SOME HYPERSURFACES OF A SPHERE
 Shûkichi Tanno and Toshio Takahashi

(Received Nov. 26, 1969)

1. Introduction. K.Nomizu [2] studied the effect of the condition

$$
\begin{equation*}
R(X, Y) \cdot R=0 \text { for any tangent vectors } X \text { and } Y \tag{*}
\end{equation*}
$$

for hypersurfaces M^{m} of the Euclidean space E^{m+1}, where R denotes the Riemannian curvature tensor and $R(X, Y)$ oparates on the tensor algebra at each point as a derivation. P.J.Ryan [4] treated the same condition for hyparsurfaces of spaces of non-zero constant curvature. On the other hand, one of the authors [6] discussed the effect of the condition

$$
\begin{equation*}
R(X, Y) \cdot R_{1}=0 \text { for any tangent vectors } X \text { and } Y \tag{**}
\end{equation*}
$$

for hypersurfaces of the Euclidean space, where R_{1} denotes the Ricci curvature tensor.

The condition (*) implies the condition (**).
Recently, P.J.Ryan informed one of the authors that the conditions (*) and ${ }^{(* *)}$) are equivalent if the ambient space is of non-zero constant curvature.

In this note we prove
THEOREM. Let $M^{m}, m \geqq 4$, be an m-dimensional connected and complete Riemannian manifold which is isometrically immersed in a sphere $S^{n+1}(\tilde{c})$ of curvature \hat{c}. Then M^{m} satisfies the condition (**), if and only if M^{m} is one of the following spaces:
(i) $M^{m}=S^{m}(\tilde{c})$; great sphere .
(ii) $M^{m}=S^{m}(c)$; small sphere, where $c>\bar{c}$,
(iii) $M^{m}=S^{p}\left(c_{1}\right) \times S^{m-p}\left(c_{2}\right)$, where $p, m-p \geqq 2$ and $c_{1}>\hat{c}, c_{2}>\hat{c}$ such that $c_{1}^{-1}+c_{2}^{-1}=\tilde{c}^{-1}$,
(iv) $M^{m}=M^{1} \times S^{m-1}(c)$, where $c>\tilde{c}$ and M^{1} is a covering space $\left(E^{1} /(2 \pi r z)\right.$ for an integer z) of a circle of radius $r=\left(\hat{c}^{-1}-c^{-1}\right)^{-1 / 2}$.

If M^{m} has the parallel Ricci tensor, then (${ }^{* *)}$ is satisfied. Conversely, if a certain hypersurface M^{m} in $S^{n+1}(\tilde{c})$ has propərty (**), then the theorem says that the Ricci tensor is parallel (precisely, M^{m} is (locally) symmetric).
2. Reduction of the condition (**). Let M be an m-dimensional connected Riemannian manifold which is isonetrically immersed in an ($m+1$)-dimensional Riemannian manifold of constant curvature $\tilde{c} \neq 0$, and let g be the Riemannian metric of M. Then the equation of Gauss is

$$
\begin{equation*}
R(X, Y)=\tilde{c} X \wedge Y+A X \wedge A Y \tag{2.1}
\end{equation*}
$$

where, in general, $X \wedge Y$ denotes the endomorphism which maps Z upon $g(Z, Y) X-g(Z, X) Y$. The type number $t(x)$ is, by definition, the rank of the second fundamentel form operator A at a point x of M. For a point x of M, take an orthorormal basis $\left\{e_{1}, \cdots, e_{m}\right\}$ of the tangent spase M_{x} at x such that $A e_{a}=\lambda_{a} e_{a}, a=1, \cdots, m$, where λ_{a} 's are eigenvalues of A at x. Then (2.1) is equivalent to

$$
\begin{equation*}
R\left(e_{a}, e_{b}\right)=\left(\tilde{c}+\lambda_{a} \lambda_{b}\right) e_{a} \wedge e_{b}, \tag{2.2}
\end{equation*}
$$

and the condition $\left({ }^{* *}\right)$ is equivalent to

$$
\begin{equation*}
\left(\tilde{c}+\lambda_{a} \lambda_{b}\right)\left(R_{a a}-R_{b b}\right)=0, \tag{2.3}
\end{equation*}
$$

where $R_{a b}$ are the components of the Ricci tensor R_{1} with respect to the basis. Taking account of (2.2), we get

$$
\begin{equation*}
R_{a b}=(m-1) \hat{c} \hat{j}_{a b}+\lambda_{a} \delta_{a b} \theta-\lambda_{a}^{2} \delta_{a b}, \tag{2.4}
\end{equation*}
$$

where $\theta=$ trace $A=\Sigma_{a} \lambda_{a}$. In particular, we have

$$
\begin{equation*}
R_{a a}=(m-1) \tilde{c}+\theta \lambda_{a}-\lambda_{a}^{2} . \tag{2.5}
\end{equation*}
$$

