UNRAMIFIED EXTENSIONS OF QUADRATIC NUMBER FIELDS, II

KÔJI UCHIDA

(Received December 25, 1969)

We have studied equations of type $X^n - aX + b = 0$, and have obtained some results on unramified extensions of quadratic number fields [3]. In this paper we have further results which include almost all of [3]. We do not refer to [3] in the following, though the techniques of proofs are almost equal to those of [3]. Theorems proved here are the following.¹⁾ Notice that "unramified" means in this paper that every finite prime is unramified.

THEOREM 1. Let k be an algebraic number field of finite degree. Let a and b be integers of k. K denotes the minimal splitting field of a polynomial

$$f(X) = X^n - aX + b,$$

i.e., $K = k(\alpha_1, \dots, \alpha_n)$ where $\alpha_1, \dots, \alpha_n$ are the roots of f(X) = 0. Let $D = \prod_{i \in J} (\alpha_i - \alpha_j)^2$ be the discriminant of f(X). If (n-1)a and nb are relatively prime, K is unramified over $k(\sqrt{D})$.

THEOREM 2. Let $n \ge 3$ be an integer, and A_n be an alternating group of degree n. Then there exist infinitely many quadratic number fields which have unramified Galois extensions with Galois groups A_n .

1. Proof of Theorem 1. Let \mathfrak{B} be any finite prime of K, and let $\mathfrak{p}=\mathfrak{P}\cap k$. Let G be the Galois group of K over k. Then G is a permutation group of $(\alpha_1,\cdots,\alpha_n)$. Let H be the subgroup of G consisting of the even permutations. H corresponds to $k(\sqrt{D})$. We shall prove Theorem 1 by showing that H meets with the inertia group of \mathfrak{P} trivially. First we consider the factorization of f(X) mod \mathfrak{P} . From $f(X)=X^n-aX+b$ and $f'(X)=nX^{n-1}-a$, it follows

$$Xf'(X) - nf(X) = (n-1)aX - nb.$$

¹⁾ After I prepared the manuscript of this paper, I knew that Y. Yamamoto had already obtained the same results which is to appear in Osaka Math. J. before long.

As ((n-1)a, nb) = 1, this does not vanish mod \mathfrak{p} . So (n-1)aX - nb is the g. c. d. of f(X) and f'(X) mod \mathfrak{p} , if f(X) and f'(X) have common factors mod \mathfrak{p} . Therefore f(X) is factorized as

$$f(X) \equiv \bar{f}_1(X) \cdots \bar{f}_r(X) \pmod{\mathfrak{p}}$$

or

$$f(X) \equiv ((n-1)aX - nb)^2 \, \overline{g}_2(X) \cdots \, \overline{g}_s(X)$$
 (mod \mathfrak{p}),

according as f(X) has only simple roots mod $\mathfrak p$ or not. In the above each $\bar f_i(X)$ is irreducible mod $\mathfrak p$ and $\bar f_i(X) \equiv \bar f_j(X)$ for $i \neq j$. Each $\bar \gamma_i(X)$, $2 \leq i \leq s$, is irreducible mod $\mathfrak p$ and $\bar g_i(X) \equiv \bar g_j(X)$ for $i \neq j$, and also $\bar \gamma_i(X) \equiv (n-1)aX - nb$. By Hensel's lemma f(X) is factorized in the local field $k_{\mathfrak p}$ in the form

