UNRAMIFIED EXTENSIONS OF QUADRATIC NUMBER FIELDS, II

KÔJI UCHIDA

(Received December 25,1969)

We have studied equations of type $X^{n}-a X+b=0$, and have obtained some results on unramified extensions of quadratic number fields [3]. In this paper we have further results which inslude almost all of [3]. We do not refer to [3] in the following, though the tec'niques of proofs are almost equal to those of [3]. Theorems proved here are the following." Notice that "unramified" means in this paper that every finite prime is unramified.

THEOREM 1. Let k be an algebraic number field of finite degree. Let a and b be integers of k. K denotes the minimal splitting field of a polynomial

$$
f(X)=X^{n}-a X+b
$$

i.e., $K=k\left(\alpha_{1}, \cdots, \alpha_{n}\right)$ where $\alpha_{1}, \cdots, \alpha_{n}$ are the roots of $f(X)=0$. Let $D=\prod_{i<j}\left(\alpha_{i}-\alpha_{j}\right)^{2}$ be the discriminant of $f(X)$. If $(n-1) a$ and $n b$ are relatively prime, K is unramified over $k(\sqrt{D})$.

ThEOREM 2. Let $n \geqq 3$ be an integer, and A_{n} be an alternating group of degree n. Then there exist infinitely many quadratic number fields which have unramified Galois extensions with Galois groups A_{n}.

1. Proof of Theorem 1. Let \mathfrak{B} be any finite prime of K, and let $\mathfrak{p}=\mathfrak{B} \cap k$. Let G be the Galois group of K over k. Then G is a permutation group of ($\alpha_{1}, \cdots, \alpha_{n}$). Let H be the subgroup of G consisting of the even permuta:ions. H corresponds to $k\left(\sqrt{ } D^{-}\right)$. We shall prove Theorem 1 by showing that H meets with the inertia group of \mathfrak{F} trivially. First we consider the factorization of $f(X) \bmod \mathfrak{p}$. From $f(X)=X^{n}-a X+b$ and $f^{\prime}(X)=n X^{n-1}-a$, it follows

$$
X f^{\prime}(X)-n f(X)=(n-1) a X-n b .
$$

[^0]As $((n-1) a, n b)=1$, this does not vanish $\bmod \mathfrak{p}$. So $(n-1) a X-n b$ is the g. c. d. of $f(X)$ and $f^{\prime}(X) \bmod \mathfrak{p}$, if $f(X)$ and $f^{\prime}(X)$ have common factors $\bmod \mathfrak{p}$. Therefore $f(X)$ is factorized as

$$
f(X) \equiv \bar{f}_{1}(X) \cdots \bar{f}_{r}(X) \quad(\bmod \mathfrak{p})
$$

or

$$
f(X) \equiv((n-1) a X-n b)^{2} \bar{g}_{2}(X) \cdots \bar{g}_{s}(X) \quad(\bmod \mathfrak{p})
$$

according as $f(X)$ has only simple roots mod \mathfrak{p} or not. In the above each $\bar{f}_{i}(X)$ is irreducible $\bmod \mathfrak{p}$ and $\bar{f}_{i}(X) \equiv \bar{f}_{j}(X)$ for $i \neq j$. Each $\bar{f}_{i}(X), 2 \leqq i \leqq s$, is irreducible mod \mathfrak{p} and $\vec{g}_{i}(X) \equiv \vec{g}_{j}(X)$ for $i \neq j$, and also $\overrightarrow{\underline{g}}_{i}(X) \neq(n-1) a X$ $-n b$. By Hensel's lemma $f(X)$ is factorized in the local field k_{p} in the form

