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0. Introduction. Let M be a connected, complete and non-compact
Riemannian manifold of dimension n^2 whose sectional curvature satisfies Kσ ^ 0
for all plane sections σ. By virtue of completeness and non-compactness, there
exists at least one ray starting from every point of M. Toponogov [12] proved
that if there is a straight line in such M, M is isometric to iVx R where N is
a totally geodesic hypersurface. And if there exist k straight lines through a
point of such M, M is isometric to Nn~kxRk, where Nn~k is an (n—k)
-dimensional totally geodesic submanifold. Recently, D. Gromoll and W. Meyer [4]
have investigated some structures of complete and non-compact Riemannian
manifold satisfying Kσ > 0 for all plane sections σ. Some results obtained in [4] is
stated as follows :

( 1 ) Every geodesic Γ = {V(t)}( — oo < £ < oo) in M has conjugate pairs,
especially M has no straight line.

( 2 ) M does not contain any compact totally geodesic submanifold.
( 3 ) M is contractible.
More recently J. Cheeger and D. Gromoll [3] investigated some structures of

complete and non-compact Riemannian manifold satisfying Kσ^0 for all plane
sections σ. One of the main results obtained in [3] is stated in the following :

( 4 ) There is a compact totally convex set SMdM which is a compact
totally geodesic submanifold of M without boundary (Theorem 3, [3])
which is called a soul of M.

The souls of M will give strong restrictions for the structures of M. Hence
it might be interesting to investigate the isometric structure of a complete and
non-compact Riemannian manifold with non-negative sectional curvature which
contains a compact totally geodesic submanifold N and the relation between N
and the souls of M. In this paper we only consider N being a hypersurface
where the inclusion map ι: N—>M is an imbedding. Our main results obtained
in the paper will be stated as follows.

THEOREM A. Let M be a connected, complete and non-compact Riemann-
ian manifold of class C°° with non-negative sectional curvature which has
a compact totally geodesic hypersurface N. Suppose that there does not
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exist any normal vector field of N which is defined globally over N. Let
Nt be defined by Nt={χz M\a\x, N)=t} where d means the distance function
of M. Then Nt is also a compact totally geodesic hypersurface for each
£>0, and every Nt is the double covering of N and moreover M—N is
isometric to Ntx(09 °°). Moreover, N is a soul of M. Especially M is isometric
to an open Mobiusband if dim M—2.

Considering the case where there is the unit normal vector field V of N
which is defined globally over N, it will be proved that M is isometric to
JVx R if there exists a point x £ N at which two geodesies defined by t-^expxtV(x)
and £—>expx£( — V(x)) are rays from N to oo respectively (Proposition 5). In this
case the cut locus C(N) of N is vacuous. Therefore we shall next consider the
case C(N)* 0. Let F(N) be the first focal locus of N. Denoting the tangent
cut locus and the tangent focal locus of N by CN and FN respectively, we shall
prove

THEOREM B. Let M be α connected, complete and non-compact Rieman-
nian manifold of class C°° with non-negative sectional curvature. Let N be
a compact totally geodesic hypersurface of M. Suppose that N has a unit
normal vector field V which is defined globally over N. Assume that there
is a normal vector X to N such that XzCN, X^FN and \\X\\=d(NyC(N)).
Then there is a compact totally geodesic hypersurface N which is a soul
of M and coincides with C(N) as a set and we have F(N)= 0. Moreover,
let Nt be defined as Nt= [x £ M\d(x,N) = t]. Nt is isometric to N which is
the double covering of N for every t>0 and M—N is isometric to JVx(0,oo).
Especially M is isometric to an open Mobiusband if dim M=2.

Theorems stated above have the extreme property F(N)= 0 Hence we shall
lastly consider N satisfying F(N)±r 0.

As for a compact Riemannian manifold, many people have investigated the
structures of conjugate loci or cut loci of compact Riemannian manifolds under
suitable conditions of M. And they investigated some structures of compact
manifolds satisfying certain conditions for conjugate loci or cut loci. As an
intuitive condition which is of course an interesting one, we see the one that
the distance between a point (or a submanifold) of M and each point of its cut
locus or its first conjugate locus (or its first focal locus) is constant. The manifold
structures of compact manifold satisfying the above condition have been
investigated by Bott [2], Nakagawa [5], [6], [7] and [8], Omori [9], Warner [14]
and other people.

Turning to our situation that M is non-compact with non-negative sectional
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curvaure and F(N)*p 0, we shall consider M satisfying that for any tangent
vector Xz CN, | |X| |=/ holds, where / is a positive constant. Then we shall prove
the following

THEOREM C. Let M be a connected, complete and non-compact Rieman-
nian manifold of class C°° with non-negative sectional curvature. Let N be
a compact totally geodesic hypersurface of M. Assume that we have | |X| |=/
for all XzCN and F(N)Φ 0. Then F(N) coincides with C(N) as a set in
M. Furthermore suppose that the multiplicity of the first focal point -with
respect to every geodesic normal to N is constant k. Then C(N) becomes a
compact totally geodesic submanifold of dimension n—k — 1, which is a soul
of M and every point of whose normal space is defined and dijfeomorphic
to Rk+\

COROLLARY T O T H E O R E M C. If k=n-l, we have F(N)=C(N)={q}
and M is diffeomorphic to Rn where C(N)= {q} becomes a pole. And C(N)
is a 0-dimensional soul. Moreover N is diffeomorphic to Sn~ι.

