ON ALMOST CONTACT 3-STRUCTURE

Ying-Yan Kuo

(Received May 14, 1969; Revised June 20, 1970)

Introduction. An almost contact structure $(\phi, \xi, \eta)^{1)}$ on a differentiable manifold is an aggregate consisting of a tensor field ϕ of type (1,1), a contravariant vector field ξ and a covariant vector field η which satisfy

$$
\eta(\xi)=1, \quad \phi \phi=-I+\xi \otimes \eta,
$$

where \otimes means the tensor product, I is the identity tensor.
It is known that almost contact structure has many similarities to almost complex one. The main purpose of this paper is to discuss a structure of contact type similar to almost quarternion structure ${ }^{2)}$.

I would like to thank Professor S. Tachibana sincerely for his kind guidance and suggestions throughout writing the paper. I also express my hearty thanks to Professor S. Sasaki whose advice resulted in many improvements of the formulation.

1. Almost contact 3 -structure. Suppose a differentiable manifold admits 3 almost contact structures ($\phi_{i}, \xi_{i}, \eta_{i}$), $i=1,2,3$, satisfying

$$
\begin{gathered}
\eta_{i}\left(\xi_{j}\right)=\eta_{j}\left(\xi_{i}\right)=0, \\
\phi_{i} \xi_{j}=-\phi_{j} \xi_{i}=\xi_{k}, \\
\eta_{i} \circ \phi_{j}=-\eta_{j} \circ \phi_{i}=\eta_{k}, \\
\phi_{i} \phi_{j}-\xi_{i} \otimes \eta_{j}=-\phi_{j} \phi_{i}+\xi_{j} \otimes \eta_{i}=\phi_{k},
\end{gathered}
$$

for any cyclic permutation (i, j, k) of $(1,2,3)$. We shall call such a structure an almost contact 3 -structure. First we have the following

THEOREM 1. If a differentiable manifold admits 2 almost contact structures ($\phi_{i}, \xi_{i}, \eta_{i}$), $i=1,2$, satisfying

[^0]\[

$$
\begin{gather*}
\eta_{1}\left(\xi_{2}\right)=\eta_{2}\left(\xi_{1}\right)=0 \tag{1.1}\\
\phi_{1} \xi_{2}=-\phi_{2} \xi_{1} \tag{1.2}\\
\eta_{1} \circ \phi_{2}=-\eta_{2} \circ \phi_{1} \tag{1.3}\\
\phi_{1} \phi_{2}-\xi_{1} \otimes \eta_{2}=-\phi_{2} \phi_{1}+\xi_{2} \otimes \eta_{1} \tag{1.4}
\end{gather*}
$$
\]

it admits an almost contact 3-structure.

In fact, we can get the third structure by putting

$$
\begin{gathered}
\xi_{3}=\phi_{1} \xi_{2}, \quad \eta_{3}=\eta_{1} \circ \phi_{2}, \\
\phi_{3}=\phi_{1} \phi_{2}-\xi_{1} \otimes \eta_{2} .
\end{gathered}
$$

2. Associated metric. Let (ϕ, ξ, η) be an almost contact structure on a differentiable manifold M^{n}. A Riemannian metric (positive definite) g is called to be associated to the structure if it satisfies

$$
g(\xi, X)=\eta(X), \quad g(\phi X, \phi Y)=g(X, Y)-\eta(X) \eta(Y)
$$

for any vectors X and Y.
The following theorem is easily obtained.
Theorem 2. Suppose a differentiable manifold M^{n} admits 2 almost contact structure $\left(\phi_{i}, \xi_{i}, \eta_{i}\right), i=1,2$. If there is a Riemannian metric associated to both of the structures, then (1.1), (1.2) and (1.3) follows from (1. 4).

REMARK. If a Riemannian metric is associated to 2 structures of an almost contact 3 -structure, it is associated to the third one.

