ON RIEMANNIAN MANIFOLDS WITH CERTAIN CUT LOCI II

H. Nakagawa and K. Shiohama

(Received July 31, 1969)

1. Introduction. It is interesting to investigate the structure of a complete Riemannian manifold whose first conjugate locus $Q(p)$ or cut locus $C(p)$ with respect to a point $p \in M$ satisfies certain conditions. The structures of M satisfying suitable conditions for the first conjugate locus have been studied by many people. Especially, Warner [8] has proved that if there exists a point p in a compact and simply connected Riemannian manifold M for which each point of the spherical conjugate locus is regular, then that has the same multiplicity as conjugate point and the multiplicity is greater than or equal to 1 , and M is homeomorphic to a sphere of the same dimension as M or M has the same integral cohomology ring as one of the compact irreducible symmetric spaces of rank 1. As for the structures of M satisfying suitable conditions for the cut locus $C(N)$ with respect to a submanifold N of $M(\operatorname{dim} N \geqq 0)$, O$m o r i$ has shown in [6] that if a connected, compact and real analytic Riemannian manifold M has a connected, compact and real analytic Riemannian submanifold N of $\operatorname{dim} N \geqq 0$ in such a way that the distance between N and every point of the cut locus $C(N)$ of N is constant, then M has a decomposition $M=D_{N} \cup \phi D_{N^{\prime}}$, where N^{\prime} is a real analytic submanifold of M which coincides with $C(N)$ as a set and $D_{N}, D_{N^{\prime}}$ are normal disc bundles of N, N^{\prime} respectively.

Recently, the authors have studied in [5] some structures of M admitting a fixed point p on it where the distance between p and every point of its cut locus $C(p)$ is a constant l. More recently the structures of some Sasakian manifolds with minimal diameter have been investigated by Harada [2] who has proved that the Sasakian manifold is isometric to the sphere under certain conditions. And the second author [7] has investigated the structure of a complete and non-compact Riemannian manifold M of non-negative curvature with compact totally geodesic hypersurface N every point of whose cut locus $C(N)$ has a constant distance to N.

Our Main Theorem obtained in the present paper is stated as follows.

Main Theorem. Let M be an n-dimensional, connected and compact Riemannian manifold of class C^{∞}. Assume that there exists a point p at
which the distance between p and every point of its cut locus $C(p)$ is equal to $\pi / \sqrt{\operatorname{Max} K}(P)$, where $K(P)$ is a sectional curvature with respect to the plane section P. Then every geodesic segment starting from p with length $2 \pi / \sqrt{ } \operatorname{Max} K(P)$ is a geodesic loop at p, and we have for any point q belonging to the first conjugate locus $Q(p)$ of p, the multiplicity of p and q as conjugate pair is constant λ, where $\lambda=0,1,3,7, n-1$. Moreover we have
(1) If M is not simply connected, M has the same (co)homology group as that of a real projective space $P R^{n}$ and the universal covering manifold of M is homeomorphic to S^{n}, where $\lambda=0$ holds.
(2) If M is simply connected, the integral cohomology ring $H^{*}(M, \boldsymbol{Z})$ is a truncated polynomial ring generated by an element. In particular, if $\lambda=n-1, M$ is isometric to the sphere $S^{n}(\operatorname{Max} K(P))$ of constant curvature $\operatorname{Max} K(P)$.
2. Preliminaries. Throughout this paper, let M be an n-dimensional, connected and compact Riemannian manifold of class C^{∞} and p be a fixed point of M such that the distance between p and every point of its cut locus $C(p)$ is constant. It will turn out that every geodesic starting from the point p has a conjugate point to p along it. Therefore the maximum value of sectional curvatures must be positive, from which we can consider M satisfying $K(P) \leqq 1$ for every plane section P. We use definitions and notations as those of [5].

A proof of Main Theorem will be completed if we show that every geodesic segment starting from p with length 2π (the metric tensor of M is changed so as to satisfy $K(P) \leqq 1$ for all P) is a geodesic loop (or a closed geodesic segment without self-intersection). For this purpose, we prepare a Proposition investigated by H . Omori :

Proposition (3.4 Prop. of [6]). Let N be a connected and compact Riemannian manifold of class C^{∞} and W be a connected, compact and differentiable Riemannian submanifold of N. Suppose that there is a point $p \in C(W)$ at which $d(p, W)=d(C(W), W)=a$ holds and there are two different shortest geodesics Γ_{1}, Γ_{2} from p to W satisfying $\mathcal{L}\left(\Gamma_{1}\right)=\mathcal{L}\left(\Gamma_{2}\right)=a$ and $\gamma_{1}{ }^{\prime}(0)$ $\neq \pm \gamma_{2}^{\prime}(0)$. Then we have

$$
\exp _{p} \frac{a\left(x \gamma_{1}^{\prime}(0)+y \gamma_{2}^{\prime}(0)\right)}{\left\|x \gamma_{1}^{\prime}(0)+y \gamma_{2}{ }^{\prime}(0)\right\|} \in W \quad \text { for all } \quad x \geqq 0, y \geqq 0
$$