1. Definitions and Notations. Throughout this paper let M be a conneted,
complete and non-compact Riemannian manifold of dimension n(n^2) and of class
C°° which has an isometrically imbedded, compact totally geodesic hypersurface
N. Geodesies are parametrized by arc-length. For any disjoint compact subsets
A and B in M, let G{A, B) be the set of all shortest geodesic segments
starting from x € A and ending at y £ B such that d(x, y) = d(A, B), where
d means the distance function with respect to the Riemannian metric tensor
of M. For a compact subset A> there is a sequence of points {xk} in M
such that d(A,xk)>k by non-compactness of M. There is a shortest
geodesic segment ΓA € G(A, xk) for each k. Then we can choose a subsequence
{Γ,} of {ΓA} in such a way that both {7/0)} and {7/(0)} converge to a
point y e A and a unit vector u € My respectively. The geodesic Γo = {70(ί)}
(05gί<oo) satisfying yo(O)=y and 70(0) = w defines a ray from A to °°. We
denote by G(A, oo) the set of all rays from A to oo. A point pzM is called a
pole of M if expp: MP—>M has maximal rank [4], where Mv is the tangent
space at p. For two tangent vectors u, v € Mp9 we denote by <£(u, v) the angle
between u and v. For a totally geodesic hypersurface N9 we denote the tangent
space of N at a point x € N by Nx. For any point x^N, let Z be a unit
normal vector to Nx and define a geodesic Tx = {7X(/)} (0 ig t ^ a), Ύx(0) = x,
7Λ'(0)=Z, where 7x

/(ί) means the tangent vector to Γx. A cut point q (q = Vx(a))
of N along Γx is by definition the minimal point to N of Γ x such that
Γβ|[0,f]€G(2Vr,Ύβ(f)) for any 0<t^a and I\\l0,a + 8]£G(N,yx(a + e)) for any
positive number €. The cut locus C(N) of N is by definition the set of all cut
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points of N along every Yx> x^N whose starting direction is normal to N. The
tangent cut point of N with respect to Z is by definition α Z and the tangent
cut locus CN of N is defined by the set of all tangent cut points of N with
respect to every unit normal vector to N. A first focal point q = Ίx(b) of N
along Γx is defined in such a way that there exists a non trivial Jacobi field Y
along lx such that <Y9Vx>=0 with the initial condition Y(0) £ NX9 Y'(0) = 0
and which satisfies Y(b) = 09 and there does not exist any other non trivial Jacabi
field Yλ along Tx such that <Y 1,Ύ x '> = 0 with the initial condition YΊ(O) € Nx,
γγ(0) = 0 whose zero point bx satisfies bί<b. The first focal locus F(N) of N
is defined by the set of all first focal points of N along every geodesic which
starts from N and normal to N at the starting point. The tangent focal locus
FN of N is defined by the set of all normal vectors bVx(0). We have by
definition, C(N) = expoCN and F(N) = expoFN.

The tools for proofs of our results are the basic Lemma investigated by
Gromoll and Meyer which plays an important role in [4] and the present paper,
the basic theorem on triangles of Toponogov [11] and some property on cut
locus of a submanifold investigated by Omori [9] which is stated in §3. In §2,
§3 and §4, we shall prove Theorems A, B and C respectively. Some applications
of the results will be stated in §5. Under our hypothesis of N9 there is at least
one plane section σ satisfying Kσ = 0 by the statement (2) in §0.

2. The structure of M with certain condition for N. First of all, we
shall prove the following lemma.

LEMMA 1. Let Ap be a ray from N to oo such that \p(β)=p £ N. Then

for any point q £ N9 there is a ray Aq from N to oo which is obtained by

Ap.

PROOF. Let δ>0 be the fundamental length of M on the compact set N

and Bs(p) be the open ball in M with center p and radius 8. Take any fixed
point rzBδ(p)nN, Γ € G(p, r) and Σ, € G(r, \p(t)) for each ί > 0 . By definition
of Λp, we have

( 1 ) X(API[0,t]) = t<X(Xt) for all t>0.

Let (Γ, Ap I [0, ί], Σί) be the triangle in R2 corresponding to the geodesic triangle

(Γ, Λp I [0, £], Σί) with same side lengths, and the vertices be Xp(t)9 r and p

respectively. The inequality obtained above shows us that <£(r, p9 λp(ί))i^

<3C(λp(£),r,p) for any £ > 0 . When £—•oo, we can choose a subsequence {cΓίn(0)}

of {σί(0)}f tx<t2< <tn< , l imί n = oo which converges to some tangent

vector σr(0)zMr. Putting Λr = [λr(t)} (0^t<oo)9 χr(β) = exprt σ'r(0)9 we see



80 K. SHIOHAMA

that Λr € G(r, oo) and moreover we must have <£(λr(0), —y'(a))^π/2 by virtue

of the basic theorem on triangles, where 7(α)=r. In fact for the sequence of

triangles (f,Ap I [0,ί n ],2J, we have l i m « ( r , ? , λ P (O)+<Φp(O> £/>))=* a n d

r, p, λ/ί n)) ̂  lim <£ (λp(£Λ), r, />), from which we must have
TO

( 2 ) lim<(r, ~ρ, λ/ί.)) = lim < (λ,(f ,). £ £) = «/2 .
71 71

The basic theorem on triangles implies <£(λr(0), — 7'(α))i^lim <^0^p(tn),r,p) = 7t/2.
n-*oo

Suppose that <£(X(0), — ̂ (α)) > τr/2. We shall derive a contradiction. In fact
there are .r € Λr and y^N satisfying d(x, y) = d(x> N) < d{x> r) if <£ (λr(0),
— Ϋ(a))>π/2. There exists sufficiently small β > 0 satisfying the following:

( 3 ) d(r,x)-d(y,x)>2S.

The equality ( 2 ) is equivalent to lim (d(r9Xp(tn))—tn) = Q from the argument in
7»->oo

[10]. Then there is a large number k such that

( 4 ) 0<d{r9 λp(ίΛ)) -tn<S for all Λ > >fe.

On the other hand, there is a point xtn € Σίπ for every n satisfying d(r, xtn)

= d(r9x) and lim xtn—x. Hence there is a number kx such that

(5) d(x9xώ<e foralln>A1.

Then we must have for every n>M.ax{k, ki}9

d(y,Λp(tn))

^ d(y, x) 4- d(x, xtn) + ύ?(^n, λp(ί«))

< ( 4 r , α : ) - 2 θ ) + θ 4 - 4 ^ n , λ 1 , ( ί n ) ) , ( 3 ) and ( 5 )

= d(r, xtn)

= <Kr, λ p (

which contradicts that Ap is a ray from N to oo.
Next, we shall prove that Λ r is a ray from JV to oo. Suppose that A r

is not a ray from N to oo. There are points x € Λ r and yzN such that
d(x,r)>d(x,y)=d(x, N). The argument developed above leads us to
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Hence there is at least one ray from JV to oo through each point q z JV by
compactness of JV. Q. E. D.

