ON RIEMANNIAN MANIFOLDS WITH CERTAIN CUT LOCI

Hisao Nakagawa and Katsuhiro Shiohama

(Received March 15, 1969)

Introduction. In this paper we deal with an n-dimensional ($n \geqq 2$) connected and compact Riemannian manifold M of class C^{∞} whose sectional curvatures take the maximal value 1 with respect to the Riemannian metric of M. It has been studied by L. W. Green [3]*, S. Kobayashi [4], T. Otrsuki [8] and F. W. Warner [11] to investigate the manifold structure of M with the first conjugate locus $Q(p)$ of an arbitrary point p in M satisfying suitable conditions. In particular, F. W. Warner [11] has shown that if there exists a point p in a compact and simply connected Riemannian manifold M for which each point of the spherical conjugate locus in M_{p} is regular, then that has the same multiplicity as conjugate points which is greater than or equal to 1 , and M is homeomorphic to a sphere or has the integral cohomology ring of one of compact irreducible symmetric spaces of rank 1 . For a submanifold N of M, the cut locus N^{\prime} of N is by definition the set of minimal points of each point q in N along every geodesic which starts from q and whose initial tangent vector is orthogonal to N. Recently, H. Omori [7] has proved that if a real analytic M has a real analytic submanifold N such that the cut locus N^{\prime} of N has the constant distance from N, then N^{\prime} is a real analytic submanifold of M and M has a decomposition $M=D_{N} \cup \phi D_{N^{\prime}}$, where D_{N} and $D_{N^{\prime}}$ are normal disc bundles of N and N^{\prime} respectively. Since it is well known that the cut locus $C(p)$ of a point p is not necessarily closely related to the first conjugate locus $Q(p)$, it might be significant to investigate the manifold structure of M having a point p in such a way that the cut locus of p is spherical.

In §1, we prepare the notations and definitions. In §2, we study the general properties of M with a spherical cut locus. Further additional conditions for M with a spherical cut locus are stated in $\S 3$ and $\S 4$.

1. Preliminaries. Let there be given an $n(n \geqq 2)$-dimensional connected and compact Riemannian manifold M of class C^{∞} whose sectional curvature takes maximal value 1 with the metric of M. For a point p in M we denote the cut locus and the first conjugate locus of p in M by $C(p)$ and $Q(p)$ respectively. Let M_{p} be the tangent space at p and $\exp _{p}$ the exponential map of

[^0]M_{p} onto M. We denote by C_{p} the set of all tangent vectors X in M_{p} such that the point $\exp _{p} X$ is the cut point to p along the geodesic $\exp _{p} \frac{t X}{\|X\|}$, where $\|X\|$ is the norm of X and $t \geqq 0 . C_{p}$ is called the cut locus of p in M_{p}. We denote also by Q_{p} the set of all tangent vectors Y in M_{p} such that $\exp _{p} Y$ is the first conjugate point to p along the geodesic $\exp _{p} \frac{t Y}{\|Y\|}, t \geqq 0$. Throughout this paper let a geodesic be parametrized by its arc length, unless otherwise stated.

For two points p and q in M, let $\Gamma(p, q)$ be the set of all shortest geodesic segments which start from p and end at q. A geodesic loop γ at p is by definition a closed geodesic segment having the same end points as p without self intersection except p. The geodesic sphere in M with a center at x and of radius r is denoted by $S(x, r)$, and the sphere of dimension m in M_{x} with a center at the origin and of radius r is denoted by $S_{x}^{m}(r)$.

We denote by $P=P(X, Y)$ the plane section spanned by two vectors X and Y linearly independent on each other in M_{p}, and by $K(P)=K(X, Y)$ the sectional curvature corresponding to a plane section $P=P(X, Y)$, which is given by $K(X, Y)=-<R(X, Y) X, Y>/\left(<X, X><Y, Y>-<X, Y>^{2}\right)$ where $<,>$ is the inner product with respect to the Riemannian metric on M and R is the Riemannian curvature tensor on M.
2. Spherical cut locus. We assume now that there exists a point p in M in such a way that each point of the cut locus $C(p)$ of p has the constant distance, say l, with respect to the Riemannian metric mentioned above. Under the condition the cut locus $C(p)$ in M is the image of an ($n-1$)-dimensional sphere $S_{p}^{n-1}(l)$ with a center at the origin and of radius l in M_{p} under the exponential map, that is, the cut locus C_{p} in M_{p} is $S_{p}^{n-1}(l)$. From the assumption above it follows that

$$
\begin{equation*}
d(p, q)=d(p, C(p))=l \tag{1}
\end{equation*}
$$

for any point q of $C(p)$, where d denotes the distance function on M. First of all, we prove the following;

