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Introduction. The natural setting for a theory of sheaves is a site, i. e. a
category C topologized in the sense of Grothendieck (cf. VERDIER [1963]). We
shall consider a sheaf A of rings on a site C and the category Jl of sheaves of
A-modules. When we speak of sheaf-cohomology, we shall mean the right-derived
functor of Γ = Hom^(-A, - ) , that is: Ext^CA, —).

In <Jl one has a tensor-product and a local Horn (denoted: Mom) with the
familiar exactness properties and the usual adjointness. Our problem is to
associate to a pairing

( 1 )

or, equivalently, to a morphism

( 2 ) F->Sΐom(F\G)

of objects of J a canonical cohomology product

( 3 ) HP(F)

which respects coboundary operators in the usual way. Universality of the
cohomology functor does not help, since Hp(F(g) —) does not, in general, yield
a connected sequence of functors on any useful subcategory of short exact
sequences. We shall exhibit two constructions for a product ( 3 ) which arise in
different natural habitats but coincide in the context described above.

An obvious thing to try is the conversion of the first factor HP(F) into
Extp(F', G) via ( 2 ) followed by the application of the ever-available Yoneda-
product

More precisely, the transition from HP(F) to Έ,xtp(Fr,G) is accomplished by
applying Hp to ( 2 ) and then using the edge-morphism
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Hp(Mom(F, G)) -> Extp(F', G)

whose existence is due to the fact that Horn = To Mom and that Mom{F\ ΐ) is
acyclic for Γ if / is injective. This construction, which hinges on certain
properties of Mom, is discussed in §3.

In the absence of a tensor-product, the construction just described is hopelessly
asymmetric. In §2, we provide another one, based on properties of ®, by showing
the existence of an external product for Ext with flat first variable. Since Ji
does not, in general, have enough projectives (though it does have enough flats),
we cannot work with projective resolutions and therefore find it convenient to
interpret elements of Ext-groups as morphisms in the derived category of Jί
and to define their products as tensor-products of these morphisms. The required
facts about derived categories are recalled in §1. Finally, in §4, we show that
in the presence of both Mom and (g), the two products are the same.

Care has been taken not to engage the reader in speculations about sheaves :
these were mentioned only as motivation and area of application all the rest
of this paper is strictly categorical. A possible way of reading it is to keep in
mind the category Jl of modules over a group G with Γ=HomG(Z, —) and
Mom = Hom^, but to remember that the game is to be played without using
projectives as such.

1. Review of derived categories. We recall the relevant properties of
derived categories referring to Hartshorne [1966] for details and indication of
proofs.

Let Jl be an abelian category. We denote by C{Jΐ) the category of all
complexes over <Λ (with differentials augmenting degrees) and by FL(yK) the
homotopy category thereof. Furthermore, there are various full subcategories of
C{Jΐ) whose respective objects are the complexes which are bounded below,
bounded above, bounded in both directions. These will be denoted by C*(JΓ),
C~(c ί̂), Cb(cJI)y respectively, and similarly for the corresponding homotopy
categories.

For brevity, we call a morphism in one of these categories a quiso, if it
induces isomorphisms on cohomology. Quisos will be denoted by double arrows i>.
The derived category D(<Jl) of <Jl, then, is constructed from K(^Jl) by formally
inverting all quisos. We call a morphism in D(<Jl) a quasi-morphism of C( J ) ,
and denote quasi-morphisms by broken arrows -. Since the set of all quisos
in K{JΓ) admits both a calculus of left and of right fractions, a quasi-morphism
X*—+γ* c a n b e given either by a diagram

( 1 )
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in C(<_Λf), where σ is a quiso, or by a diagram

( 2 )

in C(c^ί), where r is a quiso.

In the same way, one gets categories D+(Jl)y D~(Jl)y D\Jί) from the

corresponding homotopy categories. These are full subcategories of D(cJl);

moreover, the inclusion of D+(^A) in D{Jΐ) is compatible with the calculus of

left fractions, i. e. a morphism in D+(ιA) can be given by a diagram ( 1 ) in

C+(^Ά). Dually, a morphism in Z)~(<_ΛΓ) can be given by a diagram ( 2 ) in C~(<Jl).