3. Proof of Main Theorem. In the following let M satisfy the hypothesis of Main Theorem. Our method of proof is essentially due to that of Berger [1] who has proved that if an even dimensional, compact and simply connected Riemannian manifold M satisfying $0<K(P) \leqq 1$ for all plane sections P has its diameter $d(M)=\pi$, then all geodesics in M are closed with length 2π and
the cut locus with respect to every point of M becomes a submanifold of M.
First of all we shall prove the following
Proposition 1. We obtain either $C(p)=Q(p)$ or $Q(p)=\{p\}$.
Proof. Suppose that there is a geodesic segment $\Gamma=\{\gamma(t)\}(0 \leqq t \leqq \pi)$, $\gamma(0)=p, \gamma(\pi)=q \in C(p)$ along which q is not conjugate to p. Then we claim that $Q(p)=\{p\}$. In fact, there exists a small neighborhood $U \subset M_{p}$ of $\pi \cdot \gamma^{\prime}(0)$ in which $\exp _{p} \mid U$ is a diffeomorphism. For each point r in $\exp _{p}(U) \cap C(p)$, there is a uniquely determined shortest geodesic $\Gamma_{r}=\left\{\boldsymbol{\gamma}_{r}(t)\right\} \quad(0 \leqq t \leqq \pi)$ in $\exp _{p}(U)$ such that $\pi \cdot \gamma_{r}{ }^{\prime}(0) \in U, \gamma_{r}(0)=p, \gamma_{r}(\pi)=r$ and r is not conjugate to p along Γ_{r}. By virtue of the Proposition of Omori, $\Gamma_{r} \mid[0,2 \pi]$ is a geodesic loop at P for any point $r \in \exp _{p}(U) \cap C(p)$, and we see that $\gamma_{r}(2 \pi)=p$ is the first conjugate point to $\gamma_{r}(0)=p$ along Γ_{r}. Making use of the discussion stated in Theorem 2.6 of [5], we get $Q(p)=\{p\}$.
Q.E.D.

Remark. We can prove this proposition without the assumption $l=\pi$. We also see that M has the same (co)homology group as that of $P R^{n}$ and the universal covering manifold of M is homeomorphic to S^{n} if $Q(p)=\{p\}$ holds.

Now we assume that $Q(p)=C(p)$. Take a point $q \in C(p)$. Let $M_{q} \perp$ be defined by $M_{q} \perp=\left\{X \in M_{q} \mid\|X\|=1, \exp _{q} \pi X=p\right\}$. In order to prove the theorem it suffices to show that M_{q}^{\perp} becomes the intersection of $S_{q}^{n-1}(1)$ and a subspace of M_{q} for every point $q \in C(p)$, where $S_{q}^{n-1}(1)$ is the unit hypersphere in M_{q} centered at origin. We note that $M_{q} \perp$ has the following properties:
(1) For any $Z \in M_{q}$, there is $X \in M_{q} \perp$ such that $\langle X, Z\rangle \geqq 0$.
(2) For any $X, Y \in M_{q} \perp$, such that $X \neq-Y$, we have $\frac{\alpha X+\beta Y}{\|\alpha X+\beta Y\|} \in M_{q} \perp$ for all $\alpha \geqq 0, \beta \geqq 0$.
(3) $M_{q} \perp$ is closed in M_{q}.

The property (2) is guaranteed by Omori's Proposition and (1), (3) are evident. Developing the same argument as that of Berger [1], we see that there exists $X_{0} \in M_{q} \perp$ satisfying $-X_{0} \in M_{q} \perp$. Suppose that there exists a point $q \in C(p)$ at which there is a vector $-X \in M_{q} \perp$ such that $X \notin M_{q} \perp$. We may suppose $<-X, X_{0}>=0$ and $X \notin M_{q}^{\perp}$ by virtue of the property (2). Let Γ_{0} be the closed geodesic segment at p defined by $\gamma_{0}{ }^{\prime}(\pi)=X_{0}$. The map $\phi:(0, \pi) \times(0, \pi)$ $\rightarrow M$ defined by $\phi(s, t):=\exp _{q} t\left(X_{0} \cos s-X \sin s\right)$ gives a piece of totally geodesic surface with boundary Γ_{0} which is isometric to an open hemisphere of constant curvature 1. After developing a local argument in a convex normal ball at p, we see that Γ_{0} becomes a closed geodesic, and hence the unit parallel vector field $X(t)$ along Γ_{0} defined by $X(\pi)=-X$ has the properties $X(0)=X(2 \pi)$ and $K\left(X(t), \gamma_{0}{ }^{\prime}(t)\right)=1$ for all $t \in[0,2 \pi]$. Therefore, as is stated in Lemma 1
of Berger [1], there exist small positive numbers ε and η satisfying $d\left(p, \exp _{q} t Z\right)$ $<\pi$ for any $Z \in M_{q},\|Z\|=1,<Z, X>\geqq 1-\eta$ and any $t \in(0, \varepsilon)$.

