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1. Introduction. It is interesting to investigate the structure of a complete
Riemannian manifold whose first conjugate locus Qϋp) or cut locus C(/>) with
respect to a point p^M satisfies certain conditions. The structures of M
satisfying suitable conditions for the first conjugate locus have been studied by
many people. Especially, Warner [8] has proved that if there exists a point p
in a compact and simply connected Riemannian manifold M for which each
point of the spherical conjugate locus is regular, then that has the same
multiplicity as conjugate point and the multiplicity is greater than or equal to 1,
and M is homeomorphic to a sphere of the same dimension as M or M has the
same integral cohomology ring as one of the compact irreducible symmetric
spaces of rank 1. As for the structures of M satisfying suitable conditions for
the cut locus C(N) with respect to a submanifold N of M (dim JVi^O), Omori
has shown in [6] that if a connected, compact and real analytic Riemannian
manifold M has a connected, compact and real analytic Riemannian submanifold
N of dim N ^ 0 in such a way that the distance between N and every
point of the cut locus C(N) of N is constant, then M has a decomposition
M=DNl)φDN>, where N' is a real analytic submanifold of M which coincides
with C(N) as a set and DN, DN> are normal disc bundles of N,N' respectively.

Recently, the authors have studied in [5] some structures of M admitting
a fixed point p on it where the distance between p and every point of its cut
locus C(p) is a constant /. More recently the structures of some Sasakian
manifolds with minimal diameter have been investigated by Harada [2] who
has proved that the Sasakian manifold is isometric to the sphere under certain
conditions. And the second author [7] has investigated the structure of a
complete and non-compact Riemannian manifold M of non-negative curvature
with compact totally geodesic hypersurface N every point of whose cut locus
C(N) has a constant distance to N.

Our Main Theorem obtained in the present paper is stated as follows.

MAIN THEOREM. Let M be an n-dimensional9 connected and compact
Riemannian manifold of class C°°. Assume that there exists a point p at
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-which the distance between p and every point of its cut locus C(p) is equal
to rt/^/Wίax K(P), where K(P) is a sectional curvature with respect to the
plane section P. Then every geodesic segment starting from p with length
27r/->/Max K(P) is a geodesic loop at p, and we have for any point q
belonging to the first conjugate locus Q{p) of p, the multiplicity of p and q
as conjugate pair is constant λ, zυhere λ = 0,1, 3, 7, n — 1. Moreover τυe have

(1) If M. is not simply connected', M has the same (co)homology g?~oup
as that of a real protective space PRn and the universal covering manifold
of M is Iwmeomorphic to Sn, where λ^O holds.

(2 ) If M is simply connected, the integral cohomology ring H* (M, Z)
is a truncated poly?ιomial ring generated by an element. In particular, if
X = n — 1, M is isometric to the sphere 5n(Max K(Pj) of constant curvature
MaxK(P).

2. Preliminaries. Throughout this paper, let M be an n-dimensional,
connected and compact Riemannian manifold of class C°° and p be a fixed point
of M such that the distance between p and every point of its cut locus C(p)
is constant. It will turn out that every geodesic starting from the point p
has a conjugate point to p along it. Therefore the maximum value of sectional
curvatures must be positive, from which we can consider M satisfying K(P)^1
for every plane section P. We use definitions and notations as those of [5].

A proof of Main Theorem will be completed if we show that every geodesic
segment starting from p with length 2π (the metric tensor of M is changed
so as to satisfy K(P) Si 1 for all P) is a geodesic loop (or a closed geodesic
segment without self-intersection). For this purpose, we prepare a Proposition
investigated by H. Omori:

PROPOSITION (3.4 Prop, of [6]). Let N be a connected and compact
Riemannian manifold of class C°° and W be a connected, compact and
differentiable Riemannian submanifold of N. Suppose that there is a point
p € C(W) at which d(p, W) = d(C(W), W) = a holds and there are tzvo different
shortest geodesies Tl9 Γ2 from p to W satisfying X(Γ1) = X(Γ2)^=a and γ/(0)
Φ ±72(0) Then we have

3. Proof of Main Theorem. In the following let M satisfy the hypothesis
of Main Theorem. Our method of proof is essentially due to that of Berger
[1] who has proved that if an even dimensional, compact and simply connected
Riemannian manifold M satisfying 0 < K(P) ^ 1 for all plane sections P has
its diameter d(M) = n, then all geodesies in M are closed with length 2π and
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the cut locus with respect to every point of M becomes a submanifold of M.
First of all we shall prove the following

PROPOSITION 1. We obtain either C(p) = Q(p) or Q(p)= {p}.