We shall denote a ray from JV to oo through a point x £ JV by Λx. Let us
note the following We see from the convexity condition due to Alexandrov
and Toponogov [11], that there are at most two rays starting from every point
x £ JV to oo and we can observe that every ray in G(x, oo), xz N becomes a
ray from JV to oo.

Now let x <Ξ JV be a fixed point and Z be the unit normal vector field to
JV defined in an open neighborhood Ux C JV of x which is differentiably defined by
Z(x) = λx'(0). For every point x € JV, assume that there is an open neighborhood
UxcUx in which every geodesic defined by t —>expytZ(y), yzUx is a ray from
JV to oo. By virtue of compactness of JV and Lemma 1, we have under the
assumption three cases for JV and M as follows :

(a ) There does not exist any normal vector field to JV which is defined
globally over JV.

( b) JV has a unit normal vector field V which is defined globally and the
geodesies t —• expytV(y) and t-+expyt( — V(y)) are rays from JV to oo
for some point x £ N.

(c ) JV has a unit normal vector field V which is defined globally and
V(x) coincides with λx'(0) for each x^N while the geodesic t—>
expxt(—V(x)) is no more a ray from JV to oo for every xzN.

Now, for each point x £ JV we shall prove the existence of an open
neighborhood Ux of JV in which the unit normal vector field Z is defined
differentiably by Z(X) = XX'(Q) and for each point yzUx the geodesic defined by
t —•>expytZ(y) is a ray from JV to oo.

THEOREM 2. For every point x^N there is an open neighborhood Ux

of JV in which the unit normal vector field Z is defined by Z(x) = X'x(0)
and for each point yzUx, the geodesic t—>expytZ(y) is a ray from JV to oo.

PROOF. We shall argue by contradiction. Suppose that there is a point
x € JV where there is no neighborhood with the property of Theorem 2. Let Z
be a normal vector field to JV defined in the convex neighborhood U at x such
that Z(^c) = λ x ( 0 ) and δ be taken in the proof of Lemma 1. By the assumption
of x, there is a point y £ U at which the geodesic t —> expytZ(y) is not a ray.
Then there is the unique ray from y to oo whose starting direction is — Z(y).
Put 2? zG(Xy(u\Xx(t)) where t>0 and u^( — S, 0) are arbitrary taken. For
every fixed uz( — δ, 0), we have a subsequence {2?J of 2? converging to a ray
Σ£, £ G(Xy(u), oo) as it—>oo. Then there is a small number αc^( —δ, 0) which
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satisfies <£ (λ/(z/), ot'(0)) < τr/2 for any u e (a, 0) and any Σ̂ > € G(Xy(u), oo), In
fact, if otherwise stated there is a sequence [uj] converging to 0 and a sequence
of rays {Σ£}, Σ ϊ e G(Xy(uj\ oo) such that < ( λ / ^ ) , <r£(0)) ̂  π/2. Then we
can choose a subsequence of {ΣS} converging to a ray Σ from 3; to 00 which is
different from Ay. But this is a contradiction.

We may consider a is taken so small that \y{a) is contained in a convex
normal neighborhood centered at x. Next, fix u0 e (a, 0) in such a way that the
angle <£ Q\>y(u0), x, λχ(ί)) *s l e s s than τr/2 for £ > 0. Consider a geodesic triangle
with vertices (Xy(u0), x, ^x(t)) for each £>0. Then <£(XI/(M0), •£, λ x(ί))<7r/2 implies
the existence of a positive number £ which satisfies lim [t — d(Xy(uo),Xx(t))] = £.

t—»oo

Consider another geodesic triangle with vertices (Xy(uo)9 yy λ x(ί)). The sequence of

geodesies from j> to λ x (ί), ί > 0 has the limit ray Ay, as ί—>oo? and we can

choose a subsequence {Σ?t

0} of {Σf0} which converges to some ray Σ̂ L0 £ G(Xy(u0),

00). Then we have from above discussion <ί(λ/(wo), σ"^/(0))<τr/2 for sufficiently

large z, where Ay\[u0,0] and Σ?t° are sides of triangle in R2 with vertices

Ow(wo), .y, λ*z(ί)) corresponding to Ay \ [u0, 0] and ΣM0 respectively. But this contradicts
the basic theorem on triangles. Q. E. D.

Now take a point x € N and let Ux be stated in Theorem 2. It is not
certain whether Ay coincides with the geodesic t-+ex.pyt'Z(y) or not, where Z
is the unit normal vector field which is differentiably defined in Ux such that
Z(x) = Xx'(0). In the following we shall denote the geodesic t—>expyt'Z(y) which
is a ray from N to 00 by Λ* for any point y £ Ux.

If N has a unit normal vector field V which is defined globally over JV,
the case (b) or (c) holds and we may consider V \ Ux coincides with the normal
vector field Z which is defined in a small neighborhood UxdN. We see from
Theorem 2 that any geodesic starting from any point of N and normal to N

at the starting point is a ray from N to 00 if N has not a normal vector field
defned globally over N.

In any case, we shall prove the following lemma which is essentially due
to Lemma 1 of [4].

LEMMA 3. Let Λ* £ G(N, 00) be defi?ιed by λ£'(0) = Z(j/) for any point

y^Ux, Then for any t^0 a?ιd any tangent vector X£ Mλ*^t) which is

normal to λ*'(ί)> we have K(XyXy'(t)) = 0.

PROOF. Suppose that there are tQ>0 and X e Mλ*y{U) such that K{X, λ£'(*<>))>0

holds. Let X(t) be the parallel vector field along Ax defined by X(t0) = X.
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Putting K(f) = K(X(t\ λ*' (t)\ there is a differentiable function H(t)^0 satisfying
H(t)^K(t) for all t^U and H(to)<K(to). Consider the following differential
equations :

φ" + Hφ = 0

ψ " + Kψ = 0

with the initial conditions ^(ί0) — *Hto) = 1 and φ{tQ) = ψ\tQ)— 0. There exists
such that φ(to + τι) = O. Let Y be a vector field along Λ* | [0, ίo + r j such

o ^

that

φ-Xif)

Then we have

, y) = f ° (<y, r > - KQΓ, χrw)<y, Y » I £ dt
Jo

\φ%-Kφ*)dt

^ I ίj+Γ» - I φ{φ' + Kφ) dt

φ (φ" + Hφ)dt = 0.
10

This fact contradicts that Λ£ |[0, G(N, Q.E.D.