$$(1) f(X) = f_1(X) \cdots f_r(X)$$

or

$$(2) f(X) = g_1(X) \cdots g_s(X),$$

where $f_i(X) \equiv \bar{f}_i(X) \pmod{\mathfrak{p}}$, $g_j(X) \equiv \bar{g}_j(X) \pmod{\mathfrak{p}}$, $j \geq 2$ and $g_1(X) \equiv ((n-1)aX - nb)^2 \pmod{\mathfrak{p}}$. $K_{\mathfrak{p}}$ is obtained from $k_{\mathfrak{p}}$ by adjoining the roots of f(X) = 0. The roots of $f_i(X) = 0$ or $g_j(X) = 0$, $j \geq 2$, generate unramified extensions of k_j . So $K_{\mathfrak{p}}$ is unramified over $k_{\mathfrak{p}}$ in the case (1). If $K_{\mathfrak{p}}$ is ramified over $k_{\mathfrak{p}}$ in the case (2), $g_1(X)$ is irreducible of degree 2 and the inertia group is generated by the transposition of the roots of $g_1(X) = 0$. So it meets with H trivially, and \mathfrak{P} is unramified over $k(\sqrt{D})$. As we took \mathfrak{P} arbitrarily, K is unramified over $k(\sqrt{D})$.

2. **Proof of Theorem 2.** In this section the ground field is taken as the field Q of the rational numbers. We find pairs of rational integers (a, b) such that ((n-1)a, nb)=1 and the equations $f(X)=X^n-aX+b=0$ which have symmetric groups S_n as Galois groups. If we have infinitely many different $Q(\sqrt{D})$, Theorem 2 follows from Theorem 1. If a polynomial f(X) is irreducible over Q, the Galois group of K over Q is a transitive permutation group. To find the Galois group, we apply the following

LEMMA [4, Theorem 13.3]. If a primitive permutation group contains a transposition, it is a symmetric group.

As we have seen in the proof of Theorem 1, the inertia group of a prime \mathfrak{P} contains a transposition if \mathfrak{P} is ramified. As the field Q has no unramified

222 K. UCHIDA

extension, there exist primes of K ramified over Q. Therefore the Galois group of K over Q contains a transposition. If we show it is primitive, it is a symmetric group by the above lemma. As any transitive group of a prime degree is primitive [4, Theorem 8.3], we have

PROPOSITION. If n = l is a prime and if f(X) is irreducible over Q, the Galois group of K over Q is a symmetric group S_l . Therefore K is an unramified extension of $Q(\sqrt{D})$ with Galois group A_l .

Now we show that there exist pairs of integers (a, b) satisfying the conditions in the first paragraph of this section. Let l be a prime number such that

$$l \equiv 1 \pmod{n-1}$$
.

If b is divisible by l, then

$$(3) X^n - aX + b \equiv X(X^{n-1} - a) \pmod{l}$$

holds. As Z/lZ contains all the (n-1)-st roots of unity, $X^{n-1}-a$ is irreducible mod l if a is a primitive root mod l. Then X^n-aX+b has irreducible factors of degree 1 and degree n-1, if it is reducible over Q. But it has no factor of degree 1 if a is sufficiently large. Then X^n-aX+b is irreducible over Q, and its Galois group is primitive by the factorization (3). We can choose a and b as ((n-1)a, nb) = 1. Then all the conditions are satisfied.

Now let p be any prime number such that $(p, \ln(n-1)) = 1$, where l is fixed as above. We show that there exists a pair (a, b) such that $D = D(a, b) = p \cdot D_0$, $(p, D_0) = 1$ and that satisfies the above conditions. Then we have infinitely many different $Q(\sqrt{D})$. D is calculated as

$$D = (-1)^{\frac{n(n-1)}{2}} \prod_{i} f'(\alpha_{i}) = (-1)^{\frac{n(n-1)}{2}} \prod_{i} (n\alpha_{i}^{n-1} - a)$$
$$= (-1)^{\frac{n(n-1)}{2}} \{n^{n}b^{n-1} - (n-1)^{n-1}a^{n}\}.$$

Let b be a multiple of l such that $b \equiv n-1 \pmod{p}$ and (b, n-1)=1. As (p, n)=1, we have a sufficiently large integer a_1 such that $a_1 \equiv n \pmod{p}$, $(a_1, nb)=1$ and a_1 is a primitive root mod l. Then $D_1 = D(a_1, b)$ is divisible by p. If D_1 is divisible by p^2 , we replace a_1 by

$$a = a_1 + nblp$$
.

