V,(¢) where V| is the unit parallel vector field along I'y such that

V(0)=wv,. The discussion in the proof of Lemma 11 derives a contradiction.

Suppose that there is a subsequence {yr;,(0)} of {4,(0)} satisfying lim<(A'(0),4:,((0)
J—oo

=n/2. Then the sequence {®,} converges to A because lim<J(@:,(B;,), N'(s;))=0
Jron
which contradicts our assumption that v,& A, 5. Therefore we have lim</(A'(0),

Y:,(0)) € (0, #/2) for every converging subseq;lence {4;,(0)}. Then we have lim

i—oc0

S @s(Bs,), N (s))=n/2=1im L(N'(0), ¥,(0)) € (0, #/2). By choosing a subsequence
of {®,} converging to some ¥, € G(p, N) the proof is completed. QED

PROOF OF THEOREM C. Let B, be defined by B, ={u <€ A, x| <vo,u>=0}.
Then B, has the properties (1), (3) and moreover for any u< B, there exists
u, € B, satisfying <<—wu,u,>>0 by Lemma 12. Hence there exists v, € B, such
that —wv, € B,. Let B, be the set B,={ue<c B,|<v,,u>=0}. It is clear that B,
has the same properties as B,, and hence we get that A,y is a k-dimensional
unit sphere in M, by induction. We also see that there is a small neighborhood
of # in which any point ¢ of C(IN) has the property that A,y is a 2-dimensional
unit sphere in M, and moreover the intersection of C(IN) and the neighborhood
becomes a totally geodesic submanifold of dimension n—%—1. Hence we find
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that C(N) is a compact totally geodesic submanifold of dimension n—%k—1. Let
T, be the tangent space of C(IN) at g < C(N) which is a subspace of M,. Let
T+ be the orthogonal complement of 7', in M,. Then exp,|T is a global
diffeomorphism of 7',L onto the image exp,(7T,*)C M. Putting F,=exp,(T ), we
see that F, is a (k#+1)-dimensional Riemannian submanifold of M which is
diffeomorphic to R**'. We may call F, is the normal space to C(I\V') at g € C(NN).

Q.E.D.

REMARK. Because every geodesic I, starting from g € C(IN) and 7Y,(0) € T~
becomes a ray from C(N) to oo, we see that F,NF, =@ for every g, g, € C(N),
q9.:%4q.

We also see that the manifold M is the total space of a fibre bundle (}M,
C(N), F).

5. Applications. Let M be a connected, complete and non-compact Riemann-
ian manifold of class C~ whose sectional curvature is everywhere non-negative.
Let N be a compact totally geodesic hypersurface of M. Making use of Theorem
A, we obtain

PROPOSITION 13. Sup pose that N is an even dimensional real projective
space of constant curvature 1 and M 1is orientable. Then, M must be
isometric to ST ' X R'/f, where f: ST X R'—>St ' XR' is defined by f(x,t)
=(—x, —t), x€ R?™, t< R'. And if N is an odd dimensional real projective
space and M is orientable, M is isometric to PR™*XR' or otherwise N has
a focal point.

Making use of Theorem 2 and Theorem B, we obtain

PROPOSITION 14. Suppose that there are two distinct compact totally
geodesic submanifolds N and N* in M. Then we have the following
statements:

(1) If dim N=dim N*=dimM—1, N is either isometric to N* or one
of them is the double covering of the other. If N is the double
covering of N*, M is isometric to NX R'/f where f is the isometric
involution on Nd efined by the covering projection mw: N—N¥* such
that f (x,,t)=(x,, —1),7(x;)=7(x,) € N*, t € R

(2) If FIN)=9 and dim N*<dim N=dimM—1, N* is contained in

C(N), or otherwise there exists an isometric immersion «: N*— N.

If M is a locally symmetric space, some results are obtained in [8]. If a
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complete locally symmetric space M admits a compact totally geodesic hypersurface
N, then the natural homomorphism of fundamental groups 7, (N)—7z,(M) is
surjective or otherwise, the isometric structure of M is determined [8].
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