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Introduction. In [6], [7] and [8] H. Suzuki considered higher order non-

immersions of projective spaces in real affine spaces or projective spaces by means

of characteristic classes, γ-operations and spin operations. In [9] C. Yoshioka

obtained complete formulas of Stiefel-Whitney classes of higher order tangent

bundles of complex projective spaces and Dold manifolds and he applied his

results to higher order non-immersions of these spaces. In this paper, we shall

study higher order tangent bundles of complex projective spaces, quaternion

projective spaces and lens spaces and compute characteristic classes of them and

apply these results to higher order non-immersions of quaternion projective

spaces and lens spaces.

I am grateful to Prof. H. Suzuki for his valuable suggestions.

1. Preliminaries. Let G be a compact connected Lie group, F be R or

C, the real or complex number field. Let 7 be a finite dimensional G-vector

space over F and [V] be a G-isomorphism class of V, then the dimension of V

is said to be the degree of [V].

We denote £-fold symmetric product over F of V by OkV, then G acts on

OkV as follows:

^ I O ^ O O ^ ) = gviOgv2θ O g v k for gzG,

where vγ O v2 O * * O vk is the image of vx ® v2 (g) (g) vk by the symmetri-

zation operator from £-fold tensor product ®kV to OkV. Thus OkV is a G-vector

space. We have the following lemma:

LEMMA 1.1. Let V be one dimensional G-vector space, then OkV is

isomorphic to ®kV.

Let MF(G) be a semiring which consists of all G-isomorphism classes of

finite dimensional G-vector spaces over F. The sum and product in MF{G) are
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induced by direct sum and tensor product of finite dimensional G-vector spaces
over F. We define Ok[V] for [V] € MF(G) as follows

Ok[V] = [O*V],

then Ok induces an operation of MF(G) having following properties:

i) OXx) = l,θXx)=x for xzMF{G),

ii) Ok(x + y) = ΣθXx)O>{y) for x9yz
i+j=k

iii) Ok(x) = x*. for xsMAp); of degree 1.

Let RF{G) be the ring completion of MF(G) and θ : MF{G) RF(G) be
the natural inclusion map.

Then the above Ok can be extended to RF(G) and the properties i) ,ii) are
preserved in RF{G) too, but the properties iii) is satisfied in Im# only.

Now, let r, c, ψc1 be the following operations

r: RC(G) > RR{G) realification,

c : RR(G) -> Rc(G) complexification,

ψc1 - Rc(G) > Rc(G) complex conjugation.

Then we have the following lemma (see [1]).

LEMMA 1.2. i) r is a group homomorphism and c and ψd1 are ring
homomorphisms.

ii) re = 2, cr^l+ψd1-
iii) c is injective.
iv) cθk = θkc.

Next, let t be an indeterminate and let l + R/£τ)[[t]]+ be the multiplicative
group which consists of all units in the ring RF[G)[[t]].

We define a map

Ot: RF{G) * 1 + i?

by

£ / * for
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Then, by Lemma 1.2, we have

x))tk for

The following theorem is described in [2J.

THEOREM 1. 3. 2^(17(1)) equals Z[Z, Z" 1], where z is a U(\)-ίsomorphism
class of degree 1 such that U(l) acts on one dimensional vector space
C (the field of complex numbers) as follows : (eiθ, w) I *• eι w for eίθ € ί7(l),
wzC. And z~ι = ψc1^.

Let η = rz — 2 € R&(U(l)), then we have the following lemma:

LEMMA 1.4. i) ψ%(v) = rzk-2, <ψ̂ 0?) = 0, ψ^iv) =

ϋ) ir>= £ ( - ! ) > •

where yfr% is the real Adams operation (see [1]) and

JVC _ _ _ 2 jr , , g ,2v k_ lk+j—

J ~ ( 2 . j ) \ l\{k t } - j \ 2 j - l )

Since proofs require only tedious calculations, we omit them.

2. Calculations and applications. In the first place, we prove the
following key lemma:

LEMMA 2. l.

O*((n + l)rz) = l g

PROOF. Since 2 and z'1 are of degree 1

O(((n + l)crz) = (Ot(z + z~ι))n+ι = (1 -
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Hence

ί+J-lfc

By Lemma 1. 2 and 1. 4, the proof is completed.

Let hc be the canonical complex line bundle over an n dimensional complex
projective space CPn.

By Suzuki's theorem (1.1) of [7], the £-th order tangent bundle of an
n-dimensional complex projective space CP" is given by

τk(CPn) = O%(n + l)rhc) - Ok~\(n + l)rhc) - 1.

Hence by Lemma 2.1 we have

T H E O R E M 2.2. L*tf y = rhc- 2,

For example, by Lemma 1. 4 we have

Next we calculate £-th order Pontrjagin class P(rk(CPn)) of CPn.
Let α: be a generator of H\CPn Z ) . Then we can see easily that the

Pontrjagin class of rhj

c is given by
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Since H*(CPn Z) has no 2-torsion, we have the following corollary

COROLLARY 2.3.

Γfc-Π

P(τk(CP"))= Σ.

Now we calculate higher order tangent bundles and higher order charactris-
tic classes of the quaternion projective space HP71.

Let π: CP2n+1 > HP71 be the canonical S2-bundle and let hH be the
canonical complex plane bundle over the quaternion projective space HP71. We
have following commutative diagram

c ch
KO(CP2n+1) < > K(CP2n+1) >H*{CP2n+ι Q)

1 r }πι ]π*
c I ch I

KO(HPn) < K(HPn) ——» H*(HPn; Q)
r

where all vertical arrows are ring monomorphisms (see [4]).
The following lemma is easily seen by means of results described in [4].