Finally, we note that Jl may be considered as a full subcategory of each of

the categories introduced so far.

If J has enough injectives, there is a canonical equivalence of categories:

( 3 ) K\3)^Ό\Jΐ),

where K+(S) denotes the full subcategory of K+(<:A) whose objects are the

injective complexes (i. e. all of whose components are injective). More precisely,

for each Y* in C+(^Λ) there exists an injective resolution, i.e. a mono Y*—>J*

with J* injective, which is a quiso, and any injective resolution Y* => J* induces

a bijection

( 4 ) Hom^jCX* Y ^ ^ H o m ^ X X * J*)

for arbitrary X* in C(oί).

The familiar construction of a mapping cylinder can be used to pass from

short exact sequences of complexes to quasi-morphisms. To explain this we

recall that, for a morphism^: X*—»Y* in C(<Jl), the mapping cylinder C* of

/ gives a short exact sequence

( 5 ) 0-> Y* --> C? -• X*[l]-> 0

in.C(J) , where X*[Γ] denotes the complex X* shifted one place to the left :

(X*[l])n = Xn + I, 3rτn = ~3χ .Given a short exact sequence

( 6 ) 0-*Xt±>X}ϊ+Xt ->0

in C(< A\ one has an obvious morphism σ : C** —• X* such that the diagram
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X* _L v* A v*

(7) -if if fσ
Xf ^ X2* -» Cΐ,

is commutative. Since the colroundary operator of the exact sequence of the form
( 5 ) belonging to — i is the map induced by —i on cohomology, σ is a quiso
by the 5-Lemma. Hence the diagram

( 8 )

defines a quasi-morphism X* ---•** X*[ϊ\, which is said to correspond to ( 6 ) .
It is clear that the passage from ( 6 ) to ( 8 ) is functorial.

Jn case <Jl has enough injectives, there is, for short exact sequences in
C+(cJf), a second method of constructing the corresponding quasi-morphism : one
takes an injective resolution

of a short exact sequence ( 6 ) in C+(<^?), and one notes that J* is, in fact, the
mapping cylinder of a φ: J3*[—1] —»Jf, which is determined by the differential
of J*. Hence ( 9 ) gives a quasi-morphism X3* — -•** X*[l] by the diagram

(10) ft ft
X * V*Γ11

which can be verified to be the same as the one obtained by the previous
construction.

In terms of derived categories, the right-derived functor of an additive
functor T : JI-+1B between abeliancategories is a functor SίT : D+(Jl)-+D+(<B\
together with a canonical morphism ξ: T—>SίT\Jl.

To construct jRT, one has to assume the existence of enough T-acyclic
objects, that is, of a class Iτ of objects in <Jl such that:
( I ) Iτ is closed both under the formation of direct summands and of cokernels

of monos.
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(II) T takes short exact sequences of objects of IT to short exact sequences.

(III) For each object in Jl there exists a mono into an object of / Γ .

Such a class contains the injectives of JL, and in case JL has enough

injectives Iτ may be taken to be the class of all injectives of JL.

( I ) and (II) imply that T takes short exact sequences of Iτ-complexes in

C+(Jΐ) (i. e. of complexes all of whose components are in Iτ) into exact

sequences. This is equivalent to saying that T preserves quisos between

Iτ-complexes hence T induces a functor T' : D+(IT)—>D*~(1B)> where D+(IT)

is the category constructed from the full subcategory of K+(Jl) whose objects

are the Iτ-complexes by formally inverting all quisos.

It follows from (III) that, for each complex in C+(JL\ there exists an

/^-acyclic resolution, i.e. a mono into an Iτ-complex of C+(JΓ), which is a

quiso. Hence the obvious functor D+(Iτ)—>D*(Jl) is an equivalence of categories,

so that 9\T and ξ can be constructed by applying T to T-acyclic resolutions.

