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ORDER OF COMPOSITE FUNCTIONS OF INTEGRAL FUNCTIONS

SEIKI MORI

(Received March 27, 1970)

1. Let f{z) be a meromorphic function in the plane \z\<C~\-°o, Ί\r,f)
Nevanlinna's characteristic function of f(z) and

M(r,/) = max | /O) | .

We define the order μ and the lower order λ of f{z) as follows :

r-^oo log r τ=^ log

If f(z) is an integral function, we may define the order μ and the lower order λ
of f(z) by using log M(r,f) instead of T(r,f). About a composite function of
integral functions f(z) and g(z), Pόlya [4] proved the following theorem.

POLYA'S THEOREM. // f(z) and g(z) are integral functions and if
g(f(z)) is an integral function of finite order, then there are only two
possible cases: either

(a) the internal function f(z) is a polynomial and the external function
g(z) is of finite order', or else

(b) the internal function f(z) is not a polynomial but a function of
finite order, and the external function g(z) is of zero order.

Ozawa [3] treated this theorem in detail and Baker [1] discussed the order
of an integral function f(f(z)) in the case when f(z) is of order zero. In this
paper we consider the converse problem of Pόlya's theorem, that is, the problem
to investigate the order of g(f{z)) under the condition (a) or (b). The main part
will be the problem corresponding to the condition (b).

The author wishes to express his hearty thanks to Professor Toda for his
kind discussions with the author.

2. About the case (a) of Pόlya's theorem, it is obvious from the maximum
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modulus principle that if g(z) is a transcendental integral function of finite order
μ and if f(z) is a polynomial of degree n, then g(f(z)) is of order μn.

3. From now on, we shall investigate the case (b). We start from the
following.

LEMMA 1 (Valiron [5]). Suppose that f(z) is a transcendental integral

function of finite order. Let r = l(u) be the inverse function of u — M(r, f).

Then, given £ > 0 , there exists a constant A(8) such that the equation f{z) — a

has a root in the annulus

provided that \a\>A(S).

Using this lemma we can prove the following lemma which will be used in

the proof of Theorem 1.

LEMMA 2. Suppose that f(z) and g(z) are integral functions of finite
order and put

(1) log M(r,g(z)) = (log r)^\

Then, for any £>0,

( 2) log log M(r^% g{f(z))) ^ <p(M{r, f(z))) log log M(r, f(z))

and

( 3 ) log log M(r, g(f(z))) ^ φ(M(r, f(z))) log log M(r, f(z))

for all sufficiently large values of r.

PROOF. By Lemma 1, given £ > 0 , there exists a constant A(β) such that

the equation f(z) = a has a root in the annulus

provided that | a \ > A(ε). Now we choose a number r0 such that

M(ro,f)>A(€),
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and we take P=p(r,f)=M(r,f) for any r^r0. Then, there exists an ap such that
\ap\=p and

max\g{w)\ = \g(ap)\
\V)\=p

and such that the equation f(z) = ap has a root in the annulus

Thus, there exists a z0 such that

^rι+ε and f(z0) = ap.

Therefore, we have

M(r"', g(f(z))) ^ \g(f(zo))\ = \g(af)\ = M(P, g(w))

for all r §: r0, where p = M(r, f(z)). Hence we see

log M(rι+% g(f(z))) ^ log M(P, g(w))

= (logp)*w = {\ogM(r,f(z))}φiM(r m )

and

log log M(rί+% g(f(z))) 2: φ{M(r,f{z))) log log M(r,f(z))

for all r ^ r 0 .

On the other hand, by the maximum modulus principle, clearly we have

M{r, g(f{z))) ^ M(M(r,f(z)), g(w)) .

Thus we obtain

log log M(r, g(f(z))) ^ φ(M(r,f(z))) log log M(r,f(z)).

This proves Lemma 2.

We note that it is possible to show a similar result to Lemma 2 by Pόlya's
method (by using theorems of Schottky and Bohr).

Now we can prove the following theorem.

THEOREM 1. Suppose that f(z) is an integral function of positive and
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finite order μ> and that g(z) is a transcendental integral function of zero
order. Then g(f(z)) is of infinite order if f(z) has the positive lower order λ
and

Yιmφ(r) = 00 ,

or if f(z) is of zero lower order and

lim φ(r) — 00 .

