Tôhoku Math. Journ. 22(1970), 14-23.

ON RIEMANNIAN MANIFOLDS WITH CERTAIN CUT LOCI

HISAO NAKAGAWA AND KATSUHIRO SHIOHAMA

(Received March 15, 1969)

Introduction. In this paper we deal with an *n*-dimensional $(n \ge 2)$ connected and compact Riemannian manifold M of class C^{∞} whose sectional curvatures take the maximal value 1 with respect to the Riemannian metric of M. It has been studied by L. W. Green [3]*, S. Kobayashi [4], T. Otsuki [8] and F. W. Warner [11] to investigate the manifold structure of M with the first conjugate locus O(p) of an arbitrary point p in M satisfying suitable conditions. In particular, F. W. Warner [11] has shown that if there exists a point p in a compact and simply connected Riemannian manifold M for which each point of the spherical conjugate locus in M_n is regular, then that has the same multiplicity as conjugate points which is greater than or equal to 1, and M is homeomorphic to a sphere or has the integral cohomology ring of one of compact irreducible symmetric spaces of rank 1. For a submanifold N of M, the cut locus N' of N is by definition the set of minimal points of each point q in N along every geodesic which starts from q and whose initial tangent vector is orthogonal to N. Recently, H. \overline{O} mori [7] has proved that if a real analytic M has a real analytic submanifold N such that the cut locus N' of N has the constant distance from N, then N' is a real analytic submanifold of M and M has a decomposition $M = D_N \cup \phi D_{N'}$, where D_N and $D_{N'}$ are normal disc bundles of N and N' respectively. Since it is well known that the cut locus C(p) of a point p is not necessarily closely related to the first conjugate locus Q(p), it might be significant to investigate the manifold structure of M having a point p in such a way that the cut locus of p is spherical.

In §1, we prepare the notations and definitions. In §2, we study the general properties of M with a spherical cut locus. Further additional conditions for M with a spherical cut locus are stated in §3 and §4.

1. Preliminaries. Let there be given an $n(n \ge 2)$ -dimensional connected and compact Riemannian manifold M of class C^{∞} whose sectional curvature takes maximal value 1 with the metric of M. For a point p in M we denote the cut locus and the first conjugate locus of p in M by C(p) and Q(p)respectively. Let M_p be the tangent space at p and \exp_p the exponential map of

^{*)} Numbers in brackets refer to the bibliography at the end of this paper.

 M_p onto M. We denote by C_p the set of all tangent vectors X in M_p such that the point $\exp_p X$ is the cut point to p along the geodesic $\exp_p \frac{tX}{\|X\|}$, where $\|X\|$ is the norm of X and $t \ge 0$. C_p is called the cut locus of p in M_p . We denote also by Q_p the set of all tangent vectors Y in M_p such that $\exp_p Y$ is the first conjugate point to p along the geodesic $\exp_p \frac{tY}{\|Y\|}$, $t \ge 0$. Throughout this paper let a geodesic be parametrized by its arc length, unless otherwise stated.

For two points p and q in M, let $\Gamma(p, q)$ be the set of all shortest geodesic segments which start from p and end at q. A geodesic loop γ at p is by definition a closed geodesic segment having the same end points as p without self intersection except p. The geodesic sphere in M with a center at x and of radius r is denoted by S(x, r), and the sphere of dimension m in M_x with a center at the origin and of radius r is denoted by $S_x^m(r)$.

We denote by P = P(X, Y) the plane section spanned by two vectors X and Y linearly independent on each other in M_p , and by K(P) = K(X, Y) the sectional curvature corresponding to a plane section P = P(X, Y), which is given by $K(X, Y) = -\langle R(X, Y)X, Y \rangle / (\langle X, X \rangle \langle Y, Y \rangle - \langle X, Y \rangle^2)$ where \langle , \rangle is the inner product with respect to the Riemannian metric on M and R is the Riemannian curvature tensor on M.