LEMMA 2. 4. i) Complex conjugation ψd1: K(HPn)-*K(HPn) is identity.

ii) First order tangent Bundle r(HPn) = (nΛ-l)rhH— ^—ĵ -. iii) πιrhH=2rhc-

iv) π^'hπ^hc + hc1- v) crhH~2hH. vi) π*q — x2

y where q and x are the
generators of H*(HPn Q)(or H\HPn Z)) and H\CP27l+ι Q)(or H 2 (CP 2 W + 1

Z)) respectively, vii) Restriction of c: KO(CP2n+ι)->K(CP2n+1) to free part
of KO(CP2n+ι) and c: KO{HPn)->K{HPn) are injective.

By this lemma we have following fact

πιc(τ(HPn) + 1) = 2{n + l)(hc + he1) - hi -hi*-l.

Thus

1 c(τ(HPn) + 1)) = Ot(2(n + lXΛc -f Λcr))(l - Λ2cί)(l — hd2t)(l - t)
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Hence

τιWk(HPn) + 1 = 0* -O*-3 - (r/& + l X O ^ ' - O * - 8 ) ,

where 0> = O(2(n + l)rhc).
By Lemma 2.1 and iv) of Lemma 1. 4, we have

THEOREM 2.5.

l~0

£ f

where y = rhc—2.

Next we calculate £-th order Stiefel-Whitney class

' mod 2 = 1 + jx,

where x = x mod 2, and C(hj

c) is Chern class of Λέ
Hence,

ί 1 f o r even J
for odd j .

In general, for an odd positive integer /
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and

/ 4 n + / + 3
I ; ΞH 0 (mod 4).

Thus, by Theorem 2. 5,

^ *> for odd λ.

" 2 ^ w fc> for even k,

where 5 ? * = ^ * mod 2 is injective and

/ \ , 3

+
\^ k j + ^ A 2 ) for odd

3 /4w-h* + 2\ , 1 /4n-fέ\ r *

^ ^ A 1 j + T ^ g ) for even*.

Now (1+xf = 14- ί2 = 1 + π*q = τr^(l 4- ̂ ), where q = q mod 2. Therefore

THEOREM 2.6.

re(nΛ) (*: even).

Let δo(w, *), σo(w, k\ Se(n, k\ σe(n9 k) be following integers

80(Λ, *) = max j l ^ ί ^ Λ ί^0^ ^] ̂  0(mod2)

- m a x l l ^ i ^ n ; ( ^ ^ A )) ^0 (mod2)
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By this theorem and Theorem (1.1) of [6], we have the following corollary.

COROLLARY 2.7. When k is odd, if m is an integer such that

4ho(n,k)<m<4:<ro(n,k) a?ιd when k is even, if m is a?ι integer such that

4σe(n, k)<m< 4SXn9 k), then

Since Pontrjagin class of τk(HPn) can be easily calculated in similar manner

of Corollary 2. 3 and Theorem 2. 6, we omit its calculation.

Now we consider higher order tangent bundles, characteristic classes and

non-immersions of lens space.

Let p be an integer larger than one and let Ln(ρ) = L(p; 1, , 1)' be

2nΛ-l-dimensional lens space of mod p. The following fact is well known (see[3])

τ(Ln(p)) + l =(/i + l)τr !r/ir ,

where π : Ln(p) > CPn is canonical ^'-bundle.

By Lemma 2.1 we have

T H E O R E M 2.8.

zuhere σ = n! (y).

We have the following corollary on &-th order characteristic classes of

Ln(p). H. Suzuki informed me of this result.

COROLLARY 2.9. / / p is odd, the Pontrjagin class of τk{Ln{p)) is

given by

\k~ι\

P{τk{L\p)))= Π (l+(*2i)VΓ

and if p is even, the Stiefel-Whitney class of τk{Ln{p)) is given by

(A: odd)
1 (Ins-1+k\

^ k > (A: odd)
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where u is generator of H\L\p)\ Z) and u = umoi2.

PROOF. P(&{l(a))=n%l+fxt) = l+j\7**x)t = l+jiul. Since p is odd,
H*(Ln(p) Z) has no 2-torsion element (see 5.2. Theorem of [5]).

Thus, the proof for the Pontrjagin class is completed.

( 1 (j : even).

This completes the proof for the Stief el-Whitney class.

Next by Theorem 2.8 and Corollary 2.9, we consider &-th order non-
immersions of Ln(3) in real affine spaces.

πιhc = l in K(Ln(3)) and by Lemma 1.2 and Theorem 1.3, rz'x — rz. Hence

Let Ki.k, Kι

n<k, and Klik be the following integers

Γ*-1Ί

° [n+3j\(n+k-Sj\
Knk= S I 37 Ji k-Zj J '

Then by Theorem 2.7 we have

τ!(Ln(3)) = (Kit + 2S:2.*>r for a+βΞ=k (mod 3) & ctΦ/3,

where TJ is stable class of τ,c(Ln(3)).
We employ £-th order Pontrjagin classes on £-th order non-immersions of

L«(3).
H. Suzuki informed me that this manner is more convenient on this problem

than γ-operations.

P(rΛ(Lw(3))) = (1 + u2)κ°n *+ *"'" for a + β = >έ(mod3) & ccΦβ.

Let <ip(w, έ), Sp(n, k) be the following integers
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dP{n, Λ)==maxjm;l^m^-£-, lKl'* * K*A Ξ 0(mod 3) (,I Δ \ m I )

(n9 k) = maxj/rc; I g m g "5~»(

By similar argument on Pontrjagin classes to Theorem (1.1) of [6], we
have the following theorem.

THEOREM 2.10. For -2d^ny k)<m< 2sp{n, k)
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