Toéhoku Math. Journ.
22(1970), 200-209.

HIGHER ORDER TANGENT BUNDLES OF PROJECTIVE
SPACES AND LENS SPACES

N\
HIrOSHI OIKE
(Received Oct. 22, 1969)

Introduction. In [6)], [7] and [8] H. Suzuki considered higher order non-
immersions of projective spaces in real affine spaces or projective spaces by means
of characteristic classes, v-operations and spin operations. In [9] C. Yoshioka
obtained complete formulas of Stiefel-Whitney classes of higher order tangent
bundles of complex projective spaces and Dold manifolds and he applied his
results to higher order non-immersions of these spaces. In this paper, we shall
study higher order tangent bundles of complex projeztive spaces, quaternion
projective spaces and lens spaces and compute characteristic classes of them and
apply these results to higher order non-immersions of quaternion projective
spaces and lens spaces.

I am grateful to Prof. H. Suzuki for his valuable suggestions.

1. Preliminaries. Let G be a compact coanected Lie group, F' be R or
C, the real or complex number field. Let V be a finite dimensional G-vector
space over F and [V] be a G-isomorphism class of V, then the dimension of V
is said to be the degree of [V].

We denote k-fold symmetric product over F of V by O*V, then G acts on
OV as follows:

9(0,00,0+++Qv) = gv,OQgv,O++-Ogv;, for geG,
where v, Q v, O +++Quy is the image of v, @V, ® -+ - ® v, by the symmetri-
zation operator from %k-fold tensor product ®*V to O*V. Thus O*V is a G-vector

space. We have the following lemma :

LEMMA 1.1. Let V be one dimensional G-vector space, then OV is
isomorphic to Q*V.

Let M#(G) be a semiring which consists of all G-isomorphism classzs of
finite dimensional G-vector spaces over F. The sum and product in MFG) are
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induced by direct sum and tensor product of finite dimensional - G-vector spaces
over F. We define O"[V] for [V] eMp(G) as follows

O V] = [0"V],
then O induces an operation of M#G) having following properties :
i) Ox)=1,0%x)==x for zc¢ M;(G) ,
i) Oz +y)= X O(=)0Ny) for z,5< MG,

i+j=k

ii1) O"(x)»-_—- z* for xe MiG); of degree 1.

Let R#(G) be the ring completion of Mz#(G) and 0 M G)——*RF(G) be
the natural inclusion map.

Then the above O* can be e‘(tended to RAG) and the propertles i) ,ii) are
preserved in Rr(G) too, but the properties iii) is satlsﬁed in Imf only.

Now, let », ¢, ¥' be the following operations
r: R«(G) RRCG) realification,

¢: Rp{G) ——> R¢(G) complexification,

7': Re(G) — > R;(G) complex conjugation.

Then we have the following lemma (see [1]).

LEMMA 1.2. i) r is a group homomorphism and ¢ and ¥g' are ring
‘homomorphisms. ' T

i) re=2, cr =14z

iil) ¢ is injective.

) cO* = Oke.

Next, let ¢ be an indeterminate and let 1+Re/G)[[£]]* be the multlphcatlve
group which consists of all units in the ring RrG)[[£]}
We define a map

0,: Re(G) —>1 + RIG)[¢11*
by
O(x) = iO"(x)t," for zeR#(G). -

k=0
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Then, by Lemma 1.2, we have
Ofcx) =3 (cOXx))tt for xe R (G).
k=0

The following theorem is described in {2].

THEOREM 1.3. Ry(UQ)) equals Z\Z, Z™], where = is a UQ1)-isomorphism
class of degree 1 such that U(l) acts on one dimensional vector space
C (the field of complex numbers) as follows: (e*, w) — €' -w for €< U(Q),
weC, And z7' =Y5'z.

Let n=7r2—2¢ Ry(U(1)), then we have the following lemma :
LEMMA 1.4. i) ¥h(n) = r2*—2, ¥%(n) =0, ¥z () = ¥i(n),
L 27\ . U
i) » =3 (-1 i) Yi(n), i) Yh(n) =2 A,

J=1

i=1

V) YR = YEn) + ¥ (n) — 2000 + Vi) »

where V% is the real Adams operation (see [1]) and

g ok [E+j-1
k_ P — 22 = - .
A =gpr LE=-0="7; (21“1

Since proofs require only tedious calculations, we omit them.

2. Calculations and applications. In the first place, we prove the
following key lemma:

LEMMA 2.1.
=y

O(n+1w2) = Y (";ﬁ«i)("z_k;j) e + (2n+kk+1).