Thus (2.3) becomes

$$
\begin{equation*}
\left(\hat{c}+\lambda_{a} \lambda_{b}\right)\left(\lambda_{a}-\lambda_{b}\right)\left(\theta-\lambda_{a}-\lambda_{b}\right)=0 . \tag{2.6}
\end{equation*}
$$

Now, suppose $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{r} \neq 0$ and $\lambda_{r+1}=\cdots=\lambda_{m}=0$ at x of M, and suppose $1 \leqq r \leqq m-1$. Then (2.6) for $b=m$ implies $\hat{c} \lambda_{a}\left(\theta-\lambda_{a}\right)=0$ and hence
$\theta-\lambda_{a}=0$ for $a=1, \cdots, r$. Thus we have $(r-1) \theta=0$. If $\theta=0$, then $\theta-\lambda_{a}$ $=0$ implies $\lambda_{\sigma}=0$. Hence we have $r=1$. Thus

Lemma 1. Let M be an m-dimensional connected Riemannian manifold which is isometrically immersed in an $(m+1)$-dimensional Riemannian manifold \widehat{M} of constant curvature $\tilde{c} \neq 0$ and satisfies the condition $(* *)$. Then the type number $t(x) \leqq 1$ or $t(x)=m$ at each point x of M.

Suppose there are three distinct principal curvatures, say λ_{1}, λ_{2} and λ_{3}, at a point. Then (2.6) implies

$$
\tilde{c}+\lambda_{a} \lambda_{b}=0 \text { or } \theta=\lambda_{a}+\lambda_{b} \text { for }(a, b)=(1,2),(1,3),(2,3) .
$$

But these three conditions do not hold simultaneously. Hence there are at most two distinct principal curvatures at each point. We put $\lambda=\min \left\{\lambda_{a}\right\}$ and $\mu=\max \left\{\lambda_{a}\right\}$ at each point. λ and μ are locally defined functions with respect to unit normal vector fields. $\lambda \mu$ is globally defined. Now let

$$
U=\{x \in M ; t(x)=m\}
$$

and let U_{0} be a component of U. Then U_{0} is open. Let

$$
V=\left\{x \in U_{0} ; \bar{c}+\lambda \mu \neq 0\right\},
$$

and let V_{0} be a component of V. Then V_{0} is open. Suppose U_{0} and V_{0} are non-empty. Then (2.3) and (2.4) imply that V_{0} is an Einstein hypersurface of M. On the other hand, we have

Lemma 2. (A.Fialkow[1]) Let $M^{m}(m \geqq 3)$ be an Einstein hypersurface ($R_{1}=K g$) of a Riemannian manifold of constant curvature \tilde{c}. Then we have
(i) if $K>(m-1) \hat{c}$, then M^{m} is totally umbilic, and of constant curvature,
(ii) if $K=(m-1) \tilde{\varepsilon}$, then $t(X) \leqq 1$ on M^{m},
(iii) if $K<(m-1) \hat{c}$, then there are exactly two distinct and constant principal curvatures ν and ρ, of multiplicity $\geqq 2$, satisfying $\tilde{c}+\nu \rho=0$.

Therefore, in our case, if $m \geqq 3, V_{0}$ is totally umbilic and of constant curvature. Hence $\lambda=\mu$ is constant on V_{0} and on the closure of V_{0}. Consequently, we get $V_{0}=U_{0}=M$. Thus, we have

Lemma 3. Let M and \widetilde{M} be as in Lemma 1. If $m \geqq 3$, and if $\tilde{c}+\lambda \mu \neq 0$ at x_{0} where $t\left(x_{0}\right)=m$, then $\tilde{c}+\lambda \mu \neq 0$ and $t(x)=m$ hold on M and M is totally umbilic $(\lambda=\mu)$.