Passage to coαomology yields functors RPT: D*(JI)^>1B. By means of the

quasi-morphisms corresponding to short exact sequences in C+(Jl\ one also gets

the usual long exact sequences. Obviously, one recovers the old definition of

right-derived functors in case Jl has enough injectives. Finally, we note that if

the right-derived functor of T can be constructed, each class of T-acyclic

objects is contained in the class of all T-acyclic objects, i. e. the class of all X

in Jl. with RPT(X) = O for p>0.

To conclude this review we indicate how the Ext-functors work out in the

language of derived categories. First, we observe that the Hon-functor of Jl

can be extended to a functor

(11) Horn* : C{JL)° x C(Jt)-> C(Jlί)

in such a way that one has natural isomorphisms

(12a) Z"(Hom*(X* Y*)) ^ HomC W )(X* Y*[p])

(12b) H*(Hom*(X* Y*)) ^ Hom J Γ U )(X* ) Y*[p})

for p-cozycϊes and />-cohomo!ogy, respectively. By (12b), for each injactive J*

in C+(Jl), the functor X* I—> Hom*(X*, J*) preserves quisos in C{JL). Therefore,

assuming that Jl has enough injectives, one defines the Ext-groups by

(13) Extp(X*, Y*) = £P(Hom*(X* J*))

for X* in C(Jl) and an injective resolution Y*-+J* in C + (U). Using (12b)

again one gets important natural isomorphisms :
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(14) Ext"(X* Y*) ^ H o r n ^ X * Y*[p])

for X* in CX JT), Y* in C+(oί).

2. External and internal products for Ext. By means of a tensor
product in an abelian category <A9 we can define a product for suitable pairs
of quasi-morphisms, which will yield an external product

Ext"(A, F) x Ext«(A', F ) --> Extp+«(A <g> A', F ® F )

under certain circumstances.
We assume, then, that <Jl has a "tensor-product", which for the moment,

shall mean any bi-additive bifunctor JlY>Jl-*Jl which is right-exact in both
variables and symmetric and associative up to natural isomorphisms. It will be
denoted by the usual ®.

An object P of Jl is called flat, if the functor F — > F ® J P is exact; a
complex is called flat if all its constituents are. Jl will always be assumed to
have enough flats, i.e. an epimorphism P—>X with flat source for every X in
Jl. This implies that for every complex X* in C~(Jl) there is a flat P* in
C~(Jl) and an epimorphism P*-+X* which is a quiso. Hence every quasi-
morphism X* ~--*~Y* in C"(o?) can be given by a diagram

( 1 ) X* < = P * — Y*

with flat P* in C\Jl).
Under these assumptions we could proceed to construct the left-derived

functor of our tensor product. However, we need only the first stage of this
construction, namely a bi-additive bifunctor

( 2 ) C-(Jl) x P-(JD~+D-(Jl)

where P~(<Jΐ) denotes the full subcategory of flat complexes in D~(<Jt). For

this we take the usual extension of ® to a bifunctor on K~(<Jl), which will
extend further to the categories indicated in ( 2 ) iff the following two conditions

hold:
( i ) Tensoring with P* € P~(<Jl) preserves quisos in C~(ιA).

(ii) Tensoring with X* £ C~(<JΓ) preserves quisos between flat complexes in
C\Jl).

Using mapping-cylinders one reduces the proof of both conditions to
(iii) For X * , P * in C"(o?) and P* flat, the complex X*®P* is exact if

either X* or P* is.
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Now (iii) follows from the simple fact that a bicomplex which lives in the

third quadrant and has either exact rows or exact columns has an exact total

complex.

We can now define the product of quasi-morphisms / : P* > X* and

9 : Q* ~Y* m C~(*JΓ) with flat sources P* and Q* via the commutative

diagram

whose arrows result from the bifunctor (2) . Under our assumptions, it is

obviously natural, bi-additive, associative, and symmetric up to the usual signs.

