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L In this paper we shall give complete proofs of theorems announced
recently in [8], These results are concerned with properties of interpolation
sets and essential set with respect to a function algebra, and some of them are
regarded as generalization of those results established in several literatures [4],
[7] and [9]. Our main results are Theorem 1 and Theorem 3, which state that
a ^-interpolation set is not compatible with the essential set of the function
algebra. By using these results, in some cases we can determine the essential
set of the function algebra from those essential sets of the restriction algebras
of countable closed partitions (Theorem 4). Theorem 3, together with Theorem
4, has been previously treated by Mullins [9] under the assumptions that the
representing space X of the function algebra coincides with MA and MA is
metrizable.

Let X be a compact Hausdorff space and C(X) the algebra of all complex-
valued continuous functions on X. We consider a function algebra A on X, that
is, A is closed subalgebra of C(X) which separates the points of X and contains
the constants. In this case X is sometimes called a representing space of A.
Throughout this paper MΛ will indicate the maximal ideal space of A. The
Silov boundary of A will be denoted by dA. For a subset F in X, we shall
denote by A\F the restricted algebra of A to F. Let F be a closed subset of
X. If A\F is closed in C(F)9 A\F is regarded as a function algebra on F.
Then F is called an interpolation set for A when A\F=C(F). Let G be an
open subset in X. G is called a w-interpolation set for A in X if any compact
subset of G is an interpolation set for A in X. Following Bear [2] we define
the essential set £ of A in X as the set which is the hull of the largest ideal
of C(X) contained in A.

2. Bishop [3] and Glicksberg [6] have proved that a function algebra A is
characterized by the restriction algebra on the disjoint partition of its maximal
antisymmetric sets and Tomiyama [12] has shown that among these maximal
antisymmetric sets the set P of points, each of which makes itself a maximal
antisymmetric set, is free from the representing space X and plays a special
role in determining the essential set of A ; in fact
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where int(P) is again determined freely from the representing space X. It is

to be noticed that since any continuous function vanishing on E belongs

necessarily to A one easily sees that int(P) is a zv-interpolation set for A in

X. We recall that a subset K of X is said to be an antisymmetric set of A if,

for f in A, f real valued on K implies / is constant on K. The following

Lemma 1 is basic in our forthcoming discussions.

LEMMA 1. Let A be a function algebra on a compact Hausdorff space

X and let p be a point of the Choquet boundary of A. If there exists a

w-interpolation set containing p, then p belongs to int(P).

PROOF. Since p is contained in a w-interpolation set, there exists a closed

neighborhood U of p such that A\U = C(U). This implies there is no

antisymmetric set contained in U which consists of more than two points. Now,

since p is a point of the Choquet boundary of A, for any open neighborhood

V of p we can find a function f in A such that f(p) = 1 = | | / | | and \f\ < 1

outside of V, and we may assume that VcU. Then one verifies easily that we

can choose real numbers s and r with 0 < s < r < l and an open neighborhood

W of p so that R e / > r in W and Re/^5 in X-^-V. Thus W is contained in

V and the sets f(W\ f(X~~V) are contained in compact sets F19 F2 repsectively

such that F1Γ)F2 = Q and the complement of Fx\jF2 is connected in the complex

plane. By Mergelyan's theorem, there exists a sequence {pn} of polynomials

converging uniformly in F1uF2 to the function which is one in F1 and zero

in F2. Next, choose a function g in A such that 0 :fg g(x) ^ 1 in U, g(p) = 1

and <7 = 0 in U~~W. We can see that the sequence g (pn°f) converges uniformly

on X to a continuous function, which necessarily belongs to A. Thus we have

found a function h of A whose support is contained in W and h(p) = l. Moreover,

from the condition A\U = C(U), we may suppose, without loss of generality,

that h is a positive function. Let Wo be the open neighborhood of p in which

h(x) > 0. Then as it is easily seen, there exist no antisymmetric sets of A

which consist of both inside and outside points of Wo. Besides, we already

know that an antisymmetric set of A contained in U necessarily consists of

single point. Hence each point in Wo is a maximal antisymmetric set of A and

p is an interior point of P.

Let E be the essential set of A in X, then it is known (cf. [2]) that A\E

is a function algebra on E. Now let PA\E be the set of all maximal antisymmetric

sets of A\E in E which consist of single point.

LEMMA 2. The interior of PA]E is empty.



50 H. ISHIKAWA, J. TOMIYAMA AND J. WADA

PROOF. By the above cited result in Tomiyama [12] we have only to show
that the interior of PA\E in E is empty. At first we notice that PA\Ed P> because
of the relation X~~E = int(P) and the definition of maximal antisymmetric set.
Now since E is closed in X, E^'mt(PA\E) is again closed in X. Thus int(P)
U intOP^) = X— (iϊ^-intCP^)) is open in X and is contained in P. Hence
int(P) U int(PA\E) = int(P). As int(PA|£) is disjoint from int(P), this implies
intCP^) = 0.

