Tôhoku Math. Journ. 22(1970), 163-173.

AUTOMORPHISMS OF L*-ALGEBRAS*

V. K. BALACHANDRAN*

(Received Dec. 18, 1968)

In this paper we are concerned with some properties of (algebraic)*automorphisms and *-isomorphisms of semi-simple L*-algebras. As a consequence of the inner product uniqueness theorem for L*-algebras established earlier ([4], see Theorem 1 below), it follows that every *-isomorphism φ of a semi-simple L*-algebra L is necessarily topological and moreover φ is a semi-L*-isomorphism if L is simple (Corollary to Theorem 1). From these results we deduce that a *-isomorphism of a semi-simple L*-algebra can be expressed in terms of partial semi-L*-isomorphisms (Theorem 2).

We give some conditions under which a *-automorphism is automatically unitary. While a *-automorphism of any finite-dimensional simple L^* -algebra is unitary (Corollary to Proposition 2), this result holds for an infinite-dimensional simple L^* -algebra provided it is of classical type (Theorem 3). Under additional conditions on the automorphism, the same result holds also for the general simple L^* -algebra (see §2). Actually, it is our conjecture that the result is valid even without the additional conditions.

We introduce a notion of regularity for automorphisms of semi-simple L^* -algebras and show by means of a category argument that such automorphisms exist whenever the L^* -algebras are separable (Theorem 4). For automorphisms which are inner, a criterion for regularity is obtained (Proposition 7) which coincides with the one given by Gantmacher for the regularity of automorphisms of semisimple Lie algebras.

1. Preliminaries and structure of *-isomorphisms. Let L be a real or complex Lie algebra of arbitrary dimension. L is called an L*-algebra if (i) L is equipped with an inner product relative to which it is a Hilbert space; (ii) L is closed for a *-operation $x \rightarrow x^*$ which satisfies the connecting relation

$$< [x, y], z > = < y, [x^*, z] > ,$$

where [•] as usual stands for the Lie bracket.

If the centre of L (as a Lie algebra) is zero, L is called semi-simple. L is called simple if it is of dimension greater than one and contains no closed ideals other than $\{0\}$ and L.

^{*)} The author is currently at the Institute for Advanced Study.

If L is a real semi-simple L*-algebra, its complexification $\tilde{L} = L + \sqrt{-1} L$ can be made into a complex (semi-simple) L*-algebra by extending to \tilde{L} the operations of L in the following way. If $z_i = x_i + \sqrt{-1} y_i$, (i=1,2), $z = x + \sqrt{-1} y$ belong to \tilde{L} , we set

- (a) $[z_1, z_2] = [x_1, x_2] [y_1, y_2] + \sqrt{-1} \{ [x_1, y_2] + [y_1, x_2] \}$
- (b) $\langle z_1, z_2 \rangle = \langle x_1, x_2 \rangle + \langle y_1, y_2 \rangle + \sqrt{-1} \{ \langle y_1, x_2 \rangle \langle x_1, y_2 \rangle \}$

(c)
$$z^* = x^* - \sqrt{-1} y^*$$
.

L is called a real form of the complex algebra L.

Every semi-simple L^* -algebra L has an orthogonal decomposition $L=\Sigma \oplus L_t$, with L_t simple. (This has been established for complex L by Schue [8]. Though his proof (involving theory of complex Banach algebras) cannot apparently be adapted for real L, a proof for this case is easily obtained by using the simple decomposition of the complexification \tilde{L} .)

Let L, L' be two semi-simple L*-algebras (both real or both complex). A Lie algebra isomorphism φ of L onto L' is called a *-isomorphism if φ is a *-map, i. e., $(\varphi x)^* = \varphi x^*$ for all x in L. An isomorphism φ is called a semi-L*isomorphism if there exists a (positive) constant k such that

$$\langle \varphi x, \varphi y \rangle = k \langle x, y \rangle$$
 for all x, y in L ;

g=k is called the gauge of φ .

A semi- L^* -isomorphism is automatically a *-isomorphism (cf. [3, Lemma 4]). If k (or g) = 1, the semi- L^* -isomorphism is called an L^* -isomorphism. Note that the L^* -isomorphisms of a semi-simple L^* algebra L are just its unitary Lie isomorphisms.