Theorem 2 implies together with Lemma 3 the following

COROLLARY TO THEOREM 2. Let M be a connected, complete and
non-compact Rie?nannian manifold zvith non-negative curvature. Let N be
a compact totally geodesic hypersurface of M. Suppose that there does
not exist any normal vector field -which is defined globally over N. Then
both C(N) and F(N) are vacuous.

We see that if the orientation of N is coherent with that of M, the unit
normal vector field Z defined in a small neighborhood Ux of N is extendable
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to one of the unit normal vector field V which is globally defined over N.
Consider the map x —> λϊ'(O) of N into TM. Then the map is at most
two-valued.

PROPOSITION 4. For every t>0, let Nt* be the set in M defined in
such a way that Nt* consists of all point \*(t) for all Λί, x e N. Then
following statements hold for every t > 0.

( 1 ) Nt* is a compact totally geodesic hyper surface.
(2 ) Nt* is locally isometric to N.

PROOF. For any fixed point xzN, let Bδ(x) be a sufficiently small convex
ball in N with center x and radius δ which is contained in Ux. For any point
y £ Bδ(x), there is the unique geodesic Γ £ G(x,y) such that Γ = [V(s)} (Orgsfgα),
γ(0) = x, 7(α) = y. The vector field s —> Z(y(s)) along Γ is a parallel vector
field along Γ and normal to N. Let Xs be the unit parallel vector field along
Λ*(ί) defined by Xs(0) = Ύ (s) for each s s [0, a]. Then K(Xs(t\ λfsj(ί)) = 0 holds
for all 5 € [0, a] and all t §: 0, which implies that Λ*s) has no focal point.
Because Xs is a Jacobi field along Λ*(s) with the initial conditions Xs(0) e JVγ(s)

and Xs(0) = 0 where Xs(0) can be considered as an arbitrary unit tangent
vector to N at V(s). By virtue of Warner's metric comparison theorem [13],
we have for any fixed t > 0, d{x9 7(s)) = <i(λϊ(ί), λ?(β)(ί)) for any s € [0, a], and
moreover the curve s —> λ*(β)(ί) is a geodesic in M which is also contained in
Nt*. Since x and 3/ are any points in a convex ball, Nt* is a totally geodesic
hypersurface which is locally isometric to N. It is easily shown that Nt* is
complete. Furthermore the map x —> λϊ(ί) of N into M is also a continuous
map of N onto iVί* and at most two-valued, which implies that Nt* is compact.

Q.E.D.

REMARK. Nt* coincides with Nt which is defined in Theorem A (or Nt

which is defined in Theorem B) if the case (a) or the case (b) occur. If the
case (a) occurs Nt* will be connected, on the other hand Nt will have two
components if the case (b) occurs. In the case (c), Nt might have two
components while Nt* is connected. The last case seems to be more complicated
than (a) or (b).

PROPOSITION 5. Suppose that N has a unit normal vector field V
which is defined globally over N, and the case (b) occurs. Then M is
isometric to Nx R.

PROOF. For any fixed t > 0, consider the map f : N—>M defined by
ft{x) = expxt V(x). Then f is one-to-one because for any points x,yeN, X*
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and λ* never intersect each other. By the hypothesis that Λp | [0, oo) e G(JV, oo)
and Δp|( —oo,0] € G(iV, oo) hold for some point p^N, we see that every
geodesic starting from JV and whose starting direction is normal to JV is a ray
from iV to oo by Theorem 2. Proposition 4 leads ft is a global isometry of JV
onto Nt*. We can define Ntt={X*(-t)\xzN} = {exp x (-ίy(^)(ί^ € iV}, which
is also isometric to JV. Of course we have Nt = Nt*ΌN*t. Hence we get
M=NxR. Q.E.D.

Now we shall prove Theorem A.

PROOF OF THEOREM A. It is evident from Theorem 2 that every
geodesic starting from a point of JV and normal to JV is a ray from iV to oo.
We see that the map of JV into TM, x->λJ'(O) is differentiate and
two-valued. Hence Nt* is a connected and compact totally geodesic hypersurface
for each t > 0. Let n : Nt*-+N be denned by τr(λ*(=bί) = :r. We see that
7t is a local isometry of JV,* onto JV and for any x € JV, there is an open
neighborhood WxdN such that TΓ^W^) consists of two disjoint neighborhoods
of expxt V(x) and expx(—tV{x)) each of which is isometric to Wx. Therefore
it is the covering map and N* is the double covering of JV for each t > 0.
It is easy to see that N* is globally isometric to N£ for any tl9 t2 > 0.
Hence M— N is isometric to Ntx(0, oo). We easily see that JV is a soul of
M. Q. E. D.

3. The structure of M with C(N)* 0 and F(N)= 0. Throughout this
section let M satisfy the assumption of Theorem B. If there is a point x^N
at which both A* |( — o°,0) and ΛJ | [0, oo) are rays from JV to oo, then every
geodesic starting from any point of JV and normal to it becomes a ray from N
to oo by Theorem 2. Therefore ΛJ |( — oo,0] has a cut point to N along it
for each point x € N. And moreover for any point p € M, a ray from p to
oo is contained in some ΛJ or coincides with its extension because the set
{XΪ(t)\χeN, t>0] is of the form JV X (0, oo). Let V be defined in §2 in
such a way that λ?'(0) = V(x) and V is defined globally over JV. Then M is
decomposed into two components [X*(t) \ x € JV, t §r 0} and M — {λ*(ί) | x £ JV,
t ^ 0} because {λϊ(ί) | x € JV, ί ^ 0} forms JVx [0, oo) with boundary Λr. Note
that M - {λϊ(01 ^ ^ JV, ί ^ 0} is bounded.

Now we shall state an intersting theorem investigated by Omori which

plays an important role for a proof of Theorem B.