PROOF. Suppose that there is a geodesic segment Γ = {y(t)} (0 fg t ^ n)9

y(0)=p9 y{n) — q £ C(p) along which q is not conjugate to p. Then we claim
that Q(p)= {p}. In fact, there exists a small neighborhood UcMp of τr γ'(O)
in which expp | U is a diffeomorphism. For each point r in expp(U) Π C(p), there
is a uniquely determined shortest geodesic Γ r = {yr(t)} (0^ ί^τr) in ex.pp(U) such
that τr γ/(0)€ U, 7Γ(0) = />, yrM = r and r is not conjugate to £ along Γr. By
virtue of the Proposition of Omori, Γ r | [0, 2π] is a geodesic loop at P for any
point r€ expp(ί7) Π C(p), and we see that yr(2π)=p is the first conjugate point to
yrΦ) — p along Γr. Making use of the discussion stated in Theorem 2.6 of [5],
we get Q(p) ={p}. Q.E.D.

REMARK. We can prove this proposition without the assumption / = π.
We also see that M has the same (co)homology group as that of PR71 and the
universal covering manifold of M is homeomorphic to Sn if Q(/>)= {p} holds.

Now we assume that Q(p) = C(p). Take a point q £ C(p). Let M^1- be
defined by Mq

±= [Xz Mq \ \\X\\ = 1 , expg πX=p}. In order to prove the theorem
it suffices to show that M^ becomes the intersection of 5j - 1(l) and a subspace
of Mq for every point q € C(/>), where Sj^O.) is the unit hypersphere in MQ

centered at origin. We note that M^ has the following properties :
(1) For any Z € Mq9 there is Xz M / such that <X, Z> ^ 0.

(2) For any X9Yz M±, such that X * -Y, we have

for all a ^ 0, β ^ 0.
( 3) M / is closed in MQ.

The property (2) is guaranteed by Omori's Proposition and (1), (3) are evident.
Developing the same argument as that of Berger [1], we see that there exists
Xo ζ M / satisfying — Xo € MgX. Suppose that there exists a point q € C(p) at
which there is a vector —X^Mq1- such that X ^ M / - . We may suppose
<—X, Xo> = 0 and X^ΞM/ by virtue of the property (2). Let Γo be the
closed geodesic segment at p denned by yQ'(π) = X0. The map φ: (0, π) X (0, π)
—>M defined by φ(s9t): = expq t(XQ cos s—X sin s) gives a piece of totally
geodesic surface with boundary Γo which is isometric to an open hemisphere
of constant curvature 1. After developing a local argument in a convex normal
ball at p, we see that Γo becomes a closed geodesic, and hence the unit parallel
vector field X(t) along Γo defined by X(τt)= —X has the properties X(0) = X(27r)
and K(X(t),yo'(t)) = l for all t s [0,2π\ Therefore, as is stated in Lemma 1
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of Berger [1], there exist small positive numbers £ and η satisfying d(p, expq tZ)

< π for any Zz M^y \\Z\\ = 1 , < Z , X > ^1-η and any t € (0, a).

LEMMA 2. There exists Y <= M / satisfying <Y, X » 0 , where -

and <X0, X> = 0.