THEOREM 1. Let L be a real or complex centre-free Lie algebra closed for a *-operation. Let $\langle \cdot \rangle_1$, $\langle \cdot \rangle_2$ be two inner products on L such that relative to $\langle \cdot \rangle_1$ ($\langle \cdot \rangle_2$) L is a (semi-simple) L*-algebra L_1 (L_2). Then $\langle \cdot \rangle_1$ and $\langle \cdot \rangle_2$ are topologically equivalent. Further, if L_1 is simple so is L_2 and the two inner products are multiples of each other.

The proof of these assertions when L is complex will be found in [4]. The extension of the first of these assertions for the case where L is real is easily obtained by passing to the complexification \tilde{L} , while that for the second, though not deducible⁽¹⁾ from that for \tilde{L} , can be proved *ab initio* in exactly the same way as for the complex case.

⁽¹⁾ because, when L is simple, L need not always be simple.

COROLLARY. Let L, L' be two semi-simple L*-algebras. Every *-isomorphism φ of L onto L' is topological. Also, if L is simple φ is a semi-L*-isomorphism.

PROOF. Introduce in L a second inner product $\langle \cdot \rangle_1$ by setting $\langle x, y \rangle_1 = \langle \varphi x, \varphi y \rangle$. Then, by Theorem 1, $\langle \cdot \rangle_1$ is equivalent to the original inner product of L, which means φ is topological. The second assertion of the corollary obviously follows from the corresponding assertion of Theorem 1.

DEFINITION 1. Let L, L' be two semi-simple L^* -algebras (both real or both complex). A map φ of L into L' is called a *partial semi-L*-isomorphism* if there exists a closed ideal I of L such that the restriction φ_I (of φ to I) is a semi- L^* -isomorphism and if further φ maps the orthogonal complement I^{\perp} to $\{0\}$.

PROPOSITION 1. A partial semi-L*-isomorphism φ of L is a *homomorphism of L which is bounded; $\|\varphi\| = g$, g being the gauge of φ_I .

PROOF. Since *I*, as a closed ideal of *L*, is a semi-simple *L**-subalgebra, it follows that φ_I , and hence φ , is a *-map. Further, since $[I, I^{\perp}] = \{0\}$, if

$$z_i = x_i + y_i (x_i \in I, y_i \in I^{\perp}), i = 1, 2$$

then

$$\varphi[x_1 + y_1, x_2 + y_2] = \varphi([x_1, x_2] + [y_1, y_2]).$$

The homomorphism property of φ now readily follows from this relation. Finally,

$$\frac{\|\varphi z\|^2}{\|z\|^2} = \frac{\|\varphi_I x\|^2}{\|x\|^2 + \|y\|^2} \leq \frac{\|\varphi_I x\|^2}{\|x\|^2} \leq g^2,$$

and consequently $\|\varphi\| = g$.

THEOREM 2. A *-isomorphism φ of a semi-simple L*-algebra L has the form

$$\varphi = \Sigma \varphi_1$$

where φ_i are partial semi-L*-isomorphisms.

PROOF. Let $L = \Sigma \oplus L_i$ be the orthogonal decomposition of L with L_i simple. By Theorem 1, φ is topological and its restriction to L_i is a semi- L^* -isomorphism. Now define a linear mapping by setting

$$\varphi_i x = \varphi x$$
 if $x \in L_i$, $\varphi_i x = 0$ if $x \perp L_i$.

Then it is clear that φ_i is a partial semi-L*-isomorphism of L and $\varphi = \Sigma \varphi_i$.

2. Unitariness conditions for *-automorphisms. We begin with

PROPOSITION 2. If an automorphism φ of a finite-dimensional simple L*-algebra L leaves the class of Cartan subalgebras (in the L*-sense)⁽²⁾ invariant, then φ is *-preserving and unitary.