Lemma 2.1. If there exists a point pfor which the cut locus C_{p} in M_{p} is an ($n-1$)-dimensional sphere with a center at the origin and of radius l, i.e., $C_{p}=S_{p}^{n-1}(l)$, and that $l<\pi$, then all the geodesic segments starting from p and of length $2 l$ are geodesic loops at p.

Proof. By virtue of the hypothesis of the metric on M, we have $\|Y\| \geqq \pi$
for any $Y \in Q_{p}$, which implies together with the assumption $l<\pi$ that $C_{p} \cap Q_{p}=\emptyset$. For an arbitrary geodesic segment γ starting from p and of length $2 l, \gamma(l)$ is a point in $C(p)$, say q. Taking account of an elementary property of the cut locus we see that there exists a geodesic segment γ^{*} in $\Gamma(p, q)$ different from $\gamma \mid[0, l]$ such that the angle $\Varangle\left(\gamma^{\prime}(l), \gamma^{*^{\prime}}(l)\right)$ at q is equal to π, where $\gamma^{\prime}(l)$ denotes the tangent vector to γ at $\gamma(l)$. This implies that $\gamma \mid[l, 2 l]$ coincides with the inverse geodesic segment γ^{-1} of $\gamma *$. Thus γ is a geodesic loop at p which does not intersect itself except p.
Q.E.D.

Proposition 2.2. If there exists a point pfor which $C_{p}=S_{p}^{n-1}(l)$, then l is greater than or equal to $\pi / 2$.

Proof. If $l<\pi / 2$, the assumption of Lemma 2.1 is satisfied, from which it follows that all the geodesic segments γ starting from p and of length $2 l$ is geodesic loops at p. For such a structure of geodesic segments it is seen [5] that $\gamma(2 l)$ is conjugate to $\gamma(0)$ along γ with multiplicity $n-1$. But this is a contradiction.
Q.E.D.

In the case $l<\pi$, taking account of the property of Lemma 2.1 and developing the similar discussion to that of the proof of Proposition 2.2, we see that for any geodesic segment γ starting from p and of length $2 l, p=\gamma(2 l)$ is the first conjugate point to $p=\gamma(0)$ along γ with multiplicity $n-1$. Making use of the result obtained in [6], we have immediately,

THEOREM 2.3. If there exists a point p for which $C_{p}=S_{p}^{n-1}(\pi / 2)$, then M is isometric to an n-dimensional real projective space $P R^{n}(1)$ with constant curvature 1.

THEOREM 2.4. If there exists a point p for which $C_{p}=S_{p}^{n-1}(l)$ such that $\pi / 2<l<\pi$, then M has the same (co)homology group as that of $P R^{n}$ and the universal covering manifold \widetilde{M} of M is homeomorphic to S^{n}.

By virtue of Lemma 1.4 in [5], we have
Corollary 2.5. If M is simply connected and there exists a point p for which $C_{p}=S_{p}^{n-1}(l)$, then l is greater than or equal to π.

THEOREM 2.6. If there exists a point p in M for which $C_{p}=S_{p}^{n-1}(l)$ and the cut locus $C(p)$ in M is not contained entirely in $Q(p)$ in M, then $C_{p} \cap Q_{p}=\emptyset$ and M has the same (co)homology group as that of $P R^{n}$ and \widetilde{M} is homeomorphic to S^{n}.