PROOF. Let — k2 be the minimum value of sectional curvatures. If & = 0,
the proof is concluded in that of Lemma 2 of [1]. We only consider k > 0.
Since d(p, expq tX) < n holds for all t € (0, a), let us denote by 2, A* and Ψt

the geodesies such that σ'(0) = X, λί(τr—s) = σ(t), λf(τr) = p, d(p,σ(t)) = 5, and

ψtΦ) = Qy ψ"ί(w) = λί(0), d(q9\t(0)) = u respectively. The statement mentioned in

the last paragraph of Lemma 2 shows that <X, ̂ /(0)> < 1—η for any t € (0, £).
Putting costft = <λί'(7r—5), σ'(ί)>, this fact and the assumption of X imply

that lim cίt < TΓ and lim tfί > 0. We get a family of small geodesic triangles

with vertices (q, σ(ί), ψt(u)), t € (0, £) shrinking to a point q as ί -> 0 in such a

way that the angles at vertices q and σ{f) take limits in (0, π) as £ —> 0. We

can choose a subsequence {ΛJ of the family {ΛJ (0 < t < £) converging to

Λo which connects q to p with length #. Then we observe that sin<£(X, ^/(O))

^(τt-s)/t for each small ί € (0, £), and hence \im(τt-s)/t ^ lim sin < ( X , ^ (0))
ί->0 ί—0

^ [1—(1—η)2]1/2 > 0. Making use of the basic theorem on triangles, we obtain
the following

> cosh 7t/k—cosh s/k cosh t/k
1 ~ sinh s/k sinh ί/̂

Because of lim I^β^L = 6, we obtain
χ^o sinh x

lim cos Λc ̂  2 coth 4 - lim ^ sinh £ = £ > ! + lim
s j n ^ smht/k

k

= c>0,

where we put c=[l-(l-η)2]1/2. Hence we get λ0 (0) € M / and <X, λo

/(O)>
= lim cos ̂  ^ c > 0. Q.E.D.

PROOF OF M A I N THEOREM. We have proved the following property for

( 4 ) For any - X e Λf/ such that X ^ M / , there exists Z e M,,-1- satisfying
, Z> ^ 00.
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Now let Mq

ι be the subset of M / defined by MQ

ι = [X s Mq±\ <X0, X>
= 0}. The set Mq

ι is contained in an (n—2)-dimensional unit sphere 5y~2(l)
denned by Sj~2(l) = [v € Mq\ |M|=1, < t / ,X 0 >=0} . We see that there exists
XιζMq

ι satisfying —XιzMq

ι. In fact, suppose that we have — Xξ=.Mq

ι for
any X £ MQ

ι. Then it follows from the assumption and the properties (2) and
(3) for Mq1- that Mq

ι is contained in an open hemisphere of Sq~\l). We see
that there exists a small 8 > 0 such that the ^-neighborhood V of Mq

ι in
Sq~\l) is contained entirely in the open hemisphere. Then we obtain

inf sup d(v, X) + 8 ^ inf sup d(v, X) ^ τr/2 .
JΓe Mqι v€ Mq

x Xe Mq* v*V

There is Yx € Mq

ι satisfying d(v, Yx) = inf sup <i(τ;, X) by the property (3).

Making use of (4) for Yl9 there is Z e M / satisfying < Z , - Y Ί > ^ c > 0 . Putting
Z1 = ( Z - < Z , y i > Y 1 ) / | | Z - < Z , y i > Y 1 | | , it follows from ± X 0 € M / together
with ± X 0 ^ Z 1 that the vector Xx = (Z 1 -<X 0 , Z 1>X 0) / | |Z 1-<X 0 , Z1>X0||
e M / is orthogonal to both Xo and Ylβ Hence we have Xi ^ Mg1. Therefore

we must have d(XχyY\) = π/2^ 7t/2—8, which is a contradiction. Let M^2

be the subset of Mq

ι given by Mq

2 = {X^ Mg1! <X, X ! > = 0 } . Then there is
X2eMq

ι such that —X2^Mq

2 in the same way as Xλ in M,1. We find that
Mq1- is the intersection αf Sq~\l) and a subspace in Mq after developing the
inductive argument for Mq, Mq

ι, Mq

2, , Mq

k> which is analogous as the
proof of Theorem C in [7]. The last statement of (2) in Main Theorem is
already shown in [4].
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