PROOF. First of all, since L is simple, by a result due to Schue [8, 2.5], the inner product $\langle \cdot \rangle$ of L and the Cartan scalar product (\cdot) are connected by the relation

(1)
$$< x, y^* > = \delta(x, y), (x, y \in L)$$

where \mathcal{E} is some positive number independent of x, y. (Though this result has been established by Schue only when L is complex, his proof applies equally to the real case.) We next observe that if L is real then

$$(1') \qquad \langle z, w^* \rangle = \mathcal{E}(z, w), \quad (z, w \in \tilde{L})$$

even though \tilde{L} may fail to be simple. This observation follows from (1) and the first part of Lemma 6.1 [7, p. 154].

We now make the following notational convention. \widetilde{L} will denote the complexification of L if L is real and L itself if L is complex. $\widetilde{\varphi}$ will denote accordingly the extension of φ to \widetilde{L} ($\widetilde{\varphi}(x+\sqrt{-1} y) = \varphi x + \sqrt{-1} \varphi y$) or φ itself. It is now clearly sufficient to prove the assertions of Proposition 2 for $\widetilde{\varphi}$.

To prove $\tilde{\varphi}$ is *-preserving it is enough, in view of linearity of $\tilde{\varphi}$, to show that $\tilde{\varphi}$ maps self-adjoint elements into self-adjoint elements. Let z be a self-adjoint element of \tilde{L} . Then there exists a Cartan subalgebra \tilde{H} containing z. Let $\Delta = \{\alpha\}$ be the root system relative to \tilde{H} . Then there are elements h_{α} , $\hat{h}_{\alpha} \in H$ with

(2)
$$a(h) = \langle h, h_a \rangle = \langle h, \hat{h}_a \rangle,$$

⁽²⁾ these are also Cartan subalgebras in the Lie algebra sense (see [8, p. 71]).

where h_{α} is known to be self-adjoint [8, p. 72]. Since (1'), (2) imply $\hat{h}_{\alpha} = \mathcal{E}h_{\alpha}$, it follows that \hat{h}_{α} is also self-adjoint. Now $\tilde{\varphi}$ being an automorphism, $\tilde{\varphi}\hat{h}_{\alpha} = \hat{h}_{\alpha'}$, where α' is a root relative to $\tilde{\varphi}\tilde{H}$. Thus $\tilde{\varphi}\hat{h}_{\alpha}$ is selfadjoint for each \hat{h}_{α} , and since the \hat{h}_{α} span \tilde{H} , it is clear that $\tilde{\varphi}z$ is self-adjoint, as we wished to show.

It remains to prove that $\tilde{\varphi}$ is unitary. But this now readily follows from (1') since $\tilde{\varphi}$ is *-preserving.

COROLLARY. Every *-automorphism of L is unitary.

The rest of the present section is concerned with some generalisations of the above corollary to infinite-dimensional simple L^* -algebras.

THEOREM 3. Let L be either a complex simple L*-algebra of classical type or a real form of such an algebra. Then a *-automorphism φ of L is unitary.

PROOF. We adopt the notational convention introduced in Proposition 2. \widetilde{L} is therefore a complex simple L^* -algebra of classical type and so, by definition, is semi- L^* -isomorphic (say under a map ψ) to one of the standard algebras L_A , L_B , L_c . (For the definitions of the standard algebras see [5], or [8, Theorem 3] (separable case).) By Theorem 1, $\widetilde{\varphi}$ is a semi- L^* -automorphism of \widetilde{L} .

Let $\Delta = \{\alpha\}$ be the root system of \widetilde{L} relative to a Cartan subalgebra \widetilde{H} of \widetilde{L} , and g_0 the gauge of ψ . Denote by $\rho(\widetilde{H})$ the range of values of $\|\alpha\|$ (= $\|h_{\alpha}\|$) as α varies in Δ . Then, using explicitly the root systems for L_A , L_B , L_C determined in [5], we obtain

$$\rho(\tilde{H}) = \begin{cases} \left(\frac{\sqrt{2}}{g_0}\right) & \text{if } \tilde{L} \text{ is of type } A, \\ \left(\frac{1}{g_0}, \frac{1}{g_0\sqrt{2}}\right) & \text{if } \tilde{L} \text{ is of type } B \text{ and } \tilde{H} \text{ of type } 1, \\ \left(\frac{1}{g_0}\right) & \text{if } \tilde{L} \text{ is of type } B \text{ and } \tilde{H} \text{ of type } 2, \\ \left(\frac{1}{g_0}, \frac{\sqrt{2}}{g_0}\right) & \text{if } \tilde{L} \text{ is of type } C. \end{cases}$$