With these preparation we can state our

THEOREM 1. Let A be a function algebra on a compact Hausdorff
space X. If G is a w-interpolation set for A, then Gf\dAlE= 0 , where E is
the essential set of A in X.

PROOF. At first, we notice that GΓ\E is a w-interpolation set for A\E
in E. Suppose GΓ)dAiE^ 0, then G contains a point which belongs to the
Choquet boundary of A\E because the latter is dense in *dA\E. However Lemma 1
and Lemma 2 show that this yields a contradiction.

There is an another proof of the above Theorem 1 without using the
concept of maximal antisymmetric sets. We shall show the idea and the sketch
of the proof.

ANOTHER PROOF OF THEOREM 1. Without loss of generality we may
assume that A is an essential algebra. Let G be a ze -interpolation set and let
F0 = X~~G. We assert that F0ΏdA. Let Fo be the A-convex hull of Fo which
is defined as the set of all elements φ in MA such that

\φ(f)\ =S ll/lk for all/€ A.

Then, it suffices to show that F0I)X. Let there exists a point x0 in X which

does not belong to FQ, then separating x0 and Fo by a function in A we can
find a function f in A and open neighborhoods V of x0 and W of Fo such
that 11-/Or)I < 1/2 in V and \f(x)\ < l / 2 in W. Since X— W is an
interpolation set the same arguments as in Lemma 1 show that there exists a
function ψ in A such that ^ ( F o ) = 0 and ψ (xo) — l.

Let Fx = {χ€ X: / (F0) = 0 implies f(x) = 0 for fzA] and consider the
factor space Y of X obtained by identifying the points of Fx. The algebra
B= {/€ A:/ constant on Fx} is directly transfered to the function algebra
B* = [f*: / e B} on Y whose elements f* are defined as f*(x) = / ( ^ ) for
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χ€X~~Fι and /*(/>) =/(y) for ^ ^ ^ where >̂ denotes the point of Y
corresponding to F^

Now let F be a compact subset in X—2<\. We can separate Fx from any
point of F by function in A and since X ^ ί Ί ( c G ) is a w-interpolation set we
can find, to each point x, an open neighborhood U(x) of x and a function / x

in A such that / x = 1 in £/(#) and fx(Fχ) = 0. Hence by the compactness of F
an usual device shows that we obtain a function h with h(F) = l and h(F1) = 0.
Take an arbitrary continuous function (7 on F. There exists a function 9 in A
such as # = # on F. Then g λ s i ? and gh\F=g. Hence J3* |F=C(F) .
Therefore by the Lemma cited below which is essentially due to Y. Katznelson
(cf. Bade and Cartis [1 p. 92]) we can conclude that B* = C(Y). Thus any
continuous function on X vanishing on Fλ belongs to B and a-posteriori to A.
Hence X = E<z Fλ. This contradicts to the existence of the non-zero function ψ
constructed above. Hence FQ~DX.

The above cited Lemma is: Suppose that A is a function algebra on a
compact Hausdorff space Y and p is a point in Y. If any compact subset F in
Y^> [p] is an interpolation set, then A = C(Y).

The first consequence of Theorem 1 is the following

COROLLARY. Let A be a function algebra on a compact Hausdorff
space X and suppose E = dA\E. Then the set X~~E is the largest zv-
interpolation set for A in X.

The proof is immediate from Theorem 1 and the remark given in the first
part of this section.

The hypothesis of the corollary is necessary. In fact, let X be the set
consisting of the unit circle and the origin O in the unit disc and let A be the
restriction of Ao to X, where Ao denotes the function algebra of all continuous
functions on the unit disc which are analytic in the open disc. Then E — X.
But we here see that G = {0} is a w-interpolation set and G^X~~E= 0.
Hence we can not expect the conclusion of this kind for an arbitrary representing
space X.

A function algebra A on a compact Hausdorff space X is said to be 8-regular
for some (fixed) number £ > 0 if for each closed set F and a point x which
does not belong to F, there exists a function/ in A with \l—f(x)\ < £ and
I/I <S on F. If for each disjoint closed sets Fx and F2, there exists a function

/ in A such that | / | < £ in Fλ and | 1 — / | < £ in F2, we call A an ^-normal
function algebra. Then, for these specialized function algebras we can get the
condition in the above Corollary.
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THEOREM 2. Let A be an S-regular function algebra on a compact
Hausdorff space Xfor 0 < £ ^ l / 2 . Then X^E is the largest w-interpolation
set for A in X where E is the essential set of A in X.

PROOF. Suppose there exists a point p in E which does not belong to dΛlE.
Then there exists a function f in A such that 11 —f{p)| < £ ^ 1/2 and
| / | < £ ^ = l / 2 in dA\E. But this contradicts to the fact that dA\E is a boundary
for A\E. Hence dA\E = E, and X^E is the largest te -interpolation set.