2. Spherical cut locus. We assume now that there exists a point p in M in such a way that each point of the cut locus C(p) of p has the constant distance, say l, with respect to the Riemannian metric mentioned above. Under the condition the cut locus C(p) in M is the image of an (n-1)-dimensional sphere $S_p^{n-1}(l)$ with a center at the origin and of radius l in M_p under the exponential map, that is, the cut locus C_p in M_p is $S_p^{n-1}(l)$. From the assumption above it follows that

(1)
$$d(p,q) = d(p,C(p)) = l,$$

for any point q of C(p), where d denotes the distance function on M. First of all, we prove the following;

LEMMA 2.1. If there exists a point p for which the cut locus C_p in M_p is an (n-1)-dimensional sphere with a center at the origin and of radius l, i.e., $C_p = S_p^{n-1}(l)$, and that $l < \pi$, then all the geodesic segments starting from p and of length 2l are geodesic loops at p.

PROOF. By virtue of the hypothesis of the metric on *M*, we have $||Y|| \ge \pi$

for any $Y \in Q_p$, which implies together with the assumption $l < \pi$ that $C_p \cap Q_p = \emptyset$. For an arbitrary geodesic segment γ starting from p and of length 2l, $\gamma(l)$ is a point in C(p), say q. Taking account of an elementary property of the cut locus we see that there exists a geodesic segment γ^* in $\Gamma(p,q)$ different from $\gamma \mid [0,l]$ such that the angle $\langle (\gamma'(l), \gamma^{*'}(l))$ at q is equal to π , where $\gamma'(l)$ denotes the tangent vector to γ at $\gamma(l)$. This implies that $\gamma \mid [l, 2l]$ coincides with the inverse geodesic segment γ^{*-1} of γ^{*} . Thus γ is a geodesic loop at p which does not intersect itself except p.

PROPOSITION 2.2. If there exists a point p for which $C_p = S_p^{n-1}(l)$, then l is greater than or equal to $\pi/2$.

PROOF. If $l < \pi/2$, the assumption of Lemma 2.1 is satisfied, from which it follows that all the geodesic segments γ starting from p and of length 2*l* is geodesic loops at p. For such a structure of geodesic segments it is seen [5] that $\gamma(2l)$ is conjugate to $\gamma(0)$ along γ with multiplicity n-1. But this is a contradiction. Q. E. D.

In the case $l < \pi$, taking account of the property of Lemma 2.1 and developing the similar discussion to that of the proof of Proposition 2.2, we see that for any geodesic segment γ starting from p and of length 2l, $p = \gamma(2l)$ is the first conjugate point to $p = \gamma(0)$ along γ with multiplicity n-1. Making use of the result obtained in [6], we have immediately,

THEOREM 2.3. If there exists a point p for which $C_p = S_p^{n-1}(\pi/2)$, then M is isometric to an n-dimensional real projective space $PR^n(1)$ with constant curvature 1.

THEOREM 2.4. If there exists a point p for which $C_p = S_p^{n-1}(l)$ such that $\pi/2 < l < \pi$, then M has the same (co)homology group as that of PR^n and the universal covering manifold \widetilde{M} of M is homeomorphic to S^n .

By virtue of Lemma 1.4 in [5], we have

COROLLARY 2.5. If M is simply connected and there exists a point p for which $C_p = S_p^{n-1}(l)$, then l is greater than or equal to π .

THEOREM 2.6. If there exists a point p in M for which $C_p = S_p^{n-1}(l)$ and the cut locus C(p) in M is not contained entirely in Q(p) in M, then $C_p \cap Q_p = \emptyset$ and M has the same (co)homology group as that of PR^n and \widetilde{M} is homeomorphic to S^n . PROOF. Let \widetilde{Q}_p be the set of all points in M_p for each point of which \exp_p has not maximal rank. It is evident that \widetilde{Q}_p is closed and we have $\widetilde{Q}_p \cap S_p^{n-1}(l) = Q_p \cap S_p^{n-1}(l) \subset Q_p$. This fact means that $Q_p \cap S_p^{n-1}(l)$ is a closed subset in $S_p^{n-1}(l)$. By the assumption $C(p) \not\leq Q(p)$ there exists a point $q \in C(p) \cap Q(p)^c$, that is, for any $\gamma \in \Gamma(p,q)$, q is not conjugate to p along γ . Then we have X_1 and X_2 in M_p such that $||X_1|| = ||X_2|| = l$, $X_1 \neq X_2$ and $\exp_p X_1 = \exp_p X_2 = q$. Putting $\gamma_i(t) = \exp_p(tX_i/l)$ (i = 1, 2), we have $\not\leq (\gamma'_1(l), \gamma'_2(l)) = \pi$. By the closedness of $Q_p \cap S_p^{n-1}(l)$ there exists neighborhoods U_i of X_i in $S_p^{n-1}(l)$ such that $U_i \cap Q_p = \emptyset$ for i = 1, 2, and $\exp_p U_1 = \exp_p U_2$, where \exp_p restricted to U_i is a diffeomorphism of U_i onto the image $\exp_p U_i$. Hence for any $Y_1 \in U_1 \cap C_p$, there exists $Y_2 \in U_2 \cap C_p$ such that $\exp_p Y_1 = \exp_p Y_2 \in C(p)$ and the geodesic segment σ defined by $\sigma(t) = \exp_p(tY_i/l)$ is a geodesic loop at p of length 2l, along which $p = \sigma(2l)$ is the first conjugate point to $p = \sigma(0)$ along σ with multiplicity n-1.