Since with \tilde{H} , $\tilde{\varphi}\tilde{H}$ is also a Cartan subalgebra (of the same type too), it follows that

(1)
$$\rho(\widetilde{\varphi}\widetilde{H}) = \rho(\widetilde{H}).$$

On the other hand, if $\tilde{\varphi} h_{\alpha} = h_{\alpha'}$, then

$$\|\boldsymbol{\alpha}\| = \boldsymbol{g}\|\boldsymbol{\alpha}'\|,$$

where g is the gauge of φ . The relations (1), (2) can clearly subsist only if g = 1. This means $\tilde{\varphi}$, and hence φ , is unitary.

COROLLARY. Every *-automorphism of a separable simple L*-algebra is unitary.

This follows from Theorem 3 and Schue's result that every separable (infinite-dimensional) simple L^* -algebra is of classical type [8, Theorem 3].

PROPOSITION 3. Let φ be a *-automorphism of a complex simple L*-algebra L such that φ leaves some Cartan subalgebra H of L set-wise invariant, $H = \varphi H$. Then φ is unitary.

PROOF. As in Theorem 3, we obtain the relation

$$\|\alpha\| = g\|a'\|$$

where $\Delta = \{\alpha\}$ is the root system relative to $\widetilde{H} = H, g$ the gauge of $\widetilde{\varphi} = \varphi$ and $\alpha \rightarrow \alpha'$ is now a bijective mapping of Δ onto itself. By Corollary 1 to Proposition 2 of [1], we have for any two roots $\alpha, \beta \in \Delta(||\alpha|| \ge ||\beta||)$

$$\|\alpha\| = \|\beta\| \text{ or } \sqrt{2} \|\beta\|$$

(assuming here, as we may, that L is infinite-dimensional). The relations (2), (2) clearly imply that g = 1, i.e., that φ is unitary.

PROPOSITION 4. Let L be a complex simple L*-algebra. A *-automorphism φ (of L) whose spectrum contains a number λ_0 of unit modulus is unitary. In particular, any *-automorphism φ admitting a non-zero fixed point is unitary.

PROOF. By the Corollary to Theorem 1, φ is a semi-L*-automorphism:

$$\langle \varphi x, \varphi y \rangle = g^2 \langle x, y \rangle, \quad (x, y \in L).$$

It follows that $\frac{\varphi}{g}$ is unitary, so that $\varphi \varphi^* = g^2 I = \varphi^* \varphi$, where I is the identity operator. The last equations imply that φ is normal. Since $\lambda_0 \in \sigma(\varphi)$, the spectrum

AUTOMORPHISMS OF L*-ALGEBRAS

of φ , it results from the spectral mapping theorem that

$$|\lambda_0|^2 \in \sigma(\varphi \varphi^*) = \{g^2\}$$
.

Therefore $g = |\lambda_0| = 1$, whence φ is unitary.

3. Semi-regular and regular automorphisms.

DEFINITION 2. Let L be a semi-simple L^* -algebra. Let D be a bounded derivation (in the Lie algebra sense) of L. We set

$$e^{D} = I + D + \frac{D^2}{2!} + \cdots$$
, $(I = \text{identity})$

Then e^p is a bounded operator which is moreover, by a standard reasoning, an automorphism of L. In particular, for $D = \operatorname{ad} a \ (a \in L)$ we write φ_a for $e^{\operatorname{ad} a}$. If a is a normal element (i. e., $[a, a^*] = 0$), we call φ_a an *inner* automorphism.

DEFINITION 3. An automorphism φ of L is called *semi-regular* if 1 is an eigenvalue of φ and further the 1-eigensubspace L_1 contains a maximal abelian subalgebra of L. (Observe that the 1-eigensubspace of an automorphism is always a subalgebra.)