Proof. Let \widetilde{Q}_{p} be the set of all points in M_{p} for each point of which $\exp _{p}$ has not maximal rank. It is evident that \widetilde{Q}_{p} is closed and we have $\widetilde{Q}_{p} \cap S_{p}^{n-1}(l)=Q_{p} \cap S_{p}^{n-1}(l) \subset Q_{p}$. This fact means that $Q_{p} \cap S_{p}^{n-1}(l)$ is a closed subset in $S_{p}^{n-1}(l)$. By the assumption $C(p) \Varangle Q(p)$ there exists a point $q \in C(p) \cap Q(p)^{c}$, that is, for any $\gamma \in \Gamma(p, q), q$ is not conjugate to p along γ. Then we have X_{1} and X_{2} in M_{p} such that $\left\|X_{1}\right\|=\left\|X_{2}\right\|=l, X_{1} \neq X_{2}$ and $\exp _{p} X_{1}=\exp _{p} X_{2}=q$. Putting $\gamma_{i}(t)=\exp _{p}\left(t X_{i} / l\right)(i=1,2)$, we have $\Varangle\left(\gamma_{1}^{\prime}(l), \gamma_{2}^{\prime}(l)\right)=\pi$. By the closedness of $Q_{p} \cap S_{p}^{n-1}(l)$ there exists neighborhoods U_{i} of X_{i} in $S_{p}^{n-1}(l)$ such that $U_{i} \cap Q_{p}=\emptyset$ for $i=1,2$, and $\exp _{p} U_{1}=\exp _{p} U_{2}$, where $\exp _{p}$ restricted to U_{i} is a diffeomorphism of U_{i} onto the image $\exp _{p} U_{i}$. Hence for any $Y_{1} \in U_{1} \cap C_{p}$, there exists $Y_{2} \in U_{2} \cap C_{p}$ such that $\exp _{p} Y_{1}=\exp _{p} Y_{2} \in C(p)$ and the geodesic segment σ defined by $\sigma(t)=\exp _{p}\left(t Y_{i} / l\right)$ is a geodesic loop at p of length $2 l$, along which $p=\sigma(2 l)$ is the first conjugate point to $p=\sigma(0)$ along σ with multiplicity $n-1$.

On the other hand, we suppose that there were a point Z in $C_{p} \cap Q_{p}$. We denote the great circle of $S_{p}^{n-1}(l)$ connecting X and Y by [X, Y]. Then there exists a point X in Q_{p} on the great circle $\left[X_{1}, Z\right]$ (or $\left[X_{2}, Z\right]$) in such a way that X is nearest to X_{1} (or X_{2}) on $\left[X_{1}, Z\right]$ (or $\left[X_{2}, Z\right]$) and for any interior point Y_{1} of $\left[X_{1}, X\right]$, the vector Y_{2} and the neighborhoods U_{1} and U_{2} mentioned above exist. By virtue of the hypothesis of $X, \exp _{p} X$ is the first conjugate point to p along the geodesic γ_{X} defined by $\gamma_{X}(t)=\exp _{p}(t X / l)$. We have the Jacobi field J_{X} along γ_{X} such that $J_{X}(0)=J_{X}(l)=0$, which is orthogonal to γ_{X}. For any $Y \in\left[X_{1}, X\right]$ we have a family of Jacobi fields J_{Y} along γ_{Y} defined by $\gamma_{Y}(t)=\exp _{p}(t Y / l)$ such that $J_{Y}(0)=0, J_{Y}^{\prime}(0)=J_{X}^{\prime}(0)$ and J_{Y} is orthogonal to γ_{Y}, where $J_{Y}^{\prime}(t)$ is the covariant derivation of $J_{Y}(t)$ with respect to $\gamma_{Y}^{\prime}(t)$. Since p itself is the first conjugate point to p with multiplicity $n-1$ along γ_{Y} for any interior point Y of $\left[X_{1}, X\right]$ because of the choice of X, we have $J_{Y}(l) \neq 0$ and $J_{Y}(2 l)=0$. But the first conjugate point of p along γ_{Y} depends continuously on the initial condition of γ_{Y}. This is a contradiction. Consequently the first assertion of the theorem holds, and furthermore all geodesic segments starting from p of length $2 l$ are geodesic loops at p with index 0 . This implies that M is not simply connected by Lemma 1.4 in [5] and then the proof is completed.