By Lemma 3, if $U \neq \emptyset$ and if $V=\emptyset$, then $\tilde{c}+\lambda \mu=0$ on U and hence on the closure \bar{U} of U. Since $\hat{c} \neq 0$ and $t(x) \leqq 1$ imply $\hat{c}+\lambda \mu \neq 0, \hat{c}+\lambda \mu=0$ on \bar{U} implies $t(x)=m$ on \bar{U}. Thus we get $U=M$ and we have

Lemma 4. Let M and \widetilde{M} be as in Lemma 1. If $m \geqq 3$ and if $\tilde{c}+\lambda \mu=0$ at x_{0} where $t\left(x_{0}\right)=m$, then $\hat{c}+\lambda \mu=0$ and $t(x)=m$ hold on M.

Combining Lemmas 1,3 , and 4 , we get
Lemma 5. Let M and \bar{M} be as in Lemma 1. If $m \geqq 3$, then we have one of the followings:
(a) $t(x) \leqq 1$ on M,
(b) $t(x)=m$ and $\bar{c}+\lambda \mu \neq 0$ on M.
(c) $t(x)=m$ and $\hat{c}+\lambda \mu=0$ on M.

3. Local theorems.

ThEOREM 1. Let M be an m-dimensional connected Riemannian manifold which is isometrically immersed in an ($m+1$)-dimensional Riemannian manifold \widetilde{M} of constant curvature \tilde{c}, where $m \geqq 3$ and $\tilde{c}>0$. If M satisfies the condition $\left(^{* *}\right)$, then we have one of the followings:
(i) $t(x) \leqq 1$ on M and hence M is of constant curvature \hat{c},
(ii) M i; totally umbilic and of constant curvature $>\hat{c}$,
(iii) M is locally a product of two spaces of constant curvature $>\widetilde{\boldsymbol{c}}$ and of dimension $\geqq 2$,
(iv) M is locally a product of E^{1} and an $(m-1)$-dimensional space of constant curvature $>\widetilde{c}$,
(v) M is a manifold such that the Ricci tensor has two eigenvalues 0 and γ of multiplicity 1 and $m-1$, respectively, where γ is a nonconstant positive function.

Proof. Lemma 5 says that we have either $t(x) \leqq 1$ on M or $t(x)=m$ on M. If $t(x) \leqq 1$ on M, then (i) holds. In the following we assume $t(x)=m$ on M. If $\widetilde{c}+\lambda \mu \neq 0$ on M, then Lemma 3 says that M is of type (ii). If $\widetilde{c}+\lambda \mu=0$ on M, then we have $\lambda \mu<0$, since $\widetilde{c}>0$. And we have $\lambda<0<\mu$ on M. Thus the multiplicities of λ and μ are constant. If the multiplicities of λ and μ are not smaller than 2 , then λ and μ are constant, as is well known (cf. Prop. 2.3, [4]), and this is of type (iii). Suppose the multiplicity of λ or μ is 1 . If λ or μ is constant, then the rest is also constant and this is of type (iv). If λ or μ is not constant, then the rest is neither constant. If, for example, the multiplicity of λ is 1 , then (2.5) implies

$$
\begin{aligned}
R_{11} & =(m-1) \widetilde{c}+\lambda \theta-\lambda^{2} \\
& =(m-1)(\widetilde{c}+\lambda \mu)=0, \\
R_{i i} & =(m-1) \widetilde{c}+\mu \theta-\mu^{2} \\
& =(m-2)\left(\widetilde{c}+\mu^{2}\right),
\end{aligned}
$$

where $A e_{1}=\lambda e_{1}$ and $A e_{i}=\mu e_{i}, i=2, \cdots, m$. This is of type (v).

THEOREM 2. Let M be an m-dimensional connected Riemannian manifold which is isometrically immersed in an $(m+1)$-dimensional Riemannian manifold of constant curvature \widetilde{c}, where $m \geqq 3$ and $\widetilde{c}<0$. If M satisfies the condition (**), then we have one of the followings:
(i) $t(x) \leqq 1$ on M and M is of constant curvature \widetilde{c},
(ii) M is totally umbilic and of constant curvature $>\widetilde{c}$,
(iii) M is locally a product of two spaces of constant curvature $>\boldsymbol{c}$ and of dimension $\geqq 2$,
(iv) M is locally a product of E^{1} and an ($m-1$)-dimensional space of constant curvture $>\widetilde{c}$,
(v) M is a manifold such that the Ricci tensor has at most two distinct eigenvalues at each point. They are not constant and if there are two distinct eigenvalues at a point, then one of them is 0 with multiplicity 1.

Proof. For (i), (ii), the proof is the same as that of (i), (ii) of Theorem 1.