In terms of the representations ( 1 ):

J P * < = Z * — - X * and Q*<=Z* Y* for/ and g, the product /<g> <7

is given by

σ<g)l l ® τ

where σ ® 1 and 1 ® T are quisos by (iii).

In order to make this into a product for Ext, we assume furthermore,

that Jl has enough injectives. Then it is known that

( 4) Ext"(X*, Y*) = Horn*^(X* Y*[p])

for X* in C{<J) and Y* in C+(^ϊ). Thus by ( 3 ) we obtain a product for

Ext if the first variable is restricted to flat complexes in C~(cJf), the second to

arbitrary complexes in Cb(Jl). To sum, up, we have

PROPOSITION 2.1. Let Jl be an abelian category with tensor product.

If Ji has both enough flats and enough injectives, this tensor product

induces a product

(5 ) Ext^P*, F*) x Ext'CP'*, F*) -» Ext*+*(JP* ® P'*, ί1* ® F * )

/or ^αί complexes P* P'* ίΛ C^(cJ) and arbitrary F*9 F* in C\Jl). This

product is bilinear, natural, associative, and symmetric (up to the usual

signs).
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This product will be called the external product for Ext. Given a pairing
F*®F'*-+G*, it is clear that a corresponding internal product will arise. We
shall show that the latter is compatible with coboundary maps.

PROPOSITION 2.2. Let Jl be as in (2.1). If

0 -> Ft ->F?-+ Ft -> 0

and

0 -> Gt -> Gt -> G? -» 0

sequences in Cb(Jΐ) and if

( 6) Ff ® F * — Ff ® F * — - F3* ® F *

VTi *" LT2 ^ VJΓ3

Z5 α commutative diagram of pairings, the coboundary operators of the
two sequences are compatible with the internal products in the sense that
the diagram

( 7 ) Extp(P*, Ft) x Ext*(P'*, F*) -> Ext^q(P^ ® F\ Gf)

Ext^^P* Ff) x Extβ(P'* F*)->Extp + β + 1(P*®P'*,Gf)

is commutative.

PROOF. We consider elements a z Ext*(P*, Ft) and β € Extf<P'*, F*) as
quasi-morphisms, and fix a representation

( 8 ) F* έ=z Z'* — F*l"</1

of /S with a flat Z'* in C"(cj?). What we must show is the commutativity of
the diagram

9 ) P* ® F* - - - Fftp] ®Z'*^ Fftp] <g> F*[9l -* G3*[i> + q]

jγ^01 j
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where φ: Ft —*- F*[l] nd y: G* *-G*[l] are the quasi-morphisms arising
from the given exact sequences. We are using the fact that coboundary operators
for any right-derived functor are induced by these.

Using./ to lift our pairings from F'*[q] to Z'*, we have a commutative
diagram

(10) 0 -> Ff[ρ] ® Z'* -> FJίρ\ ® Z * -> F3*U>] ® Z'* -> 0
i i !
I 1 1

] ^ Gζ[p+q\ -> G,*[>+g] — 0

in which both rows are exact. Hence by the naturality of the passage from
short exact sequences to quasi-morphisms, we have the commutative square

Ft\p\®Z'* — Gϊ[p+q\

where ψ belongs to the top row of (10).
Hence it remains to show that ψ = φ®l, which is an immediate consequence

of the following observation: if C* is the mapping cylinder of a morphism
i: X*—>X* in Cb(<_M), and if Z* is any complex in C~(<_A), the mapping
cylinder of t'<8>l*. is canonically isomorphic to C

By symmetry, i. e. the commutativity of

Ext"(P* F*) x Ext«(P'* F * ) \
(12)

Ext*(P'*, F'*) x Ext*(P* F*)

up to the sign ( — l)1)q, we get the

COROLLARY 2.3. WzΐΛ. notation and conditions as above, given two
exact sequences

o _> F;* -> F;* ~> F;* -> o

0-*Gf ->G2* ->G3* - ^ 0 ,

α pairing τvith F* of the first of these into the second, the diagram
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(13) Ext"(P*,F*) x Ext<(F* F.;*)

t

Ext"(P*, F*) x Ext Q + 1 (P '* Fί*) -> ExtIJ+Q+ι(P* <g> P '* , G ί )