As a direct consequence of the theorem above, we have the following
COROLLARY 2.7. If there exists a point p in a simply connected M where $C_{p}=S_{p}^{n-1}(l)$ is satisfied, then the cut locus $C(p)$ in M is contained in the first conjugate locus $Q(p)$ in M.

REmARK. It is not certain whether the following statement is true or not: If there is a point p in M for which the cut locus C_{p} in M_{p} is a sphere and $C(p)$ coincides with $Q(p)$, then M is simply connected. Recently A. D.

Weinstein [12] has shown that the following conjecture given by Rauch [9] is false in general : In a compact and simply connected Riemannian manifold, C_{p} and Q_{p} will have a common point. Corollary 2.7 shows that in our case the conjecture is affirmative.
3. Spherical cut locus of positive curvature. In this section we consider the additional condition that M has the positive curvature such that

$$
\begin{equation*}
0<k \leqq K(P) \leqq 1 \tag{2}
\end{equation*}
$$

where $K(P)$ denotes the sectional curvature of an arbitrary plane section P. By virture of the theorem due to Myers we have $d(M) \leqq \pi / \sqrt{k}$, where $d(M)$ is the diameter of M. By the assumption that there exists a point p for which $C_{p}=S_{p}^{n-1}(l)$, it is evident that $l \leqq d(M)$. The theorem of Morse-Schoenberg shows that along any geodesic γ the first conjugate point to $\gamma(0)$, say $\gamma\left(t_{0}\right)$, satisfies the inequality $\pi \leqq t_{0} \leqq \pi / \sqrt{k}$. Making use of Corollary 2.5 , we have

Lemma 3.1. If there is a point pfor which $C_{p}=S_{p}^{n-1}(l)$ hold, then we have $\pi \leqq l \leqq \pi / \sqrt{k}$ if M is simply connected and we have $\pi / 2 \leqq l \leqq \pi / 2 \sqrt{k}$ if M is not simply connected.

Proof. The case where M is simply connected is trivial. We suppose that M is not simply connected. There are at least two different points \widetilde{p}_{1} and \widetilde{p}_{2} on the universal covering manifold \widetilde{M} such that $\pi\left(\widetilde{p}_{1}\right)=\pi\left(\widetilde{p}_{2}\right)=p$, where π is the covering map. By means of the properties of the universal covering manifold we have $\tilde{\gamma} \in \Gamma\left(\widetilde{p}_{1}, \widetilde{p}_{2}\right)$ such that $L(\tilde{\gamma})=d\left(\widetilde{p}_{1}, \widetilde{p}_{2}\right)$ and $L(\tilde{\gamma}) \leqq d(\widetilde{M}) \leqq \pi / \sqrt{k}$, where $L(\tilde{\gamma})$ denotes the length of $\tilde{\boldsymbol{\gamma}}$. The projection $\boldsymbol{\gamma}$ of $\tilde{\boldsymbol{\gamma}}$ under the covering map π is a closed geodesic segment with the same extremals as p, because \widetilde{p}_{1} and \widetilde{p}_{2} are contained in the inverse image of p under π. Hence we have $2 l \leqq L(\gamma)=L(\widetilde{\gamma}) \leqq \pi / \sqrt{k}$.
Q.E.D.

Now by the theorem of Toponogov [10], we have
THEOREM 3.2. If there exists a point p in M of positive curvature satisfying (2) for which C_{p} is a sphere with radius π / \sqrt{k}, then M is isometric to $S^{n}(k)$ with constant curvature k.

THEOREM 3.3. If there exists a point p in M of positive curvature satisfying (2) at which $C_{p}=S_{p}^{n-1}(l)$ and l satisfies $\pi / 2 \sqrt{k}<l<\pi / \sqrt{k}$, then M is homeomorphic to S^{n}.