PROOF. By (2), for any £ > 0 , we have

- log log M(r" ,g(f)) > ^- φ(M(r9 /)) log log M(r, f)
I1™ l o g r 1 + ε =r™ (l + £)logr

If f(z) has the positive lower order λ and limα>(r)= oo, then taking 6=
7-->oo

we see

l o g M ( r , / ) > r ' - ε = rλ/2

for all sufficiently large values of r. Thus

^- loglogM(r'+ ,ff(/)) ^φjMjr,/)) log r^
1™ logr1 + ! = iS2 (l + (λ/2))logr

since M(r>f) is increasing, continuous and unbounded in r. If f(z) is of finite

positive order μ and of zero lower order and if

lim φ(r) = oo ,
r->oo

then for any θ > 0 , it holds that

log logM(r1+ ',g(f)) y-<p(M(r,f)) log log M(r,f)
I™ logr1+ε = I™ logr1+ε'

τ —log log
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= T ^ T 7 liraφ(M(r,f)) = oo .

This proves Theorem 1.

4. In this section we shall show that conditions in Theorem 1 can not be

weakend, that is, even if lim φ{r) = oo, the function g(f(z)) is not always of
r—»oo

infinite order if f(z) is of zero lower order and if l i m ^ r ) is finite. (In this

case, g(f(z)) is of order greater than or equal to μ. This is easily seen from

the proof of Theorem 1.)

For that purpose, we have only to give an example.

First we construct two functions Y(R) and y(r) defined on (0, oo) which

satisfy the following conditions, respectively :

Y(R) has the properties that IunY(2?) < + oo and that (log i?) r ( l o g Λ ) is
22->oo

increasing, convex of log R and is of zero order and ,y(log r) is increasing, convex

in log r and is of the order 1 and of the lower order zero.

( i ) We put

where i?i is a fixed and sufficiently large value, for example, i?!=^ 44-l, and

further we put

yι(r)= r, ( ( X r r g n )

where rx— Rx. Next we put

where A2 is determined by the equation yγ(rx) — 3̂ 2(̂ i)> and r2 is determined by

the equation j^fo) = -κ~er\ whence

A2 = eri —rx and r2 = log 2{eu-rι) > rx.

For this r2, we take R2 — -ίr~er2 and put

We put
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y*(r) = er*r -A, (r2^r^ r3) ,

where r3 will be determined after i?3 is determined and Az is determined by
the equation yΛ(rt) = y*(rt), so

We choose r2)1 such that yz(r1Λ) = (r 2 i l)
2 . Hence

V2,lJ — e '2,1 e \r* O )>

\ Δ I

r 2, l
_ β' + V(^rι)2 -4e"(rt-q/2))
— 2

For this r 2 i l, we choose R2i such that for any fixed 6 > 0 ,

where i?2>1 = yjC^,,) = (riΛf. We put

and

2, (i?2,i ^ R ̂  R2t2),

\\ogR-B2, (R2),^R

where B2 is determined by the equation

so B2 — logi?2,2 — 2 > 2 . Next we choose R2ι3 such that

•rr f Ί~t \ - 1 - 1 7~>

Thus

log Rttt - log i?2,2 + 2 - ~ log i?2,3
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and

We next determine Y3lΛ(R), (R2t3^R^R3) such that

Rγ»™ = £ 3# - 5 3 , C .̂,s ^ R ^ ^s,i),

where k3 = f2-log S' ' '-^ 1 ^ 1 ) ^2 3

( logZ22>3-52) is the derivative of 22F*"(B) at the point
\ ^2,3 /

R2,3, and B3 is determined by the equation

7?rs,3C?2,s) — h 7? _ R — 7? (l/2)logB2>Sl
^ 2 , 3 ~ ~ ^3^2,3 ^>3 — ^ 2 , 3

SO

Thus

^ 3 lθg"Λ ' ' '2 3> ̂  '

Here i?3,i is determined as follows : Y3ί3(R) is monotone decreasing in R (^R3f0)

for some i?3|0(S^i?2,3) and tends to 1 as R—>oo. Thus there exists an R31 such

that

^3,3(^3,1) — 2 .