THEOREM. (3.4 Proposition in [9]) Let M be a connected and compact

Riemannian manifold of class C°° and JV be a connected, compact and

differentiable Riemannian submanifold of M. Suppose that there is a point



86 K. SHIOHAMA

p e C(N) at which d(p, N) = d(C(N\ N) holds and there exist two different
geodesies Tu Γ2 £ G(p, N) satisfying 7/(0) Φ ± 72'(0). Then, putting
I = d(C(N), JV), we have expp lv e N for any a Ξg 0, b Ξg 0 and the tangent

vector v £ Mp defined by v— a 1/)rl—, ',; . Hence p must be a focal

point of JV.

COROLLARY TO T H E THEOREM. Let M be a connected, complete
and differentiable Riemannian manifold and N be a connected, compact
and differentiable Riemannian submanifold. Suppose that there is a point
peC(N) at which d(j>, N) = d(C(N), N) holds and there is ΓzG(N,ρ\
defined by Γ = {7(ί)} (0 ^ t ^ /), 7(/) = p, 7(0) e N along which p is not a
focal point of N. Then there is \\ € G{N, P) satisfying <(7'(Z), Ίί(ΐ)) - n.

A proof of Corollary follows immediately from the fact that there exists
a Γ1zG(Nyp) which is different from Γ by p<ξF(N). Of course these
Theorem and Corollary hold for the cut locus and conjugate locus of a point
(in case dim JV = 0).

We shall prepare a few lemmas for a proof of Theorem B. Let X
be the normal vector to N at x <= JV such that X £ CN, X £ FN and
/ = \X\=d(K QN)). Let Γx be the geodesic denned by Γx= {yx(t)} ( 0 ^ ί ^ / ) ,
Vχ(t) — expχίX/11-XΊI Theorem of Omori and our assumption imply that 7X(2/)
is a point of N and 7X'(2/) is normal to N at 7X(2/). Hence we see both
VX\[L°°) and Γχ|(—°°,/] are rays from 7X(/) to oo. By the hypothesis of
Theorem B, there is a unit normal vector field V denned globally over N
satisfying -V(x) = X/\\X\\ and V(y) = ̂ *(0) for any y e N where A* € G(N, oo).
Let us denote the geodesic through a point y £ N with tangent vector — V(y)
at y by Ty = {7i/(ί)} (0 ^ t ^ /). We note that the inverse extension
Γ v | ( — °°, 0] of Γy coincides with Λ^ which is a ray from N to co. Recall
that every ray in M is either containd entirely in some Λ^ or an extension
of it.

LEMMA 6. Let Γx be defined by Γx= [yx(t)} ψ^t^l), Ύx(t) = expxtX/\\X\\9

For any point y^N and any geodesic Φ € G(7X(/), 7W(/)), Φ = {^(5)} ( 0 ^ 5 ^ α ) ,

we have <φ'(0), 7^(/)> = 0.

PROOF. First of all we shall prove that the inverse geodesic Γi/|(— °o,/]
is a ray from 7V(/) to 00. In fact, let (H) = {#(£)} (0 = t ^ 00) be a ray such
that Θ € G(7y(Z), 00). (H) m u s t intersect iV at some point 0(/") € JV with right
angle. Because / = <i(JV, C(N)), we must have / ^ / from which the statement
above is shown.
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Without loss of generality, we can assume that <£(7X(/), φ'(0)) fg τr/2. For
a geodesic triangle with vertices (7x(/ + ί), 7X(/), 7y(/)), let us denote the
corresponding triangle in R2 with same side length by (Ύx(l + t)y 7X(/), Ύy(l)). The
basic theorem on triangles implies that lim <(7x(/+£), 7X(/), 72/(0) = lim<(7x(/ + £\

%/(/), **(/)) = */2 because of lim [<i(7x(/ + t\ Ύx(l)) - d(Ύx(ί + t\ 7//))] = 0.

Therefore the proof is completed from the inequality <£(7̂ /)> ̂ /(O)) ̂  lim <£
Z->oo

? */2. Q. E. D.

LEMMA 7. ί o r α^y fixed point φ{s) on Φ = {<p(s)} ( 0 ^ 5 ^ a), zve have

PROOF. For any fixed point φ{s), take any ψ e G(φ(s), N), Ψ = [ψ(t)}

(Og^t^l"). Then Ψ|[0, oo) becomes a ray from ^(5) to 00. As a first step,

suppose that Γ > /. For a geodesic triangle with vertices (Ύx(2/ + £), φ{s\

\ it follows from lim <(^<5), 7^(2/+ ί), t ^ / + ̂ )) = lim <(?<s), ψ(Γ + ί),

= τr/2 for ί > 0 that lim [ ^ ( 5 ) , 7X(2Z +1)) - (Γ + ί)] = 0. Then we
£->oo

must have <£(Ύx(2l + t), Ύx(l\ <p(s)) > π/2 for sufficiently large t > 0, which
contradicts the basic theorem on triangles. Next, suppose that I" < I. We may
assume that <£(φ'(s\ ψ'(0)) ^ τr/2 without loss of generality. An analogous
argument for a geodesic triangle (ψ(l" + t), Ίy(l\ φ(s)) leads us to a contradiction.

Q. E. D.

We note that for any s £ [0, a) and any Ψ e G(φ(s), N) stated in the proof
of Lemma 7, we have <^(ψ'(s),ψ(0)) = π/2. Moreover, we have K(X(t),ψ(t)= 0
for all t ^ 0 where X is the unit parallel vector fied along Ψ defined by
X(0)=<p'(s). This fact follows from Lemma 3.

LEMMA 8. There exists a totally geodesic hypersurface of M which is
defined locally as a small piece containing 7X(Z).