Let φ_a be an inner automorphism. Since *a* is normal, it is contained in a Cartan subalgebra *H*. Since *H* is abelian it is clear that $L_1 \supset H$, and a Cartan subalgebra being maximal abelian [8, p. 70], φ_a is semi-regular. More generally, if *D* is a bounded derivation annihilating some Cartan subalgebra, then e^p is semi-regular.

PROPOSITION 5. Every semi-regular *-automorphism φ of a semi-simple L*-algebra L is unitary.

PROOF. The hypothesis on φ clearly implies that the 1-eigensubspace L_1 of L contains a Cartan subalgebra H. Then, with the notational convention in Theorem 2, \tilde{H} is a Cartan subalgebra of \tilde{L} . Let

$$\tilde{L} = \tilde{H} \oplus \Sigma \oplus \tilde{V}_{\alpha}$$
 (\oplus denoting orthogonal sum)

be the root space (or Cartan) decomposition of \widetilde{L} relative to \widetilde{H} (see [9]). Since $\widetilde{\varphi}$ leaves \widetilde{H} element-wise invariant, it follows that

$$\widetilde{\varphi} h_{\alpha} = h_{\alpha}, \ \widetilde{\varphi} \widetilde{V}_{\alpha} = \widetilde{V}_{\alpha},$$

where h_{α} is the vector of \widetilde{H} such that $x(h) = \langle h, h_{\alpha} \rangle$ for all h in \widetilde{H} . Now choose for each positive root α a vector $v_{\alpha} \in \widetilde{V}_{\alpha}$ with $||v_{\alpha}|| = 1$, then $v_{\alpha}^* \in \widetilde{V}_{-\alpha}$ ([8, p. 73]). Let

$$\widetilde{\varphi} v_{\alpha} = \lambda_{\alpha} v_{\alpha}, \quad \widetilde{\varphi} v_{\alpha}^* = \lambda_{-\alpha} v_{\alpha}^*$$

Then

$$egin{aligned} \lambda_lpha \lambda_{-lpha} [v_lpha, v_lpha^*] &= \widetilde{arphi} [v_lpha, v_lpha^*] \ &= \widetilde{arphi} h_lpha = h_lpha = [v_lpha, v_lpha^*] \,. \end{aligned}$$

Therefore $\lambda_{\alpha}\lambda_{-\alpha} = 1$. Again $\tilde{\varphi} v_{\alpha}^* = (\tilde{\varphi} v_{\alpha})^* = \overline{\lambda_{\alpha}} v_{\alpha}^*$, whence $\lambda_{-\alpha} = \overline{\lambda_{\alpha}}$. Hence $|\lambda_{\alpha}| = 1$, which means $\|\tilde{\varphi} v_{\alpha}\| = 1$. On the other hand, since $\tilde{\varphi} h = h$, we have trivially $\|\tilde{\varphi} h\| = \|h\|$ for all $h \in \tilde{H}$. These conclusions plus the mutual orthogonality of the \tilde{V}_{α} and \tilde{H} imply that $\tilde{\varphi}$ (and so φ) is unitary.

PROPOSITION 6. For an inner automorphism φ_{h_0} of a semi-simple L*-algebra L, the following assertions are equivalent:

- (i) φ_{h_0} is a *-map;
- (ii) φ_{h_0} is unitary;
- (iii) h_0 is skew-adjoint.

PROOF. That (i) \Rightarrow (ii) follows from the previous proposition, while (ii) \Rightarrow (i) is just a particular case of the general fact that an L*-isomorphism (or even a semi-L*-isomorphism) is automatically a *-map.

We shall now prove that (i) \Rightarrow (iii). With the previous notational convention, if (i) holds than φ_{h_0} is a *-map of \widetilde{L} . Further, it is clear that if $v_{\alpha} \in \widetilde{V}_{\alpha}$ then

$$\varphi_{h_0}(v_{\alpha}) = e^{\alpha(h_0)}v_{\alpha}, \quad \varphi_{h_0}(v_{\alpha}^*) = e^{-\alpha(h_0)}v_{\alpha}^*.$$

But $\varphi_{h_0}(v_{\alpha}^*) = (\varphi_{h_0}(v_{\alpha}))^*$, so that $e^{\overline{\alpha(h_0)}} = e^{-\alpha(h_0)}$. Therefore

$$\alpha(h_0) + \alpha(h_0) = 0$$
, or $\alpha(h + h_0^*) = 0$.