On the other hand, we suppose that there were a point Z in $C_p \cap Q_p$. We denote the great circle of $S_p^{n-1}(l)$ connecting X and Y by [X, Y]. Then there exists a point X in Q_p on the great circle $[X_1, Z]$ (or $[X_2, Z]$) in such a way that X is nearest to X_1 (or X_2) on $[X_1, Z]$ (or $[X_2, Z]$) and for any interior point Y_1 of $[X_1, X]$, the vector Y_2 and the neighborhoods U_1 and U_2 mentioned above exist. By virtue of the hypothesis of X, $\exp_{p}X$ is the first conjugate point to p along the geodesic γ_x defined by $\gamma_x(t) = \exp_p(tX/l)$. We have the Jacobi field J_x along γ_x such that $J_x(0) = J_x(l) = 0$, which is orthogonal to γ_X . For any $Y \in [X_1, X]$ we have a family of Jacobi fields J_Y along γ_Y defined by $\gamma_{Y}(t) = \exp_{v}(tY/l)$ such that $J_{Y}(0) = 0$, $J'_{Y}(0) = J'_{X}(0)$ and J_{Y} is orthogonal to γ_r , where $J'_r(t)$ is the covariant derivation of $J_r(t)$ with respect to $\gamma'_r(t)$. Since p itself is the first conjugate point to p with multiplicity n-1 along $\gamma_{\rm r}$ for any interior point Y of $[X_1, X]$ because of the choice of X, we have $J_r(l) \neq 0$ and $J_r(2l)=0$. But the first conjugate point of p along γ_r depends continuously on the initial condition of γ_r . This is a contradiction. Consequently the first assertion of the theorem holds, and furthermore all geodesic segments starting from p of length 2l are geodesic loops at p with index 0. This implies that M is not simply connected by Lemma 1.4 in [5] and then the proof is completed.

As a direct consequence of the theorem above, we have the following

COROLLARY 2.7. If there exists a point p in a simply connected M where $C_p = S_p^{n-1}(l)$ is satisfied, then the cut locus C(p) in M is contained in the first conjugate locus Q(p) in M.

REMARK. It is not certain whether the following statement is true or not: If there is a point p in M for which the cut locus C_p in M_p is a sphere and C(p) coincides with Q(p), then M is simply connected. Recently A.D.

18 H. NAKAGAWA AND K. SHIOHAMA

Weinstein [12] has shown that the following conjecture given by Rauch [9] is false in general: In a compact and simply connected Riemannian manifold, C_p and Q_p will have a common point. Corollary 2.7 shows that in our case the conjecture is affirmative.

3. Spherical cut locus of positive curvature. In this section we consider the additional condition that M has the positive curvature such that

$$(2) 0 < k \leq K(P) \leq 1,$$

where K(P) denotes the sectional curvature of an arbitrary plane section P. By virture of the theorem due to Myers we have $d(M) \leq \pi/\sqrt{k}$, where d(M) is the diameter of M. By the assumption that there exists a point p for which $C_p = S_p^{n-1}(l)$, it is evident that $l \leq d(M)$. The theorem of Morse-Schoenberg shows that along any geodesic γ the first conjugate point to $\gamma(0)$, say $\gamma(t_0)$, satisfies the inequality $\pi \leq t_0 \leq \pi/\sqrt{k}$. Making use of Corollary 2.5, we have

LEMMA 3.1. If there is a point p for which $C_p = S_p^{n-1}(l)$ hold, then we have $\pi \leq l \leq \pi/\sqrt{k}$ if M is simply connected and we have $\pi/2 \leq l \leq \pi/2\sqrt{k}$ if M is not simply connected.