25 commutative up to the sign ( —1);\

3. The Yoneda-edge-product. To recall the definition of the edge morphism,
let S: cJ—±JB, T:lB—>Cbe additive functors between abelian categories, where
cJI, 13 have enough injectives, and S takes injectives into T-acyclic objects. In
this situation the canonical map y: iR(ToS)—*!RT°iRS is an isomorphism, and
one gets the edge morphism e: 3lToS—+ϊR(T°S)\<Jl by means of the canonical
map ξ: S—+<RS\<Jl via the commutative triangle

3ίT*ξ

We use e to pass from morphisms of the form

( 1 ) * : F - > S ( G ) ,

where F, G are objects of iδ, oί respectively to morphisms of the form

( 2 ) rf(«r):.5lT(F)->Λ(To5)(G)

by putting

d{n) = eoSί{T){π).

In other words, d is a functor between comma-categories,

( 3 ) d: (l*,S)-+(3tT,3KToS)),

whose objects are morphisms of the types ( 1 ) and ( 2 ) respectively and whose
morphisms are the usual commutative squares. We observe that d is natural
with respect to S in the following sense: a morphism S*~->SΛ will induce
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functors on the corresponding comma-categories which commute with d, thus :»

(1», St)
 d > {SLT,

( 4 )

i 7

(1*, 50 > (3t7\

To have a more explicit description of d, we note that d{π) is obtained
from injective resolutions F^>J*> Gτ=>I* by application of T to the quasi-
morphism λ in the diagram below :

F — * — > 5(G)
( 5 )

J*—^-

In particular, if we start from a short exact sequence in (1^,5), i.e., a
diagram

( 6 ) , a ι φ ,

in which (Λ, ê>) and (/9, ̂ ) form short exact sequences in 3$ and Jl respectively,
we can work with exact sequences of resolutions to obtain a corresponding
diagram of quasi-morphisms

c/1 ι/2 * t/3

( 7 ) , ; .

i i I
5(7,*) - 5 ( 7 ? ) — 5(73*)

Applying T to (7 ) and passing to cohomology, we obtain a morphism of the
cohomology sequences. To summarize, we state:

PROPOSITION 3.1. Given two additive functors

S: Jί-^B and T: &-+C

between abeliaή categories, suppose that Jl and 3) have enough injectives
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and S leaves these T-acyclic. Then the edge-morphism

e:

induces a functor

d: (l

For every short exact sequence in (l@, S), d induces a morphism of cohomology
sequences.

Using this construction, we shall define a product on the cohomology of
certain derived functors. We consider an abelian category Jl with enough
injectives and assume the existence of a bi-additive functor Mom : J ° X Jl —»Jl
such that HOITM = T^Mom. We assume furthermore that Mom and T are left
exact and that Mom (F\G) is T-acyclic whenever G is injective. Such a
functor Mom will be called an internal Horn-functor.

If we had the existence of a tensor-product ® left adjoint to Mom a pairing
F®F'-*Gwould correspond to a morphism

( 8 ) F-*JCom(F,G).

Accordingly, we call a morphism of the form (8) a pre-pairing of F with F
into G. A morphism of pre-pairingst then, is given by a triple ( f,f',g),
f: Fj -> F2, / ' : F[ -• Fg, g : G! -> G2, such that the diagram

JCom(F\, G.)

commutes.
Fixing F' and setting άV = Mom(F, —), we can apply our functor <i to

transform any pre-pairing F—>SF,(G) into a sequence of morphisms

(10) RPT(F) -> Ext^F', G).

Thence, using the well-known operation of Ext on R*T via bi-additive maps

(11) Extp(F\ G) x R«T(F') -* R»+«T(G),

we obtain the Yoneda-edge*product, a family of bi-additive maps
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(12) RPT(F) x RQT(F) -> R*+*1\G).