$$
\begin{equation*}
f(X)=f_{1}(X) \cdots f_{r}(X) \tag{1}
\end{equation*}
$$

or

$$
\begin{equation*}
f(X)=g_{1}(X) \cdots g_{s}(X) \tag{2}
\end{equation*}
$$

where $f_{i}(X) \equiv \bar{f}_{i}(X)(\bmod \mathfrak{p}), \quad g_{j}(X) \equiv \bar{g}_{j}(X)(\bmod \mathfrak{p}), \quad j \geqq 2$ and $g_{1}(X)$ $\equiv((n-1) a X-n b)^{2}(\bmod \mathfrak{p}) . K_{\mathfrak{p}}$ is obtained from $k_{\mathfrak{p}}$ by adjoining the roots of $f(X)=0$. The roots of $f_{i}(X)=0$ or $g_{j}(X)=0, j \geqq 2$, generate unramified extensions of $k_{\mathfrak{z}}$. So $K_{\mathfrak{p}}$ is unramified over $k_{\mathfrak{p}}$ in the case (1). If $K_{\mathfrak{p}}$ is ramified over k_{p} in the case (2), $g_{1}(X)$ is irreducible of degree 2 and the inertia group is generated by the transposition of the roots of $g_{1}(X)=0$. So it meets with H trivially, and \mathfrak{P} is unramified over $k(\sqrt{ } \bar{D})$. As we took \mathfrak{B} arbitrarily, K is unramified over $k(\sqrt{ } \bar{D})$.
2. Proof of Theorem 2. In this sestion the ground field is taken as the field Q of the rational numbers. We find pairs of rational integers (a, b) such that $((n-1) a, n b)=1$ and the equations $f(X)=X^{n}-a X+b=0$ which have symmetric groups S_{n} as Galois groaps. If we have infinitely many different $Q(\sqrt{ } \bar{D})$, Theorem 2 follows from Theorem 1. If a polynomial $f(X)$ is irreducible over Q, the Galois group of K over Q is a transitive permutation group. To find the Galois group, we apply the following

Lemma [4, Theorem 13.3]. If a primitive permutation group contains a transposition, it is a symmetric group.

As we have seen in the proof of Theorem 1, the inertia group of a prime \mathfrak{B} contains a transposition if \mathfrak{B} is ramified. As the field Q has no unramified
extension, there exist primes of K ramified over Q. Therefore the Galois group of K over Q contains a transposition. If we show it is primitive, it is a symmetric group by the above lemma. As any transitive group of a prime degree is primitive [4, Theorem 8.3], we have

Proposition. If $n=l$ is a prime and if $f(X)$ is irreducible over Q, the Galois group of K over Q is a symmetric group S_{l}. Therefore K is an unramified extension of $Q(\sqrt{D})$ with Galois group A_{l}.

Now we show that there exist pairs of integers (a, b) satisfying the conditions in the first paragraph of this section. Let l be a prime number such that

$$
l \equiv 1 \quad(\bmod n-1) .
$$

If b is divisible by l, then

$$
\begin{equation*}
X^{n}-a X+b \equiv X\left(X^{n-1}-a\right) \quad(\bmod l) \tag{3}
\end{equation*}
$$

holds. As $Z / l Z$ contains all the $(n-1)$-st roots of unity, $X^{n-1}-a$ is irreducible $\bmod l$ if a is a primitive root $\bmod l$. Then $X^{n}-a X+b$ has irreducible factors of degree 1 and degree $n-1$, if it is reducible over Q. But it has no factor of degree 1 if a is sufficiently large. Then $X^{n}-a X+b$ is irreducible over Q, and its Galois group is primitive by the factorization (3). We can choose a and b as $((n-1) a, n b)=1$. Then all the conditions are satisfied.

Now let p be any prime number such that $(p, \ln (n-1))=1$, where l is fixed as above. We show that there exists a pair (a, b) such that $D=D(a, b)$ $=p \cdot D_{0},\left(p, D_{0}\right)=1$ and that satisfies the above conditions. Then we have infinitely many different $Q(\sqrt{ } D) . D$ is calculated as

$$
\begin{aligned}
D & =(-1)^{\frac{n(n-1)}{2}} \prod_{i} f^{\prime}\left(\alpha_{i}\right)=(-1)^{\frac{n(n-1)}{2}} \prod_{i}\left(n \alpha_{i}^{n-1}-a\right) \\
& =(-1)^{\frac{n(n-1)}{2}}\left\{n^{n} b^{n-1}-(n-1)^{n-1} a^{n}\right\} .
\end{aligned}
$$

Let b be a multiple of l such that $b \equiv n-1(\bmod p)$ and $(b, n-1)=1$. As $(p, n)=1$, we have a sufficiently large integer a_{1} such that $a_{1} \equiv n(\bmod p),\left(a_{1}, n b\right)=1$ and a_{1} is a primitive root $\bmod l$. Then $D_{1}=D\left(a_{1}, b\right)$ is divisible by p. If D_{1} is divisible by p^{2}, we replace a_{1} by

$$
a=a_{1}+n b l p
$$

Then $D=D(a, b)$ is divisible by p , bue not divisible by p^{2}. This completes the proof.