PROOF. The case where M is simply connected is trivial. We suppose that M is not simply connected. There are at least two different points \tilde{p}_1 and \tilde{p}_2 on the universal covering manifold \tilde{M} such that $\pi(\tilde{p}_1) = \pi(\tilde{p}_2) = p$, where π is the covering map. By means of the properties of the universal covering manifold we have $\tilde{\gamma} \in \Gamma(\tilde{p}_1, \tilde{p}_2)$ such that $L(\tilde{\gamma}) = d(\tilde{p}_1, \tilde{p}_2)$ and $L(\tilde{\gamma}) \leq d(\tilde{M}) \leq \pi/\sqrt{k}$, where $L(\tilde{\gamma})$ denotes the length of $\tilde{\gamma}$. The projection γ of $\tilde{\gamma}$ under the covering map π is a closed geodesic segment with the same extremals as p, because \tilde{p}_1 and \tilde{p}_2 are contained in the inverse image of p under π . Hence we have $2l \leq L(\gamma) = L(\tilde{\gamma}) \leq \pi/\sqrt{k}$. Q. E. D.

Now by the theorem of Toponogov [10], we have

THEOREM 3.2. If there exists a point p in M of positive curvature satisfying (2) for which C_p is a sphere with radius π/\sqrt{k} , then M is isometric to $S^n(k)$ with constant curvature k.

THEOREM 3.3. If there exists a point p in M of positive curvature satisfying (2) at which $C_p = S_p^{n-1}(l)$ and l satisfies $\pi/2\sqrt{k} < l < \pi/\sqrt{k}$, then M is homeomorphic to S^n .

PROOF. It suffices to show that the cut locus C(p) in M consists of only one point. Take a point q in C(p) and let $B(q, \varepsilon)$ be the open ball in M with a center at q and of radius ε , where $\varepsilon = l - \pi/2\sqrt{k}$. Suppose that there were a point r in $C(p) \cap B(q, \varepsilon)$ different from q. For any geodesic segment σ in $\Gamma(q, r)$, we take a point y on σ such that $d(p, y) = d(p, \sigma)$. We may assume that y lies in the interior of the segment σ because of $d(p, \sigma) \leq l$. Making use of the triangle inequality for p, q and y, we get $l = d(p,q) \leq d(p,y) + d(y,q) < d(p,y) + \varepsilon$, and hence we have $d(p,y) > l - \varepsilon = \pi/2\sqrt{k}$. By virtue of Proposition 3 in Berger [1], there is a point z on σ such that d(p, y) > d(p, z). This is a contradiction. By the connectedness of C(p) the theorem is proved completely. Q. E. D.

4. Spherical cut locus of positive curvature with $l=\pi/2\sqrt{k}$. In this section we assume now that M is a compact and connected Riemannian manifold of positive curvature satisfying (2) and there exists a point p in M for which the cut locus C_p in M_p is a sphere of radius $l=\pi/2\sqrt{k}$. In the rest of this section we develop the similar discussion to that of Berger [2], who has showed the following important theorem: If an even dimensional compact and simply connected Riemannian manifold N of (1/4)-pinching is not homeomorphic to a sphere of the same dimension as N, then N is isometric to a compact symmetric space of rank 1. We shall prove that all of the geodesic segments starting from p with length π/\sqrt{k} are geodesic loops at p. If C(p) consists of only one point, the statement above is trivial. Then we shall consider the case $C(p) \neq \{q\}$. At first we prove the following ;

LEMMA 4.1. For any two points q and r in C(p), the geodesic segment σ in $\Gamma(q, r)$ lies entirely in C(p).

PROOF. Let σ be a shortest geodesic in $\Gamma(q,r)$ such that $\sigma(0) = q$ and $\sigma(a)=r$. Then we have $a \leq \pi/\sqrt{k} = 2l$ because of the Myers' theorem. When q=r, the proof is trivial and hence we suppose that q is different from r. In the case $a = \pi/\sqrt{k}$, M is isometric to $S^n(k)$ by the Toponogov's theorem [10], which contradicts our assumption $C_p = S_p^{n-1}(\pi/2\sqrt{k})$. We have therefore $a < \pi/\sqrt{k}$. Suppose that there were a point x on σ lying in the interior of the geodesic segment σ such that $d(p, x) = d(p, \sigma) < \pi/2\sqrt{k}$. Without loss of generality, we may consider that $d(q, x) \leq a/2 < \pi/2\sqrt{k}$. Making use of the basic theorem on triangles of Toponogov [10], we must have d(p,q) < l because the angle of segments at x is equal to $\pi/2$. Then d(p,q) = l implies d(p,x) = l. This shows that $d(p,\sigma(t)) = l$ for all $t \in [0, a]$.