Lemma 2. There exists $Y \in M_{q} \perp$ satisfying $<Y, X \gg 0$, where $-X \in M_{q}^{\perp}$, $X \notin M_{q}^{\perp}$ and $<X_{0}, X>=0$.

Proof. Let $-k^{2}$ be the minimum value of sectional curvatures. If $k=0$, the proof is concluded in that of Lemma 2 of [1]. We only consider $k>0$. Since $d\left(p, \exp _{q} t X\right)<\pi$ holds for all $t \in(0, \varepsilon)$, let us denote by Σ, Λ_{t} and Ψ_{t} the geodesics such that $\sigma^{\prime}(0)=X, \lambda_{t}(\pi-s)=\sigma(t), \lambda_{t}(\pi)=p, d(p, \sigma(t))=s$, and $\psi_{t}(0)=q, \psi_{t}(u)=\lambda_{t}(0), d\left(q, \lambda_{t}(0)\right)=u$ respectively. The statement mentioned in the last paragraph of Lemma 2 shows that $<X, \psi_{t}^{\prime}(0)><1-\eta$ for any $t \in(0, \varepsilon)$. Putting $\left.\cos \alpha_{t}=<\lambda_{t}^{\prime}(\pi-s), \sigma^{\prime}(t)\right\rangle$, this fact and the assumption of X imply that $\lim _{t \rightarrow 0} \alpha_{t}<\pi$ and $\lim _{t \rightarrow 0} \alpha_{t}>0$. We get a family of small geodesic triangles with vertices $\left(q, \sigma(t), \psi_{t}(u)\right), t \in(0, \varepsilon)$ shrinking to a point q as $t \rightarrow 0$ in such a way that the angles at vertices q and $\sigma(t)$ take limits in $(0, \pi)$ as $t \rightarrow 0$. We can choose a subsequence $\left\{\bar{\Lambda}_{t}\right\}$ of the family $\left\{\Lambda_{t}\right\}(0<t<\varepsilon)$ converging to Λ_{0} which connects q to p with length π. Then we observe that $\sin \Varangle\left(X, \psi_{t}^{\prime}(0)\right)$ $\leqq(\pi-s) / t$ for each small $t \in(0, \varepsilon)$, and hence $\lim _{t \rightarrow 0}(\pi-s) / t \geqq \lim _{t \rightarrow 0} \sin \Varangle\left(X, \psi_{t}(0)\right)$ $\geqq\left[1-(1-\eta)^{2}\right]^{1 / 2}>0$. Making use of the basic theorem on triangles, we obtain the following

$$
\cos \alpha_{t} \geqq \frac{\cosh \pi / k-\cosh s / k \cdot \cosh t / k}{\sinh s / k \cdot \sinh t / k}
$$

Because of $\lim _{x \rightarrow 0} \frac{\sinh b x}{\sinh x}=b$, we obtain

$$
\begin{aligned}
\lim _{t \rightarrow 0} \cos \alpha_{t} & \geqq 2 \operatorname{coth} \frac{s}{k} \cdot \lim _{t \rightarrow 0} \frac{\sinh \frac{(1+c) t}{2 k}}{\sinh \frac{t}{k}} \cdot \sinh \frac{(c-1) t}{2 k}+\lim _{t \rightarrow 0} \frac{\sinh c t / k}{\sinh t / k} \\
& =c>0
\end{aligned}
$$

where we put $c=\left[1-(1-\eta)^{2}\right]^{1 / 2}$. Hence we get $\lambda_{0}(0) \in M_{q}{ }^{\perp}$ and $\left\langle X, \lambda_{0}{ }^{\prime}(0)\right\rangle$ $=\lim _{t \rightarrow 0} \cos \alpha_{t} \geqq c>0$.
Q.E.D.

Proof of Main Theorem. We have proved the following property for $M_{q}{ }^{\perp}$.
(4) For any $-X \in M_{q}^{\perp}$ such that $X \notin M_{q} \perp$, there exists $Z \in M_{q} \perp$ satisfying $<X, Z>\geqq c>0$.