PROOF. Since X<^FN, the map {it, exp) : TM-+MX.M has maximal rank
in a neighborhood We TM of X, where TM is the tangent bundle of M and
7t is the projection map of TM onto M. We may consider that (TΓ, exp) | W
is a diffeomorphism of W onto π(W) X exp(Wr). There is a small neighborhood
Ψ c f ofX defined by W = {Zz TM, π(Z) z N, \\Z\\ = l and Z is normal to N
at π(Z)}. Then, it is clear that W is an (n — l)-dimensional submanifold of
TM. Hence, exp{W) becomes a hypersurface in M. By virtue of Lemmas 6
and 7, the hypersurface exp(W )̂ is contained in the hypersurface S defined by
5 = {exp7xil)sv\\\v\\ = 1, veMΎ;c{l), <v %{l)> = 0, - δ < s < δ}, where δ js
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the convex radius at ΊjJ). Making use of Lemma 3 for the surface S and the

geodesic Tx\[ly oo), we see that K(ΊX{1 + t \ Z) = 0 for any ί ^ O and any

ZeMΎχ{l+t).

On the other hand, let Xγ £ MXι be the normal vector to N at the point
xγ = Vx(2l)zN satisfying \\X.\\ = I and V'x(2l) = -XJWX^. There is a small
neighborhood WΊ C TM of Xj which is defined in the same way as W for X.
Then the hypersurface exp(WΊ) is also contained in S.

Consider the connected component S*cS of exp(W) Π exρ(Wχ) containing
Ίx(l) and let W*(zW, W1*cWί be defined such that exp(T7*) = exp(W^)=S".
Then we find that for any point y in the neighborhood π(W*)<zN of x,
there is a point yx in the neighborhood ^ ( W ^ c J V of xx satisfying Ίy{ΐ) — Ίyj^)
and both Ύy(l) and Ύy,(Z) are normal to the hypersurface 5* at ΊV{1). Though
it might occur that —lV(y^)£ FN for some yx € τr(Wf), the geodesic Γ y | ( —oo, oo)
is able to take place for Γ x | ( —oo,oo) in both Lemmas 6 and 7. Hence for
any two points y, z e τr(W*) and Ψ £ G(Ίy(l\ Ύ.(/)) we get Ψ c S * as a set. This
fact shows that 5* is a piece of totally geodesic hypersurface. Q. E. D.

REMARK. For any tangent vector X € MTy(l), <X, 7 (̂Z)> = 0, and for the
parallel vector field X along Γ y | ( — oo? oo) satisfying X(J) — X we have
K(X(t), Yy{f)) = 0 for all ί € ( —oo, oo). Hence we get — Z VX^ξF^ and

CΛΓ by the argument stated above. Therefore we also have

Lemma 8 has stated that there exists an open neighborhood π(W*) in which
for any point y, expy(—2lV(y)) € N holds. We also see by Theorem of Omori
that for any point Ίz(ΐ) € S*, we have just two rays from Ύz(ί) to oo which are
defined by Γz|[/, oo) and ΓJ( —oo,/]. A theorem investigated by Sugimoto
(stated in §4) implies that for any points Ύv(j), ΊZ{1) in S* there is a piece of
two-dimensinal totally geodesic submanifold of M with constant curvature zero
and boundaries Ty\( — oo9 oo) and Γ 2 | ( —oo, oo).

We shall prove that the set π(W*) is closed in N. Remark stated above
will play an important role for the proof.

LEMMA 9. For any sequence of points {yk} satisfying yk £ π(W*) and
\Ίmyk= yo^N, let l\ = [Ίk{t)} (O^t^l) be the geodesic defined by Ίk(t)

= exρyic(—tV(y!c)), (k = l, 2, — , ). Then we have the following statements :

( 1 ) 70(2/) £ N and 7̂ (2/) is normal to N at 70(2/).
( 2 ) For any t e( — oo9 oo) and tangent vector X^MJo(t) orthogonal to

7o(ί), we have K(X,%(t)) = 0 and hence —l V(y0) € FN and
-l-V(yo)zCN hold.

( 3 ) For each point z^N, we have expz(—2lV(z))zN and —l
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PROOF. Since lim 7i(0) = 7j(0) and for every k = 1, 2, , we have
&-+OO

Vk(2l)zN and 7i(2Z) is normal to N at 7Λ(2Z), the first statement is evident.
Suppose that there is £<=( —oo?oo) and XzM^ such that <X,%(t)> = 0
and K(X, y'fϋt)) > 0. Let Xo be the parallel vector field along Γo |( —°°, °°)
defined by X0(i) — X. There is a large number k0 such that for any k > k0,
there exists a unique Ψk € G(70(0), 7A(0)). Translating X(0) parallely along Ψk9

we get Xk€Myk(0). Let XΛ(ί) be the parallel vector field along Tk defined by
Xjt(O) = Xk. Then it is clear that for each t £ ( — oo, oo), limX^ί) = X0(t) and

Iim7i(ί) = Ϋ0(t). Therefore we must have K(Xk{t), 7ί(t)) > 0 for sufficiently

large £, from which we lead a contradiction. This fact implies —l V(yo)<ξFN

and —l'V(yo)^CN. Then Γ^ takes place for Tx in Lemma 8 which implies
that there is a neighborhood W*aTM of — A^(j>0), where exp(W*) becomes
a piece of totally geodesic hypersurface as is stated in Lemma 8 and it is
contained in C(N). By compactness of N> C(N) is covered by finitely many
open neighborhoods τr(W'x") defined as stated above. Hence the last statement
is evident. Q. E. D.

PROOF OF THEOREM B. It suffices to show that the set N defined by
N= {VvifilyzN} becomes a compact totally geodesic hypersurface of M. We
have found that for any point y € N, Γy has the properties 7/2Z) £ N and
—lV(y)^CN—FN. Then for any point Ύy(l) £ N, there exists a piece of totally
geodesic hypersurface S*yii) which is contained entirely in N and C(N). This

fact implies that the set N is a hypersurface of M. Because every point

72/(Z)̂ iV has an open neighborhood S^cN which is isometric to some open

neighborhood of y € N in N, every geodesic in N is able to extend infinitely in
N. Therefore N is complete and clearly compact. We also see that every
geodesic starting from a point of N and normal to it at the starting point is
a ray from N to oo. Then N satisfies the hypothesis of Theorem A. So the
proof is completed by Theorem A. Q. E. D.