Proof. It suffices to show that the cut locus $C(p)$ in M consists of only one point. Take a point q in $C(p)$ and let $B(q, \varepsilon)$ be the open ball in M with a center at q and of radius ε, where $\varepsilon=l-\pi / 2 \sqrt{k}$. Suppose that there were a point r in $C(p) \cap B(q, \varepsilon)$ different from q. For any geodesic segment σ in $\Gamma(q, r)$, we take a point y on σ such that $d(p, y)=d(p, \sigma)$. We may assume that y lies in the interior of the segment σ because of $d(p, \sigma) \leqq l$. Making use of the triangle inequality for p, q and y, we get $l=d(p, q) \leqq d(p, y)+d(y, q)<d(p, y)+\varepsilon$, and hence we have $d(p, y)>l-\varepsilon=\pi / 2 \sqrt{k}$. By virtue of Proposition 3 in Berger [1], there is a point z on σ such that $d(p, y)>d(p, z)$. This is a contradiction. By the connectedness of $C(p)$ the theorem is proved completely. Q.E.D.
4. Spherical cut locus of positive curvature with $l=\pi / 2 \sqrt{k}$. In this section we assume now that M is a compact and connected Riemannian manifold of positive curvature satisfying (2) and there exists a point p in M for which the cut locus C_{p} in M_{p} is a sphere of radius $l=\pi / 2 \sqrt{k}$. In the rest of this section we develop the similar discussion to that of Berger [2], who has showed the following important theorem : If an even dimensional compact and simply connected Riemannian manifold N of ($1 / 4$)-pinching is not homeomorphic to a sphere of the same dimension as N, then N is isometric to a compact symmetric space of rank 1. We shall prove that all of the geodesic segments starting from p with length π / \sqrt{k} are geodesic loops at p. If $C(p)$ consists of only one point, the statement above is trivial. Then we shall consider the case $C(p) \neq\{q\}$. At first we prove the following ;

Lemma 4.1. For any two points q and r in $C(p)$, the geodesic segment σ in $\Gamma(q, r)$ lies entirely in $C(p)$.

Proof. Let σ be a shortest geodesic in $\Gamma(q, r)$ such that $\sigma(0)=q$ and $\sigma(a)=r$. Then we have $a \leqq \pi / \sqrt{k}=2 l$ because of the Myers' theorem. When $q=r$, the proof is trivial and hence we suppose that q is different from r. In the case $a=\pi / \sqrt{k}, M$ is isometric to $S^{n}(k)$ by the Toponogov's theorem [10], which contradicts our assumption $C_{p}=S_{p}^{n-1}(\pi / 2 \sqrt{k})$. We have therefore $a<\pi / \sqrt{k}$. Suppose that there were a point x on σ lying in the interior of the geodesic segment σ such that $d(p, x)=d(p, \sigma)<\pi / 2 \sqrt{k}$. Without loss of generality, we may consider that $d(q, x) \leqq a / 2<\pi / 2 \sqrt{k}$. Making use of the basic theorem on triangles of Toponogov [10], we must have $d(p, q)<l$ because the angle of segments at x is equal to $\pi / 2$. Then $d(p, q)=l$ implies $d(p, x)=l$. This shows that $d(p, \sigma(t))=l$ for all $t \in[0, a]$.
Q.E.D.

For any two points q and r in $C(p)$ and any $\sigma \in \Gamma(q, r)$ such that $0<L(\sigma)=a<\pi / \sqrt{k}$ and for any fixed $t \in(0, a)$ we have $\gamma_{t} \in \Gamma(p, \sigma(t))$ such that $\gamma_{t}(0)=p, \gamma_{t}(l)=\sigma(t)$ and $\left\langle\gamma_{t}^{\prime}(l), \sigma^{\prime}(t)\right\rangle=0$. Let X_{t} be a unit parallel vector field
along γ_{t} defined by $X_{t}(l)=\sigma^{\prime}(t)$, then we get $<X_{t}(s), \gamma_{t}^{\prime}(s)>=0$ for all $s \in[0, l]$. Putting $Y_{t}(s)=X_{t}(s) \sin \pi s / 2 l$, we have a 1 -parameter variation $V(s, u)$ of γ_{t} defined by $V(s, u)=\exp _{\gamma_{t}(s)}\left(u Y_{t}(s)\right)$ for all $u \in(-\varepsilon, \varepsilon)$, where ε is a sufficiently small positive number. Taking account of the fact that the variation vector field $Y_{t}(s)$ of the variation $V(s, u)$ is orthogonal to $\gamma^{\prime}(s)$, we see that the first variation formula with respect to the variation shows that $L^{\prime}(0)=0$. For the second variation $L^{\prime \prime}(0)$ we have