Now let $M_{q}{ }^{1}$ be the subset of $M_{q}{ }^{\perp}$ defined by $M_{q}{ }^{1}=\left\{X \in M_{q}{ }^{\perp}\right\}<X_{0}, X>$ $=0\}$. The set $M_{q}{ }^{1}$ is contained in an ($n-2$)-dimensional unit sphere $S_{4}^{n-2}(1)$ defined by $S_{q}^{n-2}(1)=\left\{v \in M_{q} \mid\|v\|=1,<v, X_{0}>=0\right\}$. We see that there exists $X_{1} \in M_{q}{ }^{1}$ satisfying $-X_{1} \in M_{q}{ }^{1}$. In fact, suppose that we have $-X \notin M_{q}{ }^{1}$ for any $X \in M_{q}{ }^{1}$. Then it follows from the assumption and the properties (2) and (3) for $M_{q} \perp$ that $M_{q}{ }^{1}$ is contained in an open hemisphere of $S_{q}^{n-2}(1)$. We see that there exists a small $\varepsilon>0$ such that the ε-neighborhood V of $M_{q}{ }^{1}$ in $S_{q}^{n-2}(1)$ is contained entirely in the open hemisphere. Then we obtain

$$
\inf _{X \in M_{q^{v}}} \sup _{v \in M_{q^{1}}} d(v, X)+\varepsilon \leqq \inf _{X \in M q^{2}} \sup _{v \in V} d(v, X) \leqq \pi / 2 .
$$

There is $Y_{1} \in M_{q}{ }^{1}$ satisfying $d\left(v, Y_{1}\right)=\inf _{X \in M_{q}} \sup _{v \in M_{q} q^{q}} d(v, X)$ by the property (3).
Making use of (4) for Y_{1}, there is $Z \in M_{q} \perp$ satisfying $<Z,-Y_{1}>\geqq c>0$. Putting $Z_{1}=\left(Z-<Z, Y_{1}>Y_{1}\right) /\left\|Z-<Z, Y_{1}>Y_{1}\right\|$, it follows from $\pm X_{0} \in M_{q} \perp$ together with $\pm X_{0} \neq Z_{1}$ that the vector $X_{1}=\left(Z_{1}-<X_{0}, Z_{1}>X_{0}\right) /\left\|Z_{1}-<X_{0}, Z_{1}>X_{0}\right\|$ $\in M_{q} \perp$ is orthogonal to both X_{0} and Y_{1}. Hence we have $X_{1} \in M_{q}{ }^{1}$. Therefore we must have $d\left(X_{1}, Y_{1}\right)=\pi / 2 \leqq \pi / 2-\varepsilon$, which is a contradiction. Let $M_{q}{ }^{2}$ be the subset of $M_{q}{ }^{1}$ given by $M_{q}{ }^{2}=\left\{X \in M_{q}{ }^{1} \mid<X, X_{1}>=0\right\}$. Then there is $X_{2} \in M_{q}{ }^{1}$ such that $-X_{2} \in M_{q}{ }^{2}$ in the same way as X_{1} in $M_{q}{ }^{1}$. We find that $M_{q}{ }^{\perp}$ is the intersection of $S_{q}^{n-1}(1)$ and a subspace in M_{q} after developing the inductive argument for $M_{q}, M_{q}{ }^{1}, M_{q}{ }^{2}, \cdots, M_{q}{ }^{k}$, which is analogous as the proof of Theorem C in [7]. The last statement of (2) in Main Theorem is already shown in [4].

References

[1] M. Berger, Sur les variétés à courbure positive de diamètre minımum, Comment. Math. Helv., 35(1961), 28-34.
[2] M. Harada, On the minimal diameter of Sasakian manifolds, Bull. of Yamagata Univ. (Nat. Sci.), 7(1970), 191-203.
[3] H. Nakagawa, A note on theorems of Bott and Samelson, J. Math. Kyoto Univ., 7 (1967), 205-220.
[4] H. Nakagawa, Riemannian manifolds with many geodsic loops, J. Math. Soc. Japan, 20 (1968), 648-654.
[5] H. Nakagawa and K. Shiohama, On Riemannian manifolds with certain cut loci, Tôhoku Math. J., 22(1970), 14-23.
 252.
[7] K. Shiohama, On complete non-compact Riemannian manifolds with certain properties, Tôhoku Math. J., 22(1970), 76-94.
[8] F. Warner, Conjugate loci of constant order, Ann. of Math., 86(1967), 192-212.
Department of Mathematics
Tokyo University of Agriculture and Technology Tokyo, Japan
AND
Department of Mathematics
Tokyo Institute of Technology
TOKYO, JAPAN