It seems to be interesting that in the case X = MA> the above corollary
holds without the restriction E = dA\E. We state the result in the following

THEOREM 3. Let A be a function algebra on a compact Hausdorff
space X and suppose X — MA. Let E be the essential set of A in X. Then
X^E is the largest w-interpolation set for A in X.

In other words, a point p in X belongs to int(P) = X~~E if and only if
there exists a closed neighborhood U of p such that A \ U = C(U).

PROOF. We have already noticed that int(P) is a tf-interpolation set. Let
G be a ze -interpolation set for A in X. We assert that GπE= 0. Now suppose
GnE* 0, then GnE is a (non-trivial) ze -interpolation set for A\E in E, and
by Theorem 1 GddA\E= 0. On the other hand, the assumption X = MA implies
that MA\E=E. Let U be a non-empty relative open set in E such that UcGCλE,
then A\U = C(U) and UcE^dA\E. By the local maximum modulus principle
in [10; Theoremβ. 1.], we have dAlΊfC.U^U. But A\U=C(U) implies dA[ϋ=U, a
contradiction. Thus G<zX~~E.

3. Theorem 3 is the generalization of Mullins' result [9 Theorem 1] in
which the result is stated assuming that MA is metrizable. Now the same idea
that derived his Theorem 2 from his Theorem 1 would lead us to get the
generalization of [9 Theorem 2] in a more precise form.

THEOREM 4. Let A be a function algebra on a compact Hausdorff
space X with the essential set E and let {F5}j=ι be a cover of closed sets in
X such that A\Fj is closed in C{F5) for each . Then, if X = MA or E=dA{E

oo

the set E coincides with the closure of\J E5> -where Eβ denotes the essential

set of A\FS in F5.

PROOF. From the definition of the essential set, one can easily see that
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Esc.E for each j . Hence E contains the closure of \J E5. Thus it suffices to

consider only the restriction algebra A\E in E. Since X=MA implies MA]E=E,
in both cases we can assume, by the Corollary and Theorem 3, that in X there

is no non-empty w-interpolation set for A Suppose X^ \J E} and let
00 00

U = X^ \^J E). Then U is a non-empty open set and U= \J (UnFj). Hence
j=l j=l

by the category theorem there exists one index j 0 such that UnFJ0 contains
an (non-empty) open set V of X. Since V<zFh~~Ej0, V is a w-interpolation
set for A\Fj99 hence for A in X, a contradiction.

As a direct consequence of this theorem, a result proved recently by Gamelin
and Wilken [δ] follows.

COROLLARY 1. Let A be a function algebra on a compact Hausdorff
space X. If X is covered by a countable number of interpolation sets for A
then A = C(X).

PROOF The conclusion in the case where X = MA is derived immediately
from the theorem since E5 = 0 for all / and E = 0. In general case we have

only to note that X= \^J F5 implies MA— \J F5 ([5; Theorem 1]) where F5
3=1 j=l

is the A-convex hull of F5 in MA. In fact, in this case F5 = F5 for all /, and
the case is reduced to the previous one.

The above corollary is also established by Chalice [4] and Mullins [9] under
some restricted conditions (cf. next corollary).

Notice that in Theorem 4 one can not expect the same result for an
arbitrary representing space X. In the example cited after the corollary of
Theorem 1, if we consider the closed cover {F19F2} of X specifying as F x =unit
circle and F2 = {0}, then Eλ = Ft and E2 = 0 whereas E = X = Ex U {0}.

However if A is £-regular for 0 < £ r g l / 2 we have known that the
condition in Theorem 4 holds. Hence we get the following more precise
formulation of Chalice's announced result [4].

COROLLARY 2. If A is an 8-regular function algebra on a compact
Hausdorff space X for 0 < £ r g l / 2 . Then, we get the same conclusions as in
Theorem 4 and in Corollary 1.
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Therefore if A is approximately regular, or approximately normal the
consequence of Theorem 4 is also true.

Let F be a closed subset in X. Then F is called a closed restriction set for
A if A\F is closed in C(F). It is known by Glicksberg [7] that if any closed
subset in X is a closed restriction set for A, then A = C(X). We moreover
obtain the following theorem by Theorem 1.

THEOREM 5. Let A be a function algebra on a compact Hausdorff
space X and let Fo be a closed set in X. If A \ Fo is dense in C(F0) and if
any compact subset F in X~~F0 is an interpolation set for A (or a closed
restriction set for A), then A = C(X).

PROOF. Since X^-FQ is a ^-interpolation set, we have F0^>dA\E by
Theorem 1. Consequently, A\3A\E is dense in C(dA]E) and A|dA\E = C(dA\E). If
E is non-void, this is a contradiction ([2], p. 388), and so A = C(X).

COROLLARY. Let A be a function algebra on a compact Hausdorff
space X. If Fo is a closed set in X without perfect subsets (in particular,
a closed countable set) and if any compact subset F in X^F0 is an
interpolation set for A (or closed restriction set for A), then A = C(X).

The proof is clear from the well-known Rudin's theorem [11].
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