By proposition 3.1, we immediately have

PROPOSITION 3. 2. Let Jl be an abelian category with enough ίnjectives
and an i?ιternal Horn-functor\ Then
a) the Yoneda-edge-product is- natural with respect to morphisms of

pre-pairings of the fornι{f\ 1, g)

b) if 0->Fι-+FΛ->Fi-*0 and 0->G, ->G2->G3->0

are exact, and if we have a pre-pairing with ¥ of the first of the*e
sequences into the second^ each of the diagrams

X

(13)
\BFx 1

Rt+ΎiFi) x 1

is commutative.

We have used, of course, that the corresponding statements are known
for the usual Yoneda-product (11).

To examine the behaviour of our product with respect to changes in the
second variable, we consider an arrow f : F[—>F'2, and the induced morphism
S2 = Stom{F'2y — )—>Sι~Mom{F1, — ). Using ( 4 ) we conclude that a commutative
triangle like

Mom (Fi,G)

is transformed by d into a collection of commutative triangles
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Since every morphism (/, / , g) of pre-pairings can obviously be factored into
(f 1> 9) and (1, / ' , 1), we deduce that the diagram ( 9 ) goes over into

(15)
Ext*(Fi,

RPT(F2) —

PROPOSITION 3.3. Let Ji be an abelian category with enough injectives
and an internal Horn-functor, Then

(a) the Yoneda-edge*product is natural with respect to all morphisms of
pre-pairings

(b) if O-»FΊ and 0 -* G, — G, — G3-> 0

exact and if we have a pre-pairing of F with the first of these sequences
into the second (i. e.: (l,.a\ β) and (1, φ\ ψ) are morphisms of pre-pairings),
each of the diagrams

R»+"T(GS)R'Ί\F) x

R»T(F) x Rn+1

commutes up to the sign ( — 1)".

PROOF, a) In view of Proposition 3. 2(a), it suffices to look at pre-pairings
of type (1, / ' , 1). For these our statement follows from (14) and naturality of
the usual Yoneda-product.

b) By (15), our pre-pairing of sequences gives commutative diagrams

(17)

Ext* (ί\, G.)

RΠ\F) G,)

;, G 3)
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Consider the first of these squares and look at the images of a fixed .χ-<R*T(F)
in the three Ext-groups involved, regarding them as exact sequences of p terms
each. They are connected as follows :

3{
1-

with t h e middle sequence produced from the o t h e r two by β and cί respectively.

Applying this also to the second square of (17) and p u t t i n g t h e t w o t o g e t h e r

yields a d iagram

1

G2 —>

(18)

whose rows are the images of x and whose outer columns are the given exact
sequences. Taking a y £ RqT(Fz) with x clockwise through (16) means feeding
y through the bottom sequence of (18) and then through the first column.
Traveling counter-clockwise in (16) corresponds to going through the last column
of (18) and then through the top row. It is well-known (MacLane [1963],
VIII. 3) that the two processes differ by the sign •'( — l)p.

REMARK. We have defined a product with the usual properties of a cup-
product. However, we did not succeed in showing its uniqueness, not even
its symmetry. It is of interest to note, that our product is unique (up to
isomorphism) for all pre-pairings

F-> 3ίom{F\G)

into objects G which are acyclic ίorSΐom. For these, e yields an isomorphism

RT\Mom{F\ G)) ^ Ext\F\ G)

and the uniqueness of our construction follows from that of the Yoneda product.
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4. Comparison of the two products. In this final paragraph we wish to

show that the two products introduced above coincide under certain circumstances.

Thus we consider a situation in which the constructions of both §2 and §3 can

be performed.

Let Jl be an abelian category with an internal Hom-functor Mom (cf. §3)

having a left-adjont tensorφroduct (cf. §2) denoted by ® or Sen depending on

the particular formulas at hand. Thus,

( 1 ) Horn (X, Mom(Y, Z)) ^ Hom(X® Y, Z).