4. The structure of M with certain focal locus. Throughout this
section let M satisfy the assumption of Theorem C. The assumption F(N)±t 0
implies that N has a unit normal vector field V which is defined globally over
N. In fact, a contrapositive of Corollary to Theorem 2 implies the statement.
Then there exists a family of rays {Aχ\x^N} from N to oo stated in §3 in
such a way that λJ'(0) = V(:r) for any x 6 N. The set defined by {\Z(t)\χzN9

forms Nx[0, oo) which is unbounded. On the other hand the set
x€N,t^0} is bounded and has boundary N, the form of which
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we shall study in the following.

LEMMA 10. For any tangent vector X satisfying X £ CN, we have
X € FN. And G(exp X, N) contains at least two geodesies.

PROOF. Suppose that there is XzCN such that X £ FN. Then the
hypothesis of Theorem B is satisfied from which we get F\N) = 0 . But this
contradicts the assumption of Theorem C. Putting x = τr(X), p = expx X and
Tx = {yx(t)} (O^t^l) such that 7;(0) = X/\\X\l where I = d(N, C(N)\ we
have a geodesic Ty £ G(Ny p) which satisfies <(7X(/), — %(ΐ)) ^ π/2. In fact,
there are sequence [tt] such that lim tι=0 and sequence of geodesies [Ψi] such

that ΨiZG(Ύa(l + tt),N) satisfying <(?;(/ + ί*), ψ/(0)) ̂  τr/2. For otheiwise
stated, there exists a point yx(l + t0) on Γ x satisfying d(yx(l + £0), ΛΓ) > / by
virtue of the first variation formula. But this is a contradiction. By choosing
a subsequence of {Ψi} converging to geodesic ΨQ £ G(p,N\ we have

;(/)) ^ ^/2. Therefore the proof is completed. Q.E.D.

Lemma 10 implies that C(N) coincides with F(N) as a set without the
assumption that the multiplicity of each focal point of N is constant k.

In the following let p^C(N) be a fixed point and APtN be the set of all
unit tangent vectors at p such that for any v e AP>N we have ex.pxlveN.
Lemma 10 shows that APiN contains at least two elements. Suppose that for
every point q € C(N), AQjN consists of just two elements. Then we must have
AQ>N={w, —w] by use of Omori's Theorem, where w e MQ9 ||ze>||=l. Because
we have a piece of totally geodesic surface of constant curvature zero with
boundaries Γ x and Ty (Remark after Lemma 8), we have again F\N)= 0 from
the argument developed in §3. This contradicts our assumption. Hence there
is a point pzC(N) at which APtN contains at least three distinct vectors.

Making use of the theorem investigated by Omori (see §3), we see that for
any point q <= C(N), AQtN has the following properties :

( 1 ) For u, v e AQtN and any non-negative numbers a and b, we have
(au + bv)/\\au + bv\\ e AQ<N.

( 2 ) For any tangent vector Z <Ξ MQ, there exists v € AQtN satisfying
<Z% v> ^ 0.

(3 ) AQtN is closed in Mq.
From these properties for AQtN we find, after developing the same argument
as [1].

(4 ) There exists voeAQtN which satisfies — vozAQiN.
As a first step of a proof of Theorem C, we shall prove that AP<N is a

^-dimensional unit sphere in Mp centered at origin. Taking account of the
properties (1) and (4) of APtN} it will suffice to prove that for any v £ APrN
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we have — v £ APiN.
For the purpose stated above we shall prepare the following theorem and

lemmas.

THEOREM. (Sugimoto [10]) Let M be a comiected and complete

Riemannian manifold of class C°° whose curvature is bounded below by a

constant δ. Let (Γ, A, Σ) and (Γ, A, Σ) be geodesic triangles in M and the

plane of constant curvature δ respectively which satisfy X(Y) — -ZXΓ),

_/7(A) = _£*(Λ) and J7(Σ) = .X'(Σ).

Suppose that the angle between Γ and A is equal to the angle between
Γ and A. Then there exists a piece of surface in M with boundaries Γ,
A and Σi which is a two dimensional totally geodesic submanifold of M
with coastant curvature δ, where Σx is a shortest geodesic segment with
same extremals as Σ.

LEMMA 11. Assume that there exists —vγ e APtN which satisfies vι<ξAPtN.
Then for any s £ (0, c\ we have d(expp svu N) < /, where c is a positive
number such that expp cv1 is the cut point to p along the geodesic s —> expp

PROOF. Suppose that there is s0 <= (0, c) satisfying d(expp SQV^ N) ^ I.
The hypothesis of Theorem C for C{N) implies that d(expp sovu N) = I. Let
Γ o = {%)(*)} (0 ^ t ^ oo) be denned by V0(t) = expp tv0, Λ = {λ(s)} ( 0 ^ 5 ^ s0)
be defined \(s)=exppsvι and Σ« ̂  G(X(s0), 70(ί)). Then for each t > 0, we must
have <£(*%(()), λ'(0)) = π/2 by the convexity theorem of Toponogov [11], where
(ΓolPULA,^) is the triangle in R2 defined by J?(f 01 [0, t]) = X(Γ01 [0, ί])

= ί, J?(A) = J7(Λ) and X(Xt) — -Z7(Σί). Therefore we have a piece of surface in
M with boundaries Γo, A and Σ which is a totally geodesic surface of constant
curvature 0, where Σ is a ray from λ,(s0) to oo obtained by a converging
subsequence of {Σ j , t > 0. Consider the Jacobi field Y along Γo defined by
Y(0)=0, Y'(0) = τ;1. Let Vx be the unit parallel vector field along Γo defined by
^ ( 0 ) = ̂ !. Then we have Y(t) = t-Vfc) because of K{tflt\Vί(t)) = 0 for all
t ^ 0. Hence Y'(t) ^F 0 holds for all t^0.