The arbitrariness of the root α and the 'total' property of the set $\Delta = \{\alpha\}$ of roots [1, Lemma 6] now imply $h_0^* = -h_0$.

To complete the proof of the theorem we have only to show that (iii) \Rightarrow (ii). But this readily follows since (assuming (iii))

$$\varphi_{h_0}^{-1} = \varphi_{-h_0} = \varphi_{h_0}^* = (\varphi_{h_0})^*.$$
 q. e. d.

In view of the above proposition we call an inner automorphism φ_{h_0} , with

 h_0 skew-adjoint, an inner L*-automorphism.

DEFINITION 4. A semi-regular automorphism φ of L is called *regular* if the 1-eigensubspace L_1 is a maximal abelian subalgebra.

PROPOSITION 7. An inner automorphism φ_{h_0} is regular if and only if the 1-eigensubspace L_1 of L is abelian (cf. [6, Theorems 5, 8]).

PROOF. Suffices to prove that if L_1 is abelian then φ_{h_0} is regular. Since h_0 is a normal element there exists a Cartan subalgebra H of L containing h_0 . Since H is abelian, φ_{h_0} leaves H pointwise invariant, and therefore $H \subset L_1$. But H as a Cartan subalgebra is maximal abelian. Consequently $H = L_1$ and φ_{h_0} is regular.

COROLLARY. For a regular inner automorphism φ_{h_0} , the 1-eigensubspace L_1 is a Cartan subalgebra.

PROPOSITION 8. An inner automorphism φ_{h_0} of a semi-simple L is regular if and only if for some Cartan subalgebra \widetilde{H} (of \widetilde{L}) containing h_0 we have

$$\frac{\alpha(h_0)}{2\pi\sqrt{-1}} \equiv 0 \pmod{1}, \text{ for all } \alpha \in \Delta,$$

where Δ is the root system of \widetilde{L} relative to \widetilde{H} . In particular, if φ_{h_0} is regular then h_0 is a regular element in the sense of [2] (i.e., the null space \widetilde{N}_0 of ad h_0 in \widetilde{L} is a Cartan subalgebra).

PROOF. Suppose first that φ_{h_0} is regular. Then by Corollary to Proposition 7, $\widetilde{L}_1 = \widetilde{H}$ is a Cartan subalgebra of \widetilde{L} . If the condition in Proposition 8 is not satisfied for H, we must have

$$e^{\alpha(h_0)} = 1$$
 for some $\alpha \in \Delta$.

It follows that if $v_{\alpha} \in \widetilde{V}_{\alpha}$, then

$$e^{\operatorname{ad} h_0} v_{\alpha} = e^{\alpha(h_0)} v_{\alpha} = v_{\alpha}.$$

This means $\widetilde{V}_{\alpha} \subset \widetilde{L}_1 = \widetilde{H}$, which is absurd. Hence the condition must hold.

Next, suppose the condition holds relative to some Cartan subalgebra \overline{H} . Then in particular, $\alpha(h_0) \neq 0$ for all $\alpha \in \Delta$ so that by Theorem 1 of [2], h_0 is

a regular element. Further $\widetilde{N}_0 \supset \widetilde{H}$, whence by maximality property of Cartan subalgebras $\widetilde{N}_0 = \widetilde{H}$. This clearly implies that $\widetilde{L}_1 \supset \widetilde{H}$. Let now

$$\widetilde{L} = \widetilde{H} \oplus \Sigma \oplus \widetilde{V}_{a}$$

be the root space decomposition of \widetilde{L} . For $x \in \widetilde{L}_1$, we can write

$$x = h + \Sigma v_a(v_a \in \widetilde{V}_a).$$

Then

$$h + \Sigma v_{\alpha} = x = e^{\operatorname{ad} h_0} x = h + \Sigma e^{\alpha(h_0)} v_{\alpha}$$

It follows that $e^{\alpha(h_0)}v_{\alpha} = v_{\alpha}$ for all α . But by our supposition $e^{\alpha(h_0)} \neq 1$. Hence $v_{\alpha} = 0$, $x = h \in \widetilde{H}$, and $\widetilde{L}_1 = \widetilde{H}$. Thus φ_{h_0} is regular as we wished to show.