Then D = D(a, b) is divisible by p, bue not divisible by p^2 . This completes the proof.

COROLLARY 1. Let G be a finite group. Then there exists an algebraic number field k which has an unramified extension with Galois group G. If G is of order n, k is taken as $[k:Q] \leq 2 \cdot (n-1)!$

PROOF. Let K be a Galois extension of Q with Galois group S_n , which is unramified over $Q(\sqrt{D})$. Let q be a prime number such that (q, D) = 1. Then $K(\sqrt{q})$ is unramified over $Q(\sqrt{qD})$ and its Galois group is a symmetric group S_n . G can be considered as a subgroup of S_n . If k denotes the subfield of $K(\sqrt{q})$ corresponding to G, k satisfies the conditions of Corollary.

REMARK. This corollary was proved by Fröhlich [1], though $[k:Q] \le (n-1)! \times (n!)!$ in his case.

COROLLARY 2. Let F be any field of characteristic zero. Let a and b be indeterminates. Then the equation

$$(4) X^n - aX + b = 0$$

has the Galois group S_n over F(a, b).

PROOF. First we show this in the case F is an algebraic number field of finite degree. We may assume that F is normal over Q. Let (a_0, b_0) be a pair of rational integers such that the Galois group of

$$(5) X^n - a_0 X + b_0 = 0$$

is a symmetric group S_n . Let $D_0 = D(a_0, b_0)$ be its discriminant. By the proof of Theorem 2, (a_0, b_0) can be taken as $Q(\sqrt{D_0})$ is not included in F. Then the Galois group of (5) over F is also S_n . So the Galois group of (4) over F(a, b) is also S_n . Now let $\alpha_1, \dots, \alpha_n$ be the roots of the equation (4). We put $K = Q(a, b, \alpha_1, \dots, \alpha_n)$. Above argument shows that an algebraic closure of Q and K are linearly disjoint over Q. Hence K is a regular extension of Q. Let F be arbitrary. F and K are free over Q. As K is regular over Q, they are linearly disjont over Q [2. Chap. III. Theorem 3]. Therefore the Galois group of (4) over F(a, b) is isomorphic to one over Q(a, b), and the proof is completed.

REMARK. If F is not of characteristic zero this corollary does not hold

224

in general. In fact, if F is of characteristic p, the Galois group of the equation

$$X^{p^m} - aX + b = 0$$

is solvable. It is easily shown from the fact that $(\alpha - \beta)^{p^m-1} = a$, where α and β are two roots of above equation.

EXAMPLES. We give examples for small a, b and n. In all examples f(X) are irreducible over Q and the Galois groups over $Q(\sqrt{D})$ are alternating groups.

n	a = a	b	D_{i} σ_{i}
5	1	1	$2869 = 19 \times 151$
5	-2 ,	1.	11317 (prime)
6	1	1	$-43531 = -101 \times 431$
6	1	-1	$49781 = 67 \times 743$
7	1	1	-776887 (prime)
7	-1	1	$-870199 = -11 \times 239 \times 331$
8	1	-1	$-17600759 = -11 \times 1600069$
9	1	1	$370643273 = 7 \times 11 \times 13 \times 43 \times 79 \times 109$
9	-1	1	$404197705 = 5 \times 197 \times 410353$
10	1	1	$-9612579511 = -29 \times 4127 \times 80317$
10	1	-1	$10387420489 = 173 \times 60042893$

REFERENCES

- [1] A. Fröhlich, On non-ramified extensions with prescribed Galois group, Mathematika, 9(1962).
- [2] S. Lang, Introduction to algebraic geometry, Interscience Publishers, 1958.
- [3] K. Uchida, Unramified extensions of quadratic number fields, I, Tôhoku Math. J., 22(1970).
- [4] H. Wielandt, Finite permutation groups, Academic Press, 1964.

MATHEMATICAL INSTITUTE, TÔHOKU UNIVERSITY SENDAI, JAPAN