For this R3tl we choose i^3 = (1 + S)R3tl and put

We choose an r 3 such that jy3(r3) = i?3, so

and

Now we put
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yt(r) = er -A,, (r3 ^ r ^ n ) ,

where AA and r 4 are determined by the equations 3>4(r3)=yz{rz) and 3^4(^4)= -^-eu

 9

respectively, so

A4 = eτ> - R, > 0 , r 4 = log 2 Λ 4 > r 3 .

We take i?4 = —^- er* and put

(ii) Similarly, we define yin(r)9 ym+iW, ^ n W , Γ2n+i,t(>R) (i = l ,2,3), as
follows.

Assume that y a n - i W has been defined. Then clearly

We put

y m W = er - A2n, (rj,,-! ^ r ^ r 1 Λ ) ,

where Λ2 w and r 2 n are determined by the equations

and

respectively. Hence

A2n = eTin-χ —y2v-ι{r2n-\) > 0 ,

r 2 n = log 2 A 2 n > log 2(eτ>»-> - ^ n . O

Next we put

where R2n = ym(Un), and put
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y2n+i(r) = er2n r - A2n+1 (r 2 w ^ r ^ r 2 n + 1 ) .

Here r 2 n + 1 will be determined after i?2n+i is determined and A 2 n + 1 is determined

by the equation

Hence it holds that

and

We choose next r 2 n l such that ^2n+i(^2n,i)= (r2n,i)2 or

; ~ £ r2n,l

r _. ̂  T v ι g — **g ^2w~w^;; ( > r )

For this r 2 W j l, we take i?2 W ) 2 = (1 + S)R2ntU where

We put

and

(2,

where B2n and i?2n,3 are determined by the equations

±2n + l, 2(^271,2) = 2

and

~W
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respectively. Hence

( R^n 2 \
B2n — log i? 2 n , 2 —2 and i ? 2 n , 3 = ( — 5 / > ^2π,2 •

\ e I
We next determine Y2n+l iS(jR) in i ? 2 n , 3 ^ i ? ^ ^ 2 n + i as follows. First we put

where

A _ (2logR2n,3-B2n

#2 l I

and B2n+ι is determined by the equation

^•2/1,3 — ^2n + l^-2n,3 - ° 2 n + l — ^-2n,3

SO

β«n+i = k2n+lR2p,z - R£»?°*«™ > 0 .

Thus

V /r>\ _ l θ g { ^ 2 n + l ^ — ^ 2 n + l } / p <- r> <- r> \
J 2n + l,3V^-; — ~ foff~JR ' ^ 2 n 3 ^ — Λ 2 n + l . l j

Here R2n+ι,ι is uniquely determined in the following way Y2n+i,3(R) is monotone

decreasing in R(^R2n+lt0) for some -R2n+i,o(^^2n,3)> and tends to 1 as R-+oom

Thus there exists an i?2n+i,i such that

^ 2 n + l,3(^V2n+l,l) = 2 .

We take R2n+ι = (l + tyRm+i.i and put

i'ln+i.sC^) = 2 , (i? 2 n + 1 > 1 ^ i? ^ i ? 2 n + 1 ) .

For this R2n+u we choose r2n+1 such that

Hence
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Thus, we obtain

Y(R). log y(r)

S. MORI

Yΐn(R) log yln(r) = A, (r2n_, ^ r ^ r 2 n) and (£,„_, ^ i? ^ i?2n)

Y2n+1,,(i?) log^.+.ίr) = B, (r2 B ^ r ^ r f l M ) and (i?2n ^ i? ^ 2?2n,1)

L H , ^ ) l o g 3Ί.+iCr) =• C.(r2n-1 ^ r ^ r2n,,) and(R i n Λ ^R^ i?2»

+1(r) = D, (r2n,, ̂  r ^ r l r + 1 ) and (i?2n,3 ^ i? ^ i?2 n

From the above construction, we have

A ^ 2 log - | - e r < 2r,

-β ̂  2 log er = 2r,

^ -g- logySn+i(r) logy,n+1Cr) = -g

and

^ - | - (log r2)2 = 2(log r ) !