For any two points q and r in C(p) and any $\sigma \in \Gamma(q, r)$ such that $0 < L(\sigma) = a < \pi/\sqrt{k}$ and for any fixed $t \in (0, a)$ we have $\gamma_t \in \Gamma(p, \sigma(t))$ such that $\gamma_t(0) = p$, $\gamma_t(l) = \sigma(t)$ and $\langle \gamma'_t(l), \sigma'(t) \rangle = 0$. Let X_t be a unit parallel vector field

H. NAKAGAWA AND K. SHIOHAMA

along γ_t defined by $X_t(l) = \sigma'(t)$, then we get $\langle X_t(s), \gamma'_t(s) \rangle = 0$ for all $s \in [0, l]$. Putting $Y_t(s) = X_t(s) \sin \pi s/2l$, we have a 1-parameter variation V(s, u) of γ_t defined by $V(s, u) = \exp_{\gamma_t(s)}(uY_t(s))$ for all $u \in (-\mathcal{E}, \mathcal{E})$, where \mathcal{E} is a sufficiently small positive number. Taking account of the fact that the variation vector field $Y_t(s)$ of the variation V(s, u) is orthogonal to $\gamma'(s)$, we see that the first variation formula with respect to the variation shows that L'(0) = 0. For the second variation L''(0) we have

$$(3) \qquad L''(0) = \int_0^t (\langle Y'_t(s), Y'_t(s) \rangle - K(Y_t(s), \gamma'_t(s)) \langle Y_t(s), Y_t(s) \rangle) ds$$
$$\leq \int_0^t \left(\frac{\pi^2}{4l^2} \cos^2 \frac{\pi}{2l} s - k \sin^2 \frac{\pi}{2l} s \right) ds = 0,$$

where $K(Y_t(s), \gamma'_t(s))$ is the sectional curvature of the plane section spanned by $Y_t(s)$ and $\gamma'_t(s)$.

On the other hand, V(l, u) is contained entirely in C(p) because of the construction of the variation, and we have therefore $L''(0) \ge 0$. This shows that the equality of (3) holds, i. e., we have $K(Y_t(s), \gamma'_t(s)) = k$ for all $s \in [0, l]$. Since k is an eigenvalue of the quadratic form $X \to \langle R(X, \gamma'_t)\gamma'_t, X \rangle$, it follows that $R(Y_t(s), \gamma'_t(s))\gamma'_t(s) = kY_t(s)$ for all $s \in [0, l]$. This implies that $Y_t(s)$ is a Jacobi field along γ_t and $Y_t/||Y_t||$ is parallel along γ_t .

As t_n tends to 0, we can choose a subsequence of a sequence $\{\gamma'_{t_n}(0)\}$ converging to a unit vector V in M_p . Putting $\gamma_0(t) = \exp_p t V$, we have $\gamma_0(l) = q$. Now let X_0 be a unit parallel vector field along γ_0 defined by $X_0(l) = \sigma'(0)$, and put $Y_0(s) = X_0(s) \sin \pi s/2l$. Because of $\lim_{n \to \infty} X_{t_n} = X_0$ it follows that Y_0 is a Jacobi field along γ_0 and $K(X_0(x), \gamma'_0(s)) = k$ for all $s \in [0, l]$. Then we shall prove the following;

LEMMA 4.2. For any $\gamma \in \Gamma(p,q)$, we have

$$(4) \qquad \qquad < \gamma'(l), \sigma'(0) > = 0.$$

- (5) Let X be a unit parallel vector field along γ defined by $X(l) = \sigma'(0)$, then we get $K(X(s), \gamma'(s)) = k$ for all $s \in [0, l]$.
- (6) $Y(s) = X(s) \sin \pi s/2l$ is a Jacobi field along γ .