THEOREM 4. Let L be a separable semi-simple L*-algebra. Then there exist regular inner automorphisms of L. If L is compact⁽³⁾ or complex, then there exist even regular inner L*-automorphisms.

PROOF. First let L be real and \widetilde{L} be its complexification. Let \widetilde{H} be a Cartan subalgebra which is the complexification of a Cartan subalgebra H of L, and Δ the root system of \widetilde{L} relative to \widetilde{H} . Since L is separable, so is \widetilde{L} , and consequently $\Delta = \{\alpha_i\}$ is countable. Define

$$P_{n,i} = \{h \in H: \alpha_i(h) = 2n\pi\sqrt{-1}\},\$$

where *n* runs through all integers. Each $P_{n,i}$ is either empty or a hyperplane of *H*. In any case $P_{n,i}$ is non-dense (see footnote in [2, p. 162]). It follows by Baire's category theorem that we can choose an $h_1 \in H$ with $\alpha_i(h_1) \neq 2n\pi\sqrt{-1}$ for any *i* or *n*. Then by Proposition 8, φ_{h_1} is a regular inner automorphism of *L*.

Next, let L be compact. Then $h_1^* = -h_1$ and φ_{h_1} is a regular inner l^* -automorphism (Proposition 6). Finally, if L is complex we take its compact from L_k , i. e., the real L^* -algebra L_k of all skew-adjoint elements of L ([3, p.523]). Choose a $h_1 \in L_k$ as above. Then $\varphi_{h_1} = e^{\operatorname{ad} h_1}$ taken over L, gives a regular inner L^* -automorphism of L.

REMARK. It was shown in [2] that a non-separable type A complex simple L^* -algebra L_A contains no regular element. More generally, it can be shown,

⁽³⁾ i.e., every element of L is skew-adjoint.

using Bessel's inequality and the criterion for regular element [2, Theorem 1], that every complex semi-simple L^* -algebra admitting an uncountable subset of mutually orthogonal roots contains no regular element. The L^* -algebras L admitting such an orthogonal subset of roots include besides the non-separable simple algebras L_A , L_B , L_C also all semi-simple L with uncountably many simple components. In view of Proposition 8 none of these algebras — which are all, of course, non-separable — has a regular inner automorphism.

References

- [1] V.K.BALACHANDRAN, The Weyl group of an L*-algebra, Math. Ann., 154(1964), 157-165.
- [2] V. K. BALACHANDRAN, Regular elements of L*-algebras, Math. Z., 93(1966), 161-163.
- [3] V.K. BALACHANDRAN, Simple system of roots in L*-algebras, Trans. Amer. Math. Soc., 130(1968), 513-524.
- [4] V. K. BALACHANDRAN, On the uniqueness of the inner product topology in a semi-simple L*-algebra, Topology, 7(1968), 305-309.
- [5] V. K. BALACHANDRAN, Simple L*-algebras of classical type, Math. Ann., 180(1969), 205-219.
- [6] F. GANTMACHER, Canonical representation of automorphisms of complex semi-simple Lie group, Mat. Sb., 5(1939), 101-144.
- [7] S. HELGASON, Differential geometry and symmetric spaces, New York, Academic Press, 1962.
- [8] J. R. SCHUE, Hilbert spaces methods in the theory of Lie algebras, Trans. Amer. Math. Soc., 98(1961), 334-349.
- [9] J. R. SCHUE, Cartan decompositions for L*-algebras, Trans. Amer. Math. Soc., 98(1961), 334-349.

THE RAMANUJAN INSTITUTE UNIVERSITY OF MADRAS MADRAS, INDIA