^ hgyln+1(r) Iogy2n+ι(r) ^ 4 (log r) 2

Now, by using these functions Y(R) and j'(r), we show the existence of f(z)
and g(z) which satisfy the property stated at the beginning of this section. By
a result of Edrei and Fuchs [2], there exist integral functions f(z) and g{z)
such that, given any £ > 0 , estimates

^ log M(er,f) ^ (1 + S)y(r)

and

*> 9) ^

hold for all sufficiently large values of r and R, since 3>(r) and RYiR) are positive,
increasing, unbounded and convex functions of r and R, respectively. Here R=y(r)
and logMO*, g) = R*e*\ Thus we see
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C = 1,02 n_, ^ r :g r l l M ) and (i?2 n_, ^ 2? :g i?2n>1)

473

Y•(log M(e\f))\
Y(R)

for all sufficiently large values of r.

Further, we have

since

and

1 φ(eR) 1 Λ v log log M(er,f)
lim ^ττ>τ = 1 and hm &

 t

 & —r\

logMQ*,(7) r 2?^Λ>

We also have

φ{M{e',f))\og\ogM(e*,f)

φ(M(e',f)) Y(\ogM(e',f)) log log M(e', f)
\W(7)) ΫΪR)

and

^ l 2r, (r,.-, ^ r ^ r,,.,) and (£,,,_, ^ i? ^ /?,„.,)
3, ( r 2 n , , ^ r ^ r 2 n + 1 ) and

for all sufficiently large values of r. Therefore

^ log Jog M{eLi9(fl ^ ^ y(M(g

r,/))loglogM(g

Γ,/)

_ ,.-
Y(y(r)) l°gy(r)
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Further we have

j^loglog M(e',f) ^ I 5 n \og(l + €)y(r) ^ -^ log
r-»oo ?" r-*oo T r-*oo V

- j ^ loglogMQr,/) ̂  l ί E log (1/1+f);y(r) ^ ^ log(l/2K'»
r-»oo T r->oo 7* r 2 n -κ»

ΉS ) S: fim 7(i?) lίm ^ ξ § = oo ,
K)R-+°o

and

lim φ{eR) ̂  lim Y(R) lim - £ ^ = 2 .

Therefore we can see that there exist integral functions f(z) and g(z) such
that f(z) is of order 1 and of lower order zero and such that g(z) is of zero
order and lim<p(i?)= oo and lim <p(i?) < °o and further such that g{f(z)) is of

finite order.
However, we note that, by Lemma 2, the order of ff(f(z)) is greater than

or equal to that of f(z).

5. Now we shall deal with the case (b) where lim<p(r) is finite.
r-*oo

THEOREM 2. Suppose that f(z) is an integral function of the positive
and finite order μ and that g(z) is a transcendental integral function of
zero order. If lim φ{r) - M is finite, then the order of g(f(z)) is finite and

r—>oo

less than or equal to μ>M, where φ(r) is defined as in (1).

PROOF. If f(z) is of order μ, then for any S > 0, we have

φ(r)<M+e
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and

logM(r,/)<r«+ ε

for all sufficiently large values of r. Hence (3) implies

-jj^ loglog M(r,g(f)) < ^ y(M(r,/)) log log M(r,/)
r^oo logr ~~ γ-00 logr

logr J\r J

Since £ is arbitrary, the order of g(f) is less than or equal to μM. This proves

Theorem 2.

We note that the order of g(f(z)) is equal to μM if the limit

lim φ(r) = M

exists.

When f(z) and ^(2:) are both of zero order, we can prove the following.

THEOREM 3. Suppose that f(z) and g(z) are transcendental integral

functions of zero order and satisfy the folloτving condition (I) or (II) :

for any ct and dx satisfying ( X c ^ l , d ι > 0 and c1(d1

v \og log M(r,f) _

/or ^^3; c2 and d2 satisfying c2>l, 0<d2<l and c2d2>l. Then g(f{z))
is of infinite order. Here φ{f) is defined as in (1).

PROOF. Suppose that ( I ) holds. Then we see
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log log M(r, f)>~γA1 (log r)c'

for all sufficiently large values of r and there also exists a sequence {rn} such

that rn—>oo aδ n-*oo and such that

1φ(M(rn, f)) > - ~ Bι (log log M(rn, f))ύι,

since M(r,f) is continuous, increasing and unbounded of r. Thus, by (2), we

have for any £ > 0 ,

τ - log log M(r, g(f)) ^ y- φ(M(rni /)) log log M(rny f)
i™ logr =;™ (l-|-£)logrn

— (1/2)5, • {log log M(rw, /)} *> log log M(rn, /)

I {(1/2) A, (log rj*}*-"
(l + £)logrn

~ r - (l + £)logrn - ^ '

since c1(J1 + l ) > 1 by our hypothesis. In particular, if AίB1 = oo, we may replace

a part of the condition (I) by ci(<ii +1)i^ 1 instead of c1(<i1 + l ) > l .