$$
\begin{align*}
L^{\prime \prime}(0) & =\int_{0}^{l}\left(\left\langle Y_{t}^{\prime}(s), Y_{t}^{\prime}(s)>-K\left(Y_{t}(s), \gamma_{t}^{\prime}(s)\right)<Y_{t}(s), Y_{t}(s)>\right) d s\right. \tag{3}\\
& \leqq \int_{0}^{l}\left(\frac{\pi^{2}}{4 l^{2}} \cos ^{2} \frac{\pi}{2 l} s-k \sin ^{2} \frac{\pi}{2 l} s\right) d s=0
\end{align*}
$$

where $K\left(Y_{t}(s), \gamma_{t}^{\prime}(s)\right)$ is the sectional curvature of the plane section spanned by $Y_{t}(s)$ and $\gamma_{t}^{\prime}(s)$.

On the other hand, $V(l, u)$ is contained entirely in $C(p)$ because of the construction of the variation, and we have therefore $L^{\prime \prime}(0) \geqq 0$. This shows that the equality of (3) holds, i. e., we have $K\left(Y_{t}(s), \gamma_{t}^{\prime}(s)\right)=k$ for all $s \in[0, l]$. Since k is an eigenvalue of the quadratic form $X \rightarrow<R\left(X, \gamma_{t}^{\prime}\right) \gamma_{t}^{\prime}, X>$, it follows that $R\left(Y_{t}(s), \gamma_{t}^{\prime}(s)\right) \gamma_{t}^{\prime}(s)=k Y_{t}(s)$ for all $s \in[0, l]$. This implies that $Y_{t}(s)$ is a Jacobi field along γ_{t} and $Y_{t} /\left\|Y_{t}\right\|$ is parallel along γ_{t}.

As t_{n} tends to 0 , we can choose a subsequence of a sequence $\left\{\gamma_{t_{n}}^{\prime}(0)\right\}$ converging to a unit vector V in M_{p}. Putting $\gamma_{0}(t)=\exp _{p} t V$, we have $\gamma_{0}(l)=q$. Now let X_{0} be a unit parallel vector field along γ_{0} defined by $X_{0}(l)=\sigma^{\prime}(0)$, and put $Y_{0}(s)=X_{0}(s) \sin \pi s / 2 l$. Because of $\lim _{n \rightarrow \infty} X_{t_{n}}=X_{0}$ it follows that Y_{0} is a Jacobi field along γ_{0} and $K\left(X_{0}(x), \gamma_{0}^{\prime}(s)\right)=k$ for all $s \in[0, l]$. Then we shall prove the following ;

Lemma 4.2. For any $\boldsymbol{\gamma} \in \Gamma(p, q)$, we have

$$
\begin{equation*}
<\gamma^{\prime}(l), \sigma^{\prime}(0)>=0 \tag{4}
\end{equation*}
$$

(5) Let X be a unit parallel vector field along γ defined by $X(l)=\sigma^{\prime}(0)$, then we get $K\left(X(s), \gamma^{\prime}(s)\right)=k$ for all $s \in[0, l]$.
(6) $Y(s)=X(s) \sin \pi s / 2 l$ is a Jacobi field along γ.