Corollary 1. Let G be a finite group. Then there exists an algebraic number field k which has an unramified extension with Galois group G. If G is of order n, k is taken as $[k: Q] \leqq 2 \cdot(n-1)$!

Proof. Let K be a Galois extension of Q with Galois group S_{n}, which is unramified over $Q(\sqrt{D})$. Let q be a prime number such that $(q, D)=1$. Then $K(\sqrt{q})$ is unramified over $Q(\sqrt{q D})$ and its Galois group is a symmetric group S_{n}. G can be considered as a subgroup of S_{n}. If k denotes the subfield of $K(\sqrt{q})$ corresponding to G, k satisfies the conditions of Corollary.

Remark. This corollary was proved by Fröhlich [1], though [k : Q] $\leqq(n-1)!\times(n!)!$ in his case.

Corollary 2. Let F be any field of characteristic zero. Let a and b be indeterminates. Then the equation

$$
\begin{equation*}
X^{n}-a X+b=0 \tag{4}
\end{equation*}
$$

has the Galois group S_{n} over $F(a, b)$.
Proof. First we show this in the case F is an algebraic number field of finite degree. We may assume that F is normal over Q. Let (a_{0}, b_{0}) be a pair of rational integers such that the Galois group of

$$
\begin{equation*}
X^{\mu}-a_{0} X+b_{0}=0 \tag{5}
\end{equation*}
$$

is a symmetric group S_{n}. Let $D_{0}=D\left(a_{0}, b_{0}\right)$ be its discriminant. By the proof of Theorem 2, $\left(a_{0}, b_{0}\right)$ can be taken as $Q\left(\sqrt{D_{0}}\right)$ is not included in F. Then the Galois group of (5) over F is also S_{n}. So the Galois group of (4) over $F(a, b)$ is also S_{n}. Now let $\alpha_{1}, \cdots, \alpha_{n}$ be the roots of the equation (4). We put $K=Q\left(a, b, \alpha_{1}, \cdots, \alpha_{n}\right)$. Above argument shows that an algebraic closure of Q and K are linearly disjoint over Q. Hence K is a regular extension of Q. Let F be arbitrary. F and K are free over Q. As K is regular over Q, they are linearly disjont over Q [2. Chap. III. Theorem 3]. Therefore the Galois group of (4) over $F(a, b)$ is isomorphic to one over $Q(a, b)$, and the proof is completed.

REMARK. If F is not of characteristic zero this corollary does not hold
in general. In fact, if F is of characteristic p, the Galois group of the equation

$$
X^{p^{m}}-a X+b=0
$$

is solvable. It is easily shown from the fact that $(\alpha-\beta)^{p^{m}-1}=a$, where α and β are two roots of above equation.

Examples. We give examples for small a, b and n. In all examples $f(X)$ are irreducible over Q and the Galois groups over $Q(\sqrt{D})$ are alternating groups.

n	a	b	D
5	1	1	$2869=19 \times 151$
5	-2	1	11317 (prime)
6	1	1	$-43531=-101 \times 431$
6	1	-1	$49781=67 \times 743$
7	1	1	-776887 (prime)
7	-1	1	$-870199=-11 \times 239 \times 331$
8	1	-1	$-17600759=-11 \times 1600069$
9	1	1	$370643273=7 \times 11 \times 13 \times 43 \times 79 \times 109$
9	-1	1	$404197705=5 \times 197 \times 410353$
10	1	1	$-9612579511=-29 \times 4127 \times 80317$
10	1	-1	$10387420489=173 \times 60042893$

References

[1] A. Fröhlich, On non-ramified extensions with prescribed Galois group, Mathematika, 9(1962).
[2] S. Lang, Introduction to algebraic geometry, Interscience Publishers, 1958.
[3] K. Uchida, Unramified extensions of quadratic number fields, I, Tôhoku Math. J., 22(1970).
[.4] H. Wielandt, Finite permutation groups, Academic Press, 1964.

Mathematical Institute,
Tôhoku University
Sendai, Japan

[^0]: 1) After I prepared the manuscript of this paper, I knew that Y. Yamamoto had already obtained the same results which is to appear in Osaka Math. J. before long.