Suppose that (II) holds. Then for any sufficiently small £ > 0 , we have

log log M(rJ) > (A2 - 6) (log log r)c'

for all sufficiently large values of r and there also exists a sequence {rn} such
that rn—>oo as n—>oo and such that

- S)(\og log M(rn,

Thus by (2), we have for any sufficiently small £ > 0 ,

E ί log log M(r, g(f)) ^ ^ φ(M(rn9f)) log log M(r w ,/)
logr "

^] loglogM(rw,/)
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> Tj=: exp[(£2-g){(A2-g)(loglog r w m
r™ (1 + 6) log rM

- I — {expdog log rn)} (^-ou,-^(io«i,o«r,)^-i(Aa , θ ) ( l o g l o g

, -S)(log log- TIE dog r
(l + £)logrn

since c2d2 —1 > 0 by our hypothesis. In particular, if A2 f-B2>l, we may replace

a part of the condition (II) by c2d2^l instead of c2d2>l. This proves Theorem 3.

REMARK 1. In (I) or (II), it can be shown in the similar way that we

can replace lim and lim by each other.

REMARK 2. If the conditions (I) and (II) do not hold, then the assertion

of Theorem 3 is not valid. In fact, about the condition (I), for any Xι,yι(0<xx

< l , 3 Ί > 0 and Xι(yλ +1) < 1), we can find integral functions fχΛ(z) and g\ti(z)

such that these functions satisfy

r̂ oo (log log r ) y i v J

and that gXΛ(fιΛ), î.sC/1.2) and fiΊ.sC/i.s) are of order infinity, finite and zero
respectively, and we can also find integral functions f2Λ(z) and g2Λ{z) such that
these functions satisfy

Tim hsU°zMψ,A > 0 a n d l i m ^ i W - > 0, (ί = 1, 2, 3)
(log r ) X l

 r̂ oo (log log r)yι v ^

and that ^ . l ί Λ Λ ^ u l / u ) and g2,s(f2z) are of order infinity, finite and zero,

respectively. We can have the similar result about the condition (II).

The following can be easily proved by the same argument as that in the

proof of Theorem 3.

THEOREM 4. Suppose that f(z) and g(z) are transcendental integral

functions of zero order and satisfy the following condition (I)' or (II)':
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I
< oo

ί iΛfϊ nr v ι

(I)'

l i m pp-aα-^- < oo
, r-^oo (log l o g r ) ι

for any c\ and d\ satisfying 0 <c\ <1, d\ >0 and c\(d\

y— log log M(r,f)

lim^^^oo
r_oo (log log r / 2

for any c2' and dζ satisfying c2' > 1,0 < J 2 ' < 1 ^^^ c2'd2

f < 1. TΛe^ 9(f{z))
is of zero order.

The proof may be omitted.

REMARK 3. For any .r2,;y2(0<.r2 < l , 3 / 2 > 0 , ^ ( j ^ + 1 ) > 1)> we can find
integral functions fΛ{z) and gsti(z) (£ = 1,2,3) such that these functions satisfy

lira logJosMgAi) < «, a n d ^ - ^ M - < oo, (, = 1, 2 ) 3)
(log r)X 2 r-oo (log log r)Vi

and such that g$,\(fi,i)> 93,2(^,2) and g3,^(^,3) are of order infinity, finite and
zero, respectively. Further for any x%^yz{x% > 1 , 0<y3 < 1 and 3̂3/3 >1), we can
also find integral functions fιti(z) and <74,t(z), (£ = 1,2,3) such that these functions
satisfy

) x (lo lo r ) v v^ ^ 1 Ί r n ^
r->°o (log log r) x r-00 (log log r

and that g±tι{fiΛ), ^4,2(^,2) and g^ift,*) are of order infinity, finite and zero,
respectively. Here φkΛ(r){k = 3,4, ί = 1,2,3) are functions corresponding to gkΛ(z)
defined as in (1).
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