Proof. Suppose that there were a geodesic segment γ in $\Gamma(p, q)$ such that $<\gamma^{\prime}(l), \sigma^{\prime}(0)>\neq 0$. We shall derive a contradiction. Let θ be the angle between $\gamma^{\prime}(l)$ and $\sigma^{\prime}(0)$ at q. Since it follows from Toponogov's theorem that θ is equal to or less than $\pi / 2$, we suppose that θ is less than $\pi / 2$. For the geodesic segment γ_{0} and X_{0}, Y_{0} stated above we may consider that the length
of all variational curves $V_{0}(s, u)$ whose variation vector field is Y_{0} are just equal to l. We may also consider that the variational curve $V_{0}(s, u)$ is a geodesic segment for all $u \in(-\varepsilon, \varepsilon)$, that is to say, $V_{0}(s, u)$ is defined by $V_{0}(s, u)=\exp _{p} s\left(\gamma_{0}^{\prime}(0) \cos \frac{u}{l}+X_{0}(0) \sin \frac{u}{l}\right) . \quad$ Because of $\exp _{p} \cdot \mathscr{I}_{l r^{\prime}(0)} X_{0}(0) \neq 0$, there is a small number $\varepsilon>0$ such that for every $u \in(-\varepsilon, \varepsilon)$, $\exp _{p^{*} * \mathcal{F}_{l}\left(\gamma_{0}^{\prime}(0) \cos \frac{u}{l}+X_{0}(0) \sin \frac{u}{l}\right)}\left(-\gamma_{0}^{\prime}(0) \sin \frac{u}{l}+X_{0}(0) \cos \frac{u}{l}\right) \neq 0$ is satisfied, where \mathscr{F}_{z} means the parallel translation along z from M_{p} to $\left(M_{p}\right)_{z}, z \in M_{p}$. The curve, $u \rightarrow V_{0}(l, u)$ can be considered as a regular curve and putting this curve $\tau(u)=V_{0}(l, u)$, we get $\tau(u)=\sigma(u)$ for $u \in[0, \varepsilon), \tau^{\prime}(0)=\sigma^{\prime}(0)$ and $\tau(u)$ is contained in $C(p)$ for all $u \in(-\varepsilon, \varepsilon)$. Let $B(q, \delta)$ be a normal convex ball with a center at q and of radius δ. Take a point y on γ such that $y=\gamma(l-a) \in B(q, \delta)$ and take a point z on τ such that $z \in B(q, \delta)$ and $d(y, z)=d(y, \boldsymbol{\tau})$. Then we can consider that $z=\tau(-b), \varepsilon>b>0$ and as y tends to q, z also tends to q. Consider the triangle $\widetilde{\triangle}_{a}(\widetilde{q}, \widetilde{z}, \tilde{y})$ in R^{2} such that $d(\widetilde{q}, \widetilde{z})=d(q, z), d(\widetilde{z}, \tilde{y})=d(z, y)$, and $d(\tilde{y}, \widetilde{q})=d(y, q)=a$. For a sequence of geodesic triangles $\triangle_{a}=(q, z, y)$ in M shrinking to q as a tends to 0 in such a way that the angles of \triangle_{a} approach limits equal to neither 0 nor π, we have $\lim _{a \rightarrow 0}(\Varangle(q, z, y)-\Varangle(\widetilde{q}, \tilde{z}, \tilde{y}))=\lim _{a \rightarrow 0}(\Varangle(z, y, q)-\Varangle(\tilde{z}, \widetilde{y}, \tilde{q}))=\lim _{a \rightarrow 0}(\Varangle(y, q, z)-\Varangle(\tilde{y}, \widetilde{q}, \tilde{z}))=0$, by virtue of an elementary property of Riemannian manifolds. Hence we have $\lim _{a \rightarrow 0} \Varangle(y, q, z)=\theta, \lim _{a \rightarrow 0} \Varangle(q, z, y)=\pi / 2$ and $\lim _{a \rightarrow 0} \Varangle(z, y, q)=\pi / 2-\theta$, from which it follows that for sufficiently small $\eta>0$ there exist $C_{0}>0$ and $C_{1}>0$ such that $C_{0} \leqq \sin \Varangle(y, q, z) \leqq C_{1}<1$ for all $a \in(0, \eta)$. Then we have $d(p, z) \leqq d(p, y)+d(y, z)$ $\leqq(l-a)+C_{1} \cdot a=l-\left(1-C_{1}\right) a$. This is a contradiction. Then the first assertion (4) is proved.

By means of the discussion above, it can be shown that $\tau \mid(-\varepsilon, 0]$ coincides with $\sigma \mid(-\varepsilon, 0]$ and is also contained in $C(p)$ and $<\sigma^{\prime}(0), \gamma^{\prime}(l)>=0$. Thus an analogous argument for γ leads the other assertions (5) and (6). Q.E.D.