J=0
PROOF. Since z and 27! are of degree 1

Ol(n + D)erz) = (Ofz + 27))"*! = (1 — 2£)" D1 — z~1g)~ D

RS> (n-;i) (’H;J> 2=

k=1 i+ j=k



HIGHER ORDER TANGENT BUNDLES 203

Hence

cO(n+1)rz)= 3 (n+z) (" +]) 2/t

ieg=k \ ¢ 7

By Lemma 1.2 and 1.4, the proof is completed.

Let h¢ be the canonical complex line bundle over an n-dimensional complex
projective space CP".

By Suzuki’s theorem (1.1) of [7], the k-th order tangent bundle of an
n-dimensional complex projective space CP* is given by

7(CP") = O*(n + L)rhe) — O**(n + L)rhe) — 1.

Hence by Lemma 2.1 we have

THEOREM 2.2. Let y=rhc—2, then
P2 N s
n(CPY1= 2 (/)1( ) )

+hk—j7—1\ .0 2n+k
(i el (),

For example, by Lemma 1.4 we have

r(CPY+1 = (n;rz)y2+ (271;—3)3,_*_(2722-{-2),

(CP")+1 = (";3)y3 +(2n+5) (”;z)y2 +6(2”3+4)y+ (2"3+3),

mW(CP)+1 = ("14)3" +(@2n+7) (";S)ya + 3(2n + 5) (”;3)3,2

2n+5 2n+4
+2( 4 )y+( 4 )

Next we calculate k-th order Pontrjagin class P(v.(CP")) of CP™.
Let £ be a generator of H*CP";Z). Then we can see easily that the
Pontrjagin class of rh% is given by
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P(Yi(y)) = P(rht) =1+ j*x*.

Since H¥(CP™; Z) ha;,s." no 2-forsion, we have the following corollary :

COROLLARY 2.3.

"3

[kT_x] A+(k-2 )2 2)("?17})
Pr(CP) = % { )
A+(k=25-1)2x2) *7I!

=0
Now we calculate higher order'tang‘ent bundles and higher order charactris-

tic classes of the quaternion projective space HP™.
Let 7: CP™2 > HP" be the canonical S*bundle and let hy be the

canonical complex plane bundle over the quaternion projective space HP". We
have following commutative diagram :

c ch
KO(CP2n+1) ———ed K(CP2n+l) —_— H*(CPZR+1 ; Q)
r
! N 7! _ n
c ch
KO(HP") —— K(HP™) —— H*(HP"; Q)
r

¥*

where all vertical arrows are ring monomorphisms (see [4]).
The following lemma is easily seen by means of results described in [4].

LEMMA 2.4. i) Complex conjugation ¥5': K(HP")— K(HP") is identity.
. . \2

il) First order tangent bundle «(HP™) = (n+1)rhg— (r%”) ill) 7'rhg=2rhe.
iv) m'hg=he+hs*. V) crhy=2hg. vi) n*q=x?, where q¢ and x are the
generators of H(HP"; Q)or HHP"; Z)) and H(CP*"*'; Q)or H*(CP*"*!;
2)) respectively. vii) Restriction of ¢: KO(CP***')— K(CP***') to free part
of KO(CP*™*") and ¢: KO(HP™)— K(HP™) are injective.

By this lemma we have following fact

2 e({(HPY) +1) = 2(n+ 1)(ho + hg') — by — hi* — 1.
Thus

O(n'c(+(HP™) + 1)) = O,(2(n + 1)(h¢ + he"))(1 — h’c-.t)(l ~ ha’t)(lb—_t)
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Hence

x'r(HP™) + 1 = OF — 0% = (rh% + 1)(O*'—O*"*),

where O/ = O/(2(n + 1)rhg).
By Lemma 2.1 and iv) of Lemma 1.4, we have

THEOREM 2.5.

1 . . :
2 (HP)+1 =3 _(2n+j1+]) (2n+%1dj—jkf;) V)
: J=0 N T . : . .

(5] , , N
2n+14+4\(2n+1+k—1—=F)\, | ti1z9y ‘o1a SRR,

> ( j )( k-1-j )("’“ )+ 45 0)+ ¥ )
(5] o +J én—lill+‘k—2—j o
D |G (O O

(41 o \ |
o 2n+145\(2n4+1+k—=3—7\ i s

i

kE—17\2
o[ o),

1
where y=rhe—2.
Next we calculate &-th order- Stiefel-Whitney class W(r . (HP™)).
W) = W(rht) = Clh) mod 2 = 1+ jz,

where 7 = mo:l2, .ﬁa‘nd C(ht) is Chern class of hi.
Hence,

1 for even 7

W("h’e(y)) = {1+5 for odd 5 .

In general, for an odd positive integer [
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~

-

'M”l

-

2n+1+j\(2n+1+1—5\ _ 1 (4n+1+3
S [-j S2 l '

=
and

(471 +[l+3)5§0 (mod 4).