Moreover, we assume that the functor T': Jl-* Ji which turns Mom into Horn

is representable i. e. there is an object A such that

( 2 ) T = Hom(Λ - ) .

By ( 1 ), ζ[en(A, —) is isomorphic to the identity. In particular, A is flat. It

will be important that the formula

( 3 ) Hom(A, Mom(X, Y)) - Hom(X, Y)

is a special case of ( 1 ) via the natural identification of A ® X with X.

Finally, we suppose that Jl has enough flats and injectives and that

Mom(X, I) is T-acyclic whenever / is injective.

Since the main examples of such categories are categories of modules over

ringed sites, we shall call a category <JL with the properties listed above an

abelian quasi-topos. The functor T will be referred to as the section-functor,

the object A as the structure-object of Jl.

To compare our products, we shall first extend the adjointness (1) to the

derived category of Jl and then relate it to the edge-morphism used in §3.

Both Mom and ζfen can be extended to functors

( 4 ) JCom* : C

Sen*: C'(Jΐ) X C~{Jΐ) -> C"(Jl)

with the usual sign conventions for differentials. (The indicated restrictions on
the complexes are necessary, because we do not assume existence of infinite sums
or products in Jl).

PROPOSITION 4.1. Let Jl be an abelian quasi-topos. The adjunction-

isomorphisms ( 1 ) extend to natural isomorphisms
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( 5 ) Hom*(X* JComHY*, Z*)) ̂  Hom*(X* <g> Y*, Z*)

for X*, Y* iw C-(c^) αwrf Z* /« C+(

PROOF. The trick is to find the right sign-convention to obtain an
isomorphism of complexes. Taking <pp € Homp(X*, Mom*(Y*, Z*)), i.e.'a family
φl: Xk-*Mmk+*(¥*9Z*\ regarded as a family

we define its image ψξ : (X*& Y*)n —> Z 7 1 ^ to be composed of maps

ψf t ί: X

which correspond by adjointness to (—1)V?.«> where S = ---(^-f k){p-\~ k -f 1).

Looking in ( 5 ) at 0-cocycles and 0-cohomology respectively, we get

COROLLARY 4.2. Mom* and Hen* are adjoint to each other in C{Jΐ)
well as as in K{Jΐ) {both restricted as in (4)).

REMARK. The formula ( 5 ) shows up as (8.7) in Chapter VI of MacLane
[1963], where it does not involve the sign ( — l) ε . The reason for its appearance
here is that we follow a different sign-convention for the differentials of Horn*:
our differential 3 P differs from that used by MacLane by the sign( —l) p + 1 . This
is necessary for obtaining formulas (12) of §1.

Now to the derived functors. From §2 we recall that X * ® P * is exact,
whenever P* is flat and one of X* or P* is exact. Thus we can define the
total left-derived functor

X . >** : Dr(JL) x D-(Jl) -> D-(Jl) by putting X 3en\X*> Y*)=X* ®P*
where P* is a flat resolution of Y*. To do the analogous thing for Mom*, we
need the

LEMMA. For any injective I in an abelίan quasi-topos cJΊ, the functor
Mom ( —,/) is exact.

PROOF. Let Yι~+Y* be a mono. For flat P, Horn (
(P, Mom(Yιy I)) is surjective by adjointness. Looking at an epi P—>J^bra(Y1, /),
we see that Mom(Y2,I)->Mom(YuI) is epic.
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From this Lemma, we conclude that Mom*(X*9I*) is exact whenever /* is
injective and X* is exact. Hence we obtain the total right-derived functor

SI Mom*: D'{JCf x D\J) -> D\JL)

by putting 31 Mom* (X* Y*) = Mom*(X*, I*) for an injective resolution /* of

y*

PROPOSITION 4. 3. The adjointness (1) extends to an adjointness

( 6 ) H o m ^ X * 51 Mom*(Y*9 Z*» ^ UomDU)(X Zen(X*> Y*), Z*)

for X*, y* in D-{JI) and Z* in D\Jί\

PROOF. Taking a flat resolution P* of y* and an injective one /* of Z*,
we note that Mom* (P*91*) is injective. Hence we are reduced to showing that

)(X* Mom* (P*,I*)) -> Hom^XX* ® P* J*)

is an isomorphism, which is guaranteed by Corollary 4.2.