Taking account of two lemmas obtained above and developing the same discussion as that of Lemmas 6 and 8 in [2], where we replace $1 / 4$ in [2] by k, we can prove the following two lemmas:

Lemma 4.3. For an arbitrary fixed point q in $C(p)$, let M_{q}^{0} be a subset of M_{q} consisting of all tangent vectors at q of curves in $C(p)$ passing through q. Then M_{q}^{0} is a subspace of M_{q}.

Lemma 4.4. Let M_{q}^{\perp} be the orthogonal complement of M_{q}^{0} in M_{q}. Then we have $\exp _{q} l X=p$ for any $X \in M_{q}^{\perp}$ and $\|X\|=1$.

As a direct consequence of Lemma 4.4, we have
Lemma 4.5. All of the geodesic segments starting from p and of length π / \sqrt{k} are geodesic loops at p.

This lemma shows that by virtue of the results obtained in [5], all geodesic loops at p are of the same index λ, where $\lambda=0,1,3,7, n-1$, and λ is equal to 0 if and only if M is not simply connected and λ is positive if and only if M is simply connected. Consequently if $\lambda>0$, then $C(p)$ coincides with $Q(p)$. For any $q \in Q(p)$ the multiplicity of p and q as conjugate points must be equal to λ. By means of the main theorem in [5] we have

THEOREM 4.6. Let there be given a point in M satisfying the condition that $C_{p}=S_{p}^{n-1}(\pi / 2 \sqrt{k})$ and (2). Then we have
(a) For any $q \in Q(p)$, the multiplicity of p and q as conjugate points is constant λ, where $\lambda=0,1,3,7, n-1$.
(b) If M is simply connected, then the integral cohomology ring $H^{*}(M, Z)$ is a truncated polynomial ring generated by an element. In particular when λ is equal to $n-1, M$ is homeomorphic to S^{n}.
(c) If M is not simply connected, then M is isometric to a real projective space $P R^{n}(k)$ with constant curvature k.

The case $\lambda=n-1$ in the assertion (b) is obtained by the Warner's theorem and the assertion (c) is due to the Toponogov's maximal diameter theorem. As a straightforward consequence of the theorem above, we have

Corollary 4.7. $C(p)$ is a totally geodesic submanifold.

Bibliography

[1] M. Berger, Les variétés riemanniennes à courbure positive, Bull. Soc. Math. Belg., 10(1958), 89-104.
[2] M. BERGER, Sur quelques variété riemanniennes suffisamment pincees, Bull. Soc. Math. France, 88(1960), 57-71.
[3] L. W. Green, Auf Wiedersehensflächen, Ann. of Math., 78(1963), 289-299.
[4] S. Kobayashi, Riemannian manifolds without conjugate points, Ann. Math. Pure. Appl., 59(1961), 149-158.
[5] H. Nakagawa, A note on theorems of Bott and Samelson, J. Math. Kyoto Univ., 7(1967), 205-220.
[6] H. NAKAGAWA, Riemannian manifolds with many geodesic loops, J. Math. Soc. Japan., 20(1968), 648-654.
[7] H. OMORI, A class of riemannian metrics on a manifold, J. Diff. Geom., 2(1968), 233-252.
[8] T. OTTSUKI, On focal elements and the spheres, Tôhoku Math. J., 17(1965), 285-304.
[9] H.E. RAUCH, Geodesics and Curvatures in Differential Geometry in the large, Yeshiva Univ. Press, New York, 1959.
[10] V.A. Toponogov, Riemannian spaces having their curvature bounded below by a positive number, Amer. Math. Soc. Transl., 18(1964), 291-336. (Uspehi Math. Soc. 14(1959), 87-130).
[11] F. W. Warner, Conjugate loci of constant order, Ann. of Math., 86(1967), 192-212.
[12] A. D. Weinstein, The cut locus and conjugate locus of a Riemannian manifold, Ann. of Math., 87(1968), 29-41.

Department of Mathematics
Tokyo University of Agriculture and Technology
TOKYO, JAPAN
AND
Department of Mathematics
Tokyo Institute of Technology
TOKYO, JAPAN

[^0]: *) Numbers in brackets refer to the bibliography at the end of this paper.