PROOF. Suppose that there were a geodesic segment γ in $\Gamma(p,q)$ such that $\langle \gamma'(l), \sigma'(0) \rangle \neq 0$. We shall derive a contradiction. Let θ be the angle between $\gamma'(l)$ and $\sigma'(0)$ at q. Since it follows from Toponogov's theorem that θ is equal to or less than $\pi/2$, we suppose that θ is less than $\pi/2$. For the geodesic segment γ_0 and X_0, Y_0 stated above we may consider that the length

of all variational curves $V_0(s, u)$ whose variation vector field is Y_0 are just equal to l. We may also consider that the variational curve $V_0(s, u)$ is a geodesic segment for all $u \in (-\varepsilon, \varepsilon)$, that is to say, $V_0(s, u)$ is defined by $V_0(s, u) = \exp_p s\left(\gamma_0'(0) \cos \frac{u}{l} + X_0(0) \sin \frac{u}{l}\right). \quad \text{Because of } \exp_p \mathscr{F}_{l\gamma'(0)} X_0(0) \neq 0,$ there is a small number $\varepsilon > 0$ such that for every $u \in (-\varepsilon, \varepsilon)$, $\exp_{p^{\bullet}}\mathcal{F}_{l\left(\gamma_{0}'(0)\cos\frac{u}{l}+X_{0}(0)\sin\frac{u}{l}\right)}\left(-\gamma_{0}'(0)\sin\frac{u}{l}+X_{0}(0)\cos\frac{u}{l}\right) \neq 0 \text{ is satisfied, where}$ \mathcal{F}_z means the parallel translation along z from M_p to $(M_p)_z$, $z \in M_p$. The curve $u \to V_0(l, u)$ can be considered as a regular curve and putting this curve $\tau(u) = V_0(l, u)$, we get $\tau(u) = \sigma(u)$ for $u \in [0, \varepsilon)$, $\tau'(0) = \sigma'(0)$ and $\tau(u)$ is contained in C(p) for all $u \in (-\varepsilon, \varepsilon)$. Let $B(q, \delta)$ be a normal convex ball with a center at q and of radius δ . Take a point y on γ such that $y = \gamma(l-a) \in B(q, \delta)$ and take a point z on τ such that $z \in B(q, \delta)$ and $d(y,z) = d(y,\tau)$. Then we can consider that $z = \tau(-b)$, $\varepsilon > b > 0$ and as y tends to q, z also tends to q. Consider the triangle $\widetilde{\bigtriangleup}_{q}(\widetilde{q}, \widetilde{z}, \widetilde{\gamma})$ in R^{2} such that $d(\tilde{q}, \tilde{z}) = d(q, z), d(\tilde{z}, \tilde{y}) = d(z, y), \text{ and } d(\tilde{y}, \tilde{q}) = d(y, q) = a.$ For a sequence of geodesic triangles $\triangle_a = (q, z, y)$ in M shrinking to q as a tends to 0 in such a way that the angles of \triangle_a approach limits equal to neither 0 nor π , we have $\lim_{a\to 0} (\measuredangle(q,z,y) - \measuredangle(\tilde{q},\tilde{z},\tilde{y})) = \lim_{a\to 0} (\measuredangle(z,y,q) - \measuredangle(\tilde{z},\tilde{y},\tilde{q})) = \lim_{a\to 0} (\measuredangle(y,q,z) - \measuredangle(\tilde{y},\tilde{q},\tilde{z})) = 0,$ by virtue of an elementary property of Riemannian manifolds. Hence we have $\lim_{a\to 0} \langle (y,q,z) = \theta, \lim_{a\to 0} \langle (q,z,y) = \pi/2 \text{ and } \lim_{a\to 0} \langle (z,y,q) = \pi/2 - \theta, \text{ from which it follows that for sufficiently small } \eta > 0 \text{ there exist } C_0 > 0 \text{ and } C_1 > 0 \text{ such that}$ $C_0 \leq \sin \langle (y, q, z) \leq C_1 < 1$ for all $a \in (0, \eta)$. Then we have $d(p, z) \leq d(p, y) + d(y, z)$ $\leq (l-a)+C_1 \cdot a = l-(1-C_1)a$. This is a contradiction. Then the first assertion (4) is proved.