REMARK. In particular, for X* = A (remember that A®Y^iY), ( 6 )
goes over into

( 7 ) Hom^jCA, 51 Hom^(y^, Z*)) ~> Hbm^jCy* Z*) .

Using the canonical map Mom* -> 5i Mom* (derived, say, from t: Mom*
* Z*) -> Λbm*(y* /*)) we obtain maps

( 8 ) Hom^CA, Mom*(Y*> Z*)) -> Hom^Cy* Z*) .

Applying this to objects Y9 Z in J and remembering the interpretation of
Ext in terms of Hom^u), we have

(9)

On the other hand, we have a similar map from the edge-morphism

e : SlT{Momt- ,-))-> 51 Horn* \Jl (cf. § 3).

The main point of this paragraph is that these are the same.
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PROPOSITION 4.4. The map ( 9 ) obtained from adjointness in D(<J[)
coincides with the analogous map derived from the edge-morphism e.

PROOF. With notation as in the proof of (4.3) consider the following
diagram

Mom (Y,Z)[p]=>J*[p]
(10)

ii τ
JCom*(Y, /*[/>]) = φ Mom*{P*, /*[/>]),

in which, for the moment, we ignore J* and its arrows. The transition ( 9 ) is
defined as follows:

A quasi-arrow a:A —•• Mom(Y, Z)[p] is transformed into β : A ---•*Mom*
(Y, I*)[p] via ί. Since τ is an injective resolution, β can be represented as τ~1b
with b: A->JCom*(P*,I*[p]) in Jl. By adjointness b corresponds to some
c: P*-*I*[p\ which gives the desired quasi-arrow 7: Y--••/*[/>].

To compare this process with the edge-morphism, we introduce the injective
resolution J * of Mom (Y, Z). By injectivity of Mom* (P*, I*[p])> we get the
right vertical arrow s making (10) commute up to homotopy. The morphism b
found above could therefore have been defined by setting oi — σ~λa with
a: A-+J*[p] and composing a with s.

The prescription for the edge-morphism, on the other hand, is to apply
Hom(A, —) to 5 and watch what happens in cohomology. There we get

, Mom*(P*,

with the right hand side to be identified with

H o m x U ) ( P * /*[/»]).

This is exactly what was done above.

We are now ready to deal with the problem which motivated these
excursions. Given a pairing

7τ: F®F ~->G

in Jly we have two ways of constructing products

(11) ExtpCA, F) x Ext*(A, F) -> Extp+<7(Λ, G),

one by the Ext-product of §2, the other via the pre-pairing
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π: F-+Jtόm(F,G)

adjoint to n by the Yoneda-edge-product of §3.

PROPOSITION 4.5. Let n: F®F'-*G be a pairing in an abelian
quasi-topos with structure-object A. Then the internal product

Extp(A, F) x Ext«(A, F) -> Extp+Q(A, G)

coincides with the Yoneda-edge-product

RΎ\F) x RTP(F) -> RTp+q(G).

PROOF. Let elements of Extp(A, F) and Ext 9(A F) be given as quasi-
arrows

a : A - — F[ρ] and a : A — +F [q].

Consider the commutative diagram

l Mom{F\ GJp]) t Hom^F® F'[p\ G[p])

a

JCom(F\ GJp]) X Hom^CF, G[p])

a

Starting with π in the upper right corner, the internal product is described
by the right column. The Yoneda-edge-product is obtained in three steps :
( i ) going over to π = ξ~\π\
( i i ) composing π with a and applying the "edge" η (cf. 4.4)
(iii) composing the result a € HomjD(^)(Fr, G[p]) of ( i ) and ( i i ) with a :

A[-q\—~F.
By commutativity of (12) the two processes coincide.
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