On the other hand, by virtue of property (1) of AViN, {expp t(vQ cos oί
— vι sin a) \ t ^ 0, 0 < α < 7r} becomes a surface in M with boundary
Γo I (-00,00). For any a e (0, n\ let Γα = (7α(ί)} (0 <Ξ ί ^ 00) be defined by
7β(ί) = exppί(^0cos^—vv ύna) and Yα be the Jacobi field along Γα defined by
Yβ(0)=0, Y;(0) = -(uosinrt + ViCOs rt). Then we have Y'a(t) = 0 for any ί^/
and any a^(0fπ). Hence 1 im Y'JS) = 0 follows, but we have lim Ya = — Y,

α^0 «->0

from which we derive a cpntradictipn, Q. E. D,
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Lemma 11 implies that for any s £ (0, c), there is a unique geodesic
Φs £ G(X(s\ N) whose extension is defined by Φ s = [φs(t)} (0 5g t < oo), φs(βs)
=λ(5) and £>,(/) £ N. There is a small positive number 5X such that for any
s € (0, $i), there exists unique geodesic segment Ψs £ G(/>, φs(0)). We get a piece
of totally geodesic surface of constant curvature 0 with boundaries Γo, Ψs and
Φs for all s £ (0, 5i). Because this surface is flat and contains Λ|[0, s], the sum
of all angles of the geodesic triangle (Λ | [0, 5], ΨS9 Φs | [0, βs]) is just equal to
n. But since the angle between Ψs and Φ s at <ps(0) is just eqal to τr/2, we
get together with Lemma 11 <(?>/(&), λ'(s)) < τr/2 for all 5 € (0, Sj).

LEMMA 12. Assume that there exists —vλ^ APtN which satisfies
. Then there exists ΦozG(p,N) with the properties Φo Φ Λ and

PROOF. Because vξAPtN> the point <ps(0) is different from p for all
s £ (0,5χ). From the discussion stated in the proof of Lemma 11, there is a
Jacobi field Ys along Γo defined by Ys(0)=0 and y,'(0)= ψ /(0) which is expressed
by Ys(t) = t Vs(t) where Vs is the unit parallel vector field along Γo defined by
Vs(0) - ψs'(0). We note again that K(Vs(t), 7j(ί)) = 0 holds for all t ^ 0 and
5 £ (0, 5χ). Suppose that there is a subsequence {^st(0)} of the sequence {^/(0)}
which satisfies lim'ψ'sXO^λXO). Then we get a Jacobi field Y along Γo defined

by Y(t)=t V1(t) where Vλ is the unit parallel vector field along Γo such that
Vι(0)=v1. The discussion in the proof of Lemma 11 derives a contradiction.
Suppose that there is a subsequence {ψ ί/0)} of {ψsX0)} satisfying lim^CλXO),^/^)

= τr/2. Then the sequence {Φs,} converges to Λ because lim<^(φ/

Sj(βsj\\Xsj)) = 0

which contradicts our assumption that v1<ξAp<N. Therefore we have lim<£(λ'(0),
i->oo

Ψ'siΦ)) € (0,7t/2) for every converging subsequence {ψβ/CO)}. Then we have lim

<(<PsXβSi\ λ'(5t)) = π'/2-lim <(λ'(0), ψ,X0)) £ (0, τr/2). By choosing a subsequence

of (ΦSJ converging to some Φo ̂  G(/>, N) the proof is completed. Q.E.D

P R O O F OF T H E O R E M C. Let Bx be defined by Bλ = [u e APtN \ <vo,u> =0}.
Then Bλ has the properties (1), (3) and moreover for any u^Bly there exists
Uγ^Bγ satisfying < — u,uλ»0 by Lemma 12. Hence there exists v1zBl such
that —v1sB1. Let B2 be the set B2= {u € Bγ\ <vuu> =0}. It is clear that B2

has the same properties as Bu and hence we get that APtN is a ^-dimensional
unit sphere in Mp by induction. We also see that there is a small neighborhood
of p in which any point q of C(N) has the property that AQyN is a ^-dimensional
unit sphere in MQ and moreover the intersection of C(N) and the neighborhood
becomes a totally geodesic submanifold of dimension n—k — 1. Hence we find
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that C(N) is a compact totally geodesic submanifold of dimension n—k — 1. Let
TQ be the tangent space of C(N) at q £ C(N) which is a subspace of MQ. Let
Tg-1 be the orthogonal complement of TQ in Mβ. Then e x p J T ^ is a global
diffeomorphism of T ̂  onto the image exp g(T a

x)cM. Putting ί1

g=expα(Tα-L), we
see that Fq is a (£ + l)-dimensional Riemannian submanifold of M which is
diffeomorphic to Rk+1. We may call Fq is the normal space to C(N) at q £ C(N).

Q.E.D.

REMARK. Because every geodesic Γg starting from # ̂  C(JV) and 7̂ (0) 6 T̂ -1-
becomes a ray from C(N) to oo, we see that FQ f)FQl= 0 for every q, qλ £ C{N\

We also see that the manifold M is the total space of a fibre bundle (M,
C(Λ0, F).

5. Applications. Let Λί be a connected, complete and non-compact Riemann-
ian manifold of class C°° whose sectional curvature is everywhere non-negative.
Let N be a compact totally geodesic hypersurface of M. Making use of Theorem
A, we obtain

PROPOSITION 13. Suppose that N is an even dimensional real projective
space of constant curvature 1 and M is or tent able. Then, M must be
isometric to Sΐ^xR1//, where f: Sϊ^xR^Sϊ^xR1 is defined by f(x,t)
= (—x, —t\ x £ Rΐ~λ

y t £ R1. And if N is an odd dimensional real projective
space and M is orientable, M is isometric to PR71"1 x Rι or otherwise N has
a focal point.

Making use of Theorem 2 and Theorem B, we obtain

PROPOSITION 14. Suppose that there are two distinct compact totally
geodesic submanifolds N and N* in M. Then we have the following
statements:

(1) // dimiV^dimiV^^dimM— 1, N is either isometric to N* or one
of them is the double covering of the other. If N is the double
covering of N*, M is isometric to NxRι/f where f is the isometric
involution on Nd efined by the covering projection π : N-+N* such
that f (xi,t)=(x2, -t),7t(x1) = π(x2) e JV*, tzR\

(2) If F(N)=H and dimiV*<dimiV=dimM-l, N* is contained in
C(N), or otherwise there exists an isometric immersion i: N*^>N.

If M is a locally symmetric space, some results are obtained in [8]. If a
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complete locally symmetric space M admits a compact totally geodesic hypersurface
JV, then the natural homomorphism of fundamental groups πγ(N)-^ πλ(M) is
surjective or otherwise, the isometric structure of M is determined [8].
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