Thus, by Theorem 2.5,

(A43p¥mE for odd &

T*W(r(HP")) = {(1+5c)‘2"ew-“ for even £,

where 7%= 7*mod2 is injective and

No(n,k)__1_(4n+k+3)+%(4n+k+1

ra i A ) for odd &,

Nin, k) = 1 (4,1;_ k1+ 2) +_711_(4kn_+3k) for even k.

Now (1+2)=1+z*=1+7*g=7*1+q), where ¢ =q mod2. Therefore

THEOREM 2. 6.

v Yy — (1+6)N°("'k; (k : Odd)
W(r(HP")) = {(1_{,5)—%("-“) (k: even).

Let 8,(n, k), a(n, k), 8 (n, k), an, k) be following integers

S(m k) =maxi{l=i=<n ( (n k)) ES 0(mod2)} ,
o, k) =maxi{l=i=n; N, k)+z )$0(mod2)},
Snm k)= max |l=<i=n; (M(” k)) +0 (modZ)}

o (n, k)= max 1=:

ll/\

((" R)+i- )$0(mod2)}.
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By this theorem and Theorem (1.1) of [6], we have the following corollary.

COROLLARY 2.7. When k is odd, if m is an integer such that
—48(n, k) <m <doyn, k) and when k is even, if m is an integer such that
—do(n, k) <m < 48.(n, k), then

(“";k)—l+ m

HI) n $k R

Since Pontrjagin class of 7.(HP™") can be easily calculated in similar manner
of Corollary 2.3 and Theorem 2.6, we omit its calculation.

Now we consider higher order tangent bundles, characteristic classes and
non-immersions of lens space.

Let p be an integer larger than one and let L'(p)=L(p; L,---.1) be
2n+1-dimensional lens space of mod p. The following fact is well known (see[3])

LY pN)+1=n+Dr'rhe,

where 7 : L*(p) —> CP" is canonical S'-bundle.
By Lemma 2.1 we have

THEOREM 2. 8.

3

TW(Lip)+l= T (";”)(”Zf;’) ¢§,-“f<a)+(2”+k“k),

where o= 7'(y).

We have the following corollary on k-th order characteristic classes of
L"(p). H. Suzuki informed me of this result.

COROLLARY 2.9. If p is odd, the Pontrjagin class of 7/{L"(p)) is
given by

[.k€1J n+)yntk—j
Pl o)) = I (+(k—2jyar) X,
j=0

and if p is even, the Stiefel-Whitney class of 7(L"(p)) is given by

a+2 D (k1 odd)
WL =1

(k: even),
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where u is generator of H*(L"(p); Z) and % =umod 2.

PROOF. P(¥}(0)) = a*(1+5x%) = 1+5%(a*x)* =1+5%> Since p is old,
H*(L"(p); Z) has ro 2-torsion element (see 5.2. Theorem of [5]).
Thus, the proof for the Pontrjagin class is completed.

1+u(j: odd)

Wk(o)) =1+ jm*x =1+ ju = 1 (j: even).

This completes the proof for the Stiefel-Whitney class.

Next by Theorem 2.8 and Corollary 2.9, we coasider k-th order non-
immersions of L"(3) in real affine spaces.

7'hy=1 in K(L"(3)) and by Lemma 1.2 and Theorem 1. 3, 72 '=rz2. Hence
V(o) = Yr(o) = 0.

Let K$x, KL and K. be the following integers

551 ) A
37\ (n+k—3

Kgl - n+.])( .J),
P> (31 k—3j

%1 ) .
. n+3j+1\(n+k—35—1
Kox = ,2 ( 3j+1 )( kE—3j—-1 |’

k-5
. [i] n+37+2\(n+k—35—-2
T 3j+2 k-3j-2 |-

i=0
Then by Theorem 2.7 we have
T(L"(3)) = (K& s+ K8 for a+8=Fk (mod 3) & a+4,

where 7} is stable class of =, (L™(3)).

We employ k-th order Poatrjagin classes o1 k-th order non-immersioas of
L"(3).

H. Suzuki informed me that this manner is more convenient oa this problem
than v-operations.

P(r(L"(3)) = (1 + )" ** X2k for o4 B=h(mod3) & a + ,s.'

Let dg(n, k), se¥(n, k) be the following integers
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n K‘,’,,k+Kﬁ,k
—2‘,( m )$0(mo:13)},

IA
IA

d#n, k) = max {m; 1=m

I
o

;.k+Kﬁ.k +m—1
’ m

) =% O(mod 3)} .

sp(n, k) = max{m; 1=m

By similar argument on Pontrjagin classes to Theorem (1.1) of [6], we

have the following theorem.

[7]
(8]
(91

THEOREM 2.10. For —2dg(n, k) <m <2sp(n, k)

Lr@) & (RE)em.
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