So, in the following, we assume $t(x)=m$ and $\tilde{c}+\lambda \mu=0$ on M. If $\lambda<\mu$ at a point and if the multiplicities of λ and μ are not smaller than 2 at the point, then λ and μ are constant on M and this is of type (iii). If one of the principal curvatures is simple and if λ or μ is constant, the.. the rest is also constant and this is of type (iv). The remaining possibilities are (a) λ or μ is simple at some point and λ and μ are not constant, and (b) $\lambda=\mu$ on M. The case (a) implies the type (v) as in Theorem 1, and the case (b) implies the type (ii).
4. Conullity operator. We apply A.Rosenthal's method [5]. Let $F(M), \theta^{a}$, $w_{b}{ }^{a}$ be the frame bundle, solder forms, and connexion forms. We denote by N_{x} and C_{x} the nullity space at x and the conullity space at x :

$$
\begin{aligned}
& N_{x}=\left\{X \in M_{x} ; R(A, B) X=0 \text { for any } A, B \in M_{x}\right\}, \\
& C_{x}=\left\{Y \in M_{x} ; g(X, Y)=0 \text { for any } X \in N_{x}\right\} .
\end{aligned}
$$

Assume $\operatorname{dim} N_{x}=1$ on an open set U. An orthonormal frame $\left(e_{1}, \cdots, e_{m}\right)$ at x is called an adapted frame if $e_{1} \in N_{x}$ and $e_{i} \in C_{x}(i=2, \cdots, m)$. Let $F_{0}(U)$ be the set of adapied frames over U. We denoce $\theta^{a}, w_{b}{ }^{a}$ restricted on $F_{0}(U)$ by the same letters. Then

$$
\begin{gathered}
w_{i}^{1}=A_{i_{1}}^{1} \theta^{1}+B_{i j}^{1} \theta^{j}, \\
w_{1}^{i}=A_{11}^{i} \theta^{1}+B_{1 j}^{i} \theta^{j},
\end{gathered}
$$

where $i, j \in(2, \cdots, m)$. The conullity operator $T=T_{e 1}: C_{x} \rightarrow C_{x}$, for $e_{1} \in N_{x}$ is defined by $T e_{i}=B_{1 i}^{j} e_{j}$. Then we have the followings (Theorem 2.3, Cor.2.4, Theorem 3.1, [5]):

Lemma 6. (A) $A_{11}^{j}=-A_{j 1}^{1}=0$ (the nullity varieties are totally gecdesic).
(B) If $\operatorname{dim} N_{x} \leqq m-3$ on U, then T satisfies

$$
R(X, Y)(T Z)+R(Y, Z)(T X)+R(Z, X)(T Y)=0 \text { for } X . Y, Z \in C_{x}
$$

(C) If M is complete, then the real eigenvalues of T vanish.
5. Proof of the main theorem. First we show

Lemma 7. In Theorem 1 , if M is complete and $m \geqq 4$, then the case (v) does not occur.

In Theorem 2, if M is complete, $m \geqq 4$, and the scalar curvature S is positive or negative on M, the case (v) does not occur.

Proof. Let M be a manifold stated in (v). Assume that the multiplicity of λ is 1 and $A e_{1}=\lambda e_{1}, A e_{j}=\mu e_{j}(j=2, \cdots, m)$. Since $\widetilde{c}+\lambda \mu=0$, by (2.2) we have $R\left(e_{1}, e_{j}\right) e_{1}=0$. Again by (2.2) we have $R\left(e_{j}, e_{k}\right) e_{1}=0$. Hence we have $R(X, Y) e_{1}=0$ for any tangent vectors X and Y. Furthermore, we have

$$
\begin{equation*}
R\left(e_{j}, e_{k}\right)=\left(\widetilde{c}+\mu^{2}\right) e_{j} \wedge e_{k} \quad 2 \leqq j, k \leqq m \tag{5.1}
\end{equation*}
$$

If $\widetilde{c}>0$, then $\widetilde{c}+\mu^{2} \neq 0$ on M. On the other hand, by (2.5) the scalar curvature S is given by

$$
S=\Sigma R_{a \alpha}=(m-1)(m-2)\left(\widetilde{c}+\mu^{2}\right),
$$

and so $S>0$ or $S<0$ implies $\widetilde{c}+\mu^{2} \neq 0$. Thus M has constant nullity, and by Lemma 6 (B) we have

$$
R\left(e_{j}, e_{k}\right)\left(T e_{i}\right)+R\left(e_{k}, e_{i}\right)\left(T e_{j}\right)+R\left(e_{i}, e_{j}\right)\left(T e_{k}\right)=0
$$