When a Riemannian metric is associated to each structure of an almost contact 3 -structure, it will be called an associated metric of the 3 -structure. We shall discuss the existence of such metrics.

Lemma. For an almost contact 3 -structure $\left(\phi_{i}, \xi_{i}, \eta_{i}\right), i=1,2,3$, there exists a Riemannian metric h such that

$$
h\left(\xi_{i}, X\right)=\eta_{i}(X), \quad i=1,2,3,
$$

hold good for any vector X.

Proof. Let j be an associated metric to $\left(\phi_{1}, \xi_{1}, \eta_{1}\right)$ and define a new metric f by

$$
f(X, Y)=j\left(X-\eta_{2}(X) \xi_{2}, Y-\eta_{2}(Y) \xi_{2}\right)+\eta_{2}(X) \eta_{2}(Y)
$$

Next define h by

$$
h(X, Y)=f\left(X-\eta_{3}(X) \xi_{3}, Y-\eta_{3}(Y) \xi_{3}\right)+\eta_{3}(X) \eta_{3}(Y),
$$

and we can see that it has the required property.
Q. E. D.

If we define a new metric g from h by

$$
4 g(X, Y)=h(X, Y)+\sum_{i=1}^{3}\left\{h\left(\phi_{i}(X), \phi_{i}(Y)\right)+\eta_{i}(X) \eta_{i}(Y)\right\}
$$

we can check that g is associated to $\left(\phi_{i}, \xi_{i}, \eta_{i}\right), i=1,2,3$. Thus we have
THEOREM 3. In a differentiable manifold of almost contact 3-structure, there is an associated metric of the structure.
3. Dimension. It is well known ${ }^{3}$ that the dimension of an almost contact manifold is odd. We shall study the corresponding problem in this section.

Consider M^{n} with an almost contact 3 -structure ($\phi_{i}, \xi_{i}, \eta_{i}$), $i=1,2,3$. Let $M^{n+1}=M^{n} \times R$ be the product manifold of M^{n} with the real line R. If we define a tensor field Φ_{i} of type $(1,1)$ on M^{n+1} by

$$
\Phi_{i}=\binom{\phi_{i} \xi_{i}}{-\eta_{i}}, \quad i=1,2,3
$$

they define an almost quarternion structure, i. e., they satisfy

$$
\begin{gathered}
\Phi_{1} \Phi_{1}=\Phi_{2} \Phi_{2}=\Phi_{3} \Phi_{3}=-I \\
\Phi_{i} \Phi_{j}=-\Phi_{j} \Phi_{i}=\Phi_{k}
\end{gathered}
$$

where I denotes the unit tensor and (i, j, k) is any cyclic permutation of $(1,2,3)$.
On the other hand, it is known ${ }^{4}$, that the dimension of a manifold with an almost quarternion structure is of the form $4(m+1)$. Thus we get

[^1]THEOREM 4. The dimension of a manifold with almost contact 3 -structure is $4 m+3$ for a non-negative inte ger m.

Let g be an associated metric of an almost contact 3 -structure and define a metric \widetilde{g} on M^{n+1} by

$$
\widetilde{g}=\left(\begin{array}{ll}
g & 0 \\
0 & 1
\end{array}\right)
$$

Then \widetilde{g} satisfies

$$
\widetilde{g}(\widetilde{X}, \widetilde{Y})=\widetilde{g}\left(\Phi_{i} \widetilde{X}, \Phi_{i} \widetilde{Y}\right), \quad i=1,2,3
$$

for any vectors \widetilde{X} and \widetilde{Y} on M^{n+1}.
4. Structure group of tangent bundle. Let g be an associated metric to an almost contact 3 -structure ($\phi_{i}, \xi_{i}, \eta_{i}$), $i=1,2,3$. Put $e_{4 m+3}=\xi_{1}, e_{4 m+2}=\xi_{2}$, $e_{4 m+1}=\xi_{3}$, then they are an orthonormal field over $M^{4 m+3}$ globally. Let $e_{4 m}$ be a unit vector field defined locally in a neighborhood U such that $e_{4 m}, \cdots, e_{4 m+3}$ are orthonormal. If we put