By means of the discussion above, it can be shown that $\tau|(-\varepsilon, 0]$ coincides with $\sigma|(-\varepsilon, 0]$ and is also contained in C(p) and $\langle \sigma'(0), \gamma'(l) \rangle = 0$. Thus an analogous argument for γ leads the other assertions (5) and (6). Q.E.D.

Taking account of two lemmas obtained above and developing the same discussion as that of Lemmas 6 and 8 in [2], where we replace 1/4 in [2] by k, we can prove the following two lemmas:

LEMMA 4.3. For an arbitrary fixed point q in C(p), let M_q^0 be a subset of M_q consisting of all tangent vectors at q of curves in C(p) passing through q. Then M_q^0 is a subspace of M_q .

LEMMA 4.4. Let M_q^{\perp} be the orthogonal complement of M_q^0 in M_q . Then we have $\exp_q IX = p$ for any $X \in M_q^{\perp}$ and ||X|| = 1.

H. NAKAGAWA AND K. SHIOHAMA

As a direct consequence of Lemma 4.4, we have

LEMMA 4.5. All of the geodesic segments starting from p and of length π/\sqrt{k} are geodesic loops at p.

This lemma shows that by virtue of the results obtained in [5], all geodesic loops at p are of the same index λ , where $\lambda=0,1,3,7,n-1$, and λ is equal to 0 if and only if M is not simply connected and λ is positive if and only if Mis simply connected. Consequently if $\lambda>0$, then C(p) coincides with Q(p). For any $q \in Q(p)$ the multiplicity of p and q as conjugate points must be equal to λ . By means of the main theorem in [5] we have

THEOREM 4.6. Let there be given a point in M satisfying the condition that $C_p = S_p^{n-1}(\pi/2\sqrt{k})$ and (2). Then we have

(a) For any $q \in Q(p)$, the multiplicity of p and q as conjugate points is constant λ , where $\lambda=0, 1, 3, 7, n-1$.

(b) If M is simply connected, then the integral cohomology ring $H^*(M, Z)$ is a truncated polynomial ring generated by an element. In particular when λ is equal to n-1, M is homeomorphic to S^n .

(c) If M is not simply connected, then M is isometric to a real projective space $PR^{n}(k)$ with constant curvature k.

The case $\lambda = n-1$ in the assertion (b) is obtained by the Warner's theorem and the assertion (c) is due to the Toponogov's maximal diameter theorem. As a straightforward consequence of the theorem above, we have

COROLLARY 4.7. C(p) is a totally geodesic submanifold.

BIBLIOGRAPHY

- M. BERGER, Les variétés riemanniennes à courbure positive, Bull. Soc. Math. Belg., 10(1958), 89-104.
- [2] M. BERGER, Sur quelques variété riemanniennes suffisamment pincees, Bull. Soc. Math. France, 88(1960), 57-71.
- [3] L. W. GREEN, Auf Wiederschensflächen, Ann. of Math., 78(1963), 289-299.
- [4] S. KOBAYASHI, Riemannian manifolds without conjugate points, Ann. Math. Pure. Appl., 59(1961), 149-158.
- [5] H.NAKAGAWA, A note on theorems of Bott and Samelson, J. Math. Kyoto Univ., 7(1967), 205-220.
- [6] H. NAKAGAWA, Riemannian manifolds with many geodesic loops, J. Math. Soc. Japan., 20(1968), 648-654.
- [7] H. OMORI, A class of riemannian metrics on a manifold, J. Diff. Geom., 2(1968), 233-252.

22

- [8] T. OTSUKI, On focal elements and the spheres, Tôhoku Math. J., 17(1965), 285-304.
- [9] H.E.RAUCH, Geodesics and Curvatures in Differential Geometry in the large, Yeshiva Univ. Press, New York, 1959.
- [10] V. A. TOPONOGOV, Riemannian spaces having their curvature bounded below by a positive number, Amer. Math. Soc. Transl., 18(1964), 291-336. (Uspehi Math. Soc. 14(1959), 87-130).
- [11] F. W. WARNER, Conjugate loci of constant order, Ann. of Math., 86(1967), 192-212.
- [12] A. D. WEINSTEIN, The cut locus and conjugate locus of a Riemannian manifold, Ann. of Math., 87(1968), 29-41.

DEPARTMENT OF MATHEMATICS Tokyo University of Agriculture and Technology Tokyo, Japan

AND

DEPARTMENT OF MATHEMATICS Tokyo Institute of Technology Tokyo, Japan