If we put $B_{1 i}^{j}=B_{i}{ }^{j}$, then $T e_{i}=B_{i}{ }^{h} e_{h}$ and we have

$$
\left(B_{i}{ }^{k} e_{j}-B_{i}{ }^{j} e_{k}\right)+\left(B_{j}{ }^{i} e_{k}-B_{j}{ }^{k} e_{i}\right)+\left(B_{k}{ }^{j} e_{i}-B_{k}{ }^{i} e_{j}\right)=0 .
$$

Thus we have $B_{i}{ }^{k}=B_{k}{ }^{i}$, and T is symmetric. Consequently, all eigenvalues are real. By Lemma 6 (C) we have $T=0 . T=0\left(B_{1 j}^{i}=-B_{i j}^{1}=0\right)$ together with Lemma 6 (A) implies $w_{i}{ }^{1}=-w_{1}{ }^{i}=0$. That is locally a product space $E^{1} \times M^{m-1}(m-1 \geqq 3)$. $\mathrm{By}(5.1) M^{m-1}$ is of constant curvature $\widetilde{c}+\mu^{2}$. In particular, λ and μ are constant on M. This is a contradiction and the case (v) does not occur.

For (i) of the main theorem, we need the following lemma:
LEMMA 8. (B.O'Neill and E.Stiel [3]) An m-dimensional complete Riemannian manifold of constant curvature $\tilde{\boldsymbol{c}}>0$ which is isometrically immersed in an $(m+1)$-dimensional Riemannian manifold of constant curvature \tilde{c} is totally geodesic.

Now (i) follows from Theorem 1 and Lemma 8.
For (ii), (iii) and (iv), we need the following:
Lemma 9. (P.J.Ryan [4]) Let f and \bar{f} be isometric immersions of an
m-dimensional connected Riemannian manifold ${ }^{*} M$, into an ($m+1$)-dimensional simply connected real space form \widetilde{M}. If $t(x)>3$ at each point of ${ }^{*} M$, then there is an isometry Φ of \widetilde{M} such that $\Phi \cdot f=\bar{f}$.

Let ${ }^{*} M$ be the universal covering manifold of $M(\pi: * M \rightarrow M)$ and let $\widetilde{M}=S^{m+1}(\widetilde{c})$. Then for $\varphi: M \rightarrow \widetilde{M}$, we have $f=\varphi \cdot \pi:{ }^{*} M \rightarrow \widetilde{M}$. On the other hand, we have the standard immersions \bar{f} of $S^{m}(c), S^{p}\left(c_{1}\right) \times S^{m-p}\left(c_{2}\right)\left(c_{1}^{-1}+c_{2}^{-1}\right.$ $=\widetilde{c}^{-1}$), and $E^{1} \times S^{m-1}(c)$ into $S^{m+1}(\widetilde{c})$. Thus, we have (ii), (iii) and (iv) from Lemma 9 (f, \bar{f}; congruent) and Theorem 1.

REMARK.
(1) This theorem is a generalization of Theorem 4.10 of P.J.Ryan [4].
(2) If $m=3$ and the scalar curvature S is constant, then we have the similar results (i), (ii) and (iv).
(3) $\lambda_{a}=\lambda$ or μ and the discussion in § 1 imply that condition (**) is equivalent to $\left(^{*}\right)$. (In fact, recall that $\left(^{*}\right)$ is equivalent to $\left(\lambda_{a} \lambda_{b}+\widetilde{c}\right)\left(\lambda_{a}-\lambda_{b}\right) \lambda_{c}=0$ for distinct $a, b, c,[4]$).

References

[1] A. Fialkow, Hypersurfaces of a space of constant curvature, Ann. of Math., 39(1938), 762-785.
[2] K. Nomizu, On hypersurfaces satisfying a certain condition on the curvature tensor, Tôhoku Math. J., 20(1968), 46-59.
[3] B. O'Neill and E. Stiel, Isometric immersions of constant curvature manifolds, Michigan Math J., 10(1963), 335-339.
[4] P.J.RYAN, Homogeneity and some curvature conditions for hypersurfaces, Tôhoku Math. J., 21(1969), 363-388.
[5] A. Rosenthal, Riemannian manifolds of constant nullity, Michigan Math. J., 14(1967), 469-480.
[6] S. Tanno, Hypersurfaces satisfying a certain condition on the Ricci tensor, Tôhoku Math. J., 21 (1969), 297-303.

Mathematical Institute
TÔнOKU University
Sendai, Japan
AND
Department of Mathematics
Kumamoto University
Kumamoto, Japan