$$
e_{4 m-1}=\phi_{1} e_{4 m}, \quad e_{4 m-2}=\phi_{2} e_{4 m}, \quad e_{4 m-3}=\phi_{3} e_{4 m}
$$

these 7 vectors $e_{4 m-3}, \cdots, e_{4 m+3}$ are orthonormal. In this way we finally have an orthonormal frame field in U consisting of

$$
\begin{gathered}
e_{4 \lambda}, \quad \lambda=1, \cdots, m, \\
e_{4 \lambda-i}=\phi_{i} e_{4 \lambda}, \quad i=1,2,3, \\
e_{4 m+1}, \quad e_{4 m+2}, \quad e_{4 m+3} .
\end{gathered}
$$

The product manifold $M^{4 m+4}=M^{4 m+3} \times R$ has the almost quarternion structure Φ_{i} and the metric \widetilde{g} stated in $\S 3$. Let $e_{4 m+4}$ be the unit vector on R. Moreover let $E_{1}, \cdots, E_{4 m+4}$ be the orthonormal frame in $U \times R$ which are obtained by natural extension from $e_{1}, \cdots, e_{4 m+4}$. We have easily

$$
\begin{equation*}
\Phi_{i} E_{4 \lambda}=E_{4 \lambda-i}, \quad \lambda=1, \cdots, m+1, \quad i=1,2,3 . \tag{4.1}
\end{equation*}
$$

Let U^{\prime} be a neighborhood on $M^{4 m+3}$ such that $U \cap U^{\prime} \neq 0$. Let e_{1}^{\prime}, \cdots, $e_{4 m+4}^{\prime}$, $E_{1}^{\prime}, \cdots, E_{4 m+4}^{\prime}$ be the corresponding vectors. There exists an orthogonal matrix $A=\left(a_{\alpha \beta}\right)$ such that

$$
\begin{equation*}
\sum_{\beta=1}^{4 m+4} a_{a \beta} E_{\beta}=E_{\alpha}^{\prime}, \quad \alpha=1, \cdots, 4 m+4 \tag{4.2}
\end{equation*}
$$

and it is known^{5}) that $A \in S p(m+1)=$ the real representation of the symplectic group, by taking account of the choice (4.1) of frames.

As $E_{4 m+i}=E_{4 m+i}^{\prime}$ for $i=1,2,3,4$, we know that

$$
A=\left(\begin{array}{cc}
B & 0 \\
0 & I_{4}
\end{array}\right), \quad B \in S_{p(m)} .
$$

If we restrict our attention to $M^{4 m+3}$, we get from (4.2)

$$
\begin{aligned}
& \sum_{\beta=1}^{4 m+3} c_{\alpha \beta} e_{\beta}=e_{\alpha}^{\prime}, \quad \alpha=1, \cdots, 4 m+3, \\
& C=\left(c_{\alpha \beta}\right)=\left(\begin{array}{ll}
B & 0 \\
0 & I_{3}
\end{array}\right), \quad B \in S p(m) .
\end{aligned}
$$

Thus we have
THEOREM 5. Let $M^{4 m+3}$ be a differentiable manifold of almost contact 3 -structure. Then the structure group of the tangent bundle is reducible to $S p(m) \times I_{3}$.
5. Sasakian structure and Betti numbers. Consider a Riemannian manifold with metric g. For a vector field ξ we shall define a covariant vector η by

$$
\begin{equation*}
g(\xi, X)=\eta(X) \tag{5.1}
\end{equation*}
$$

where X is any vector. The condition for ξ to be a Killing vector field is that

$$
\left(\nabla_{\boldsymbol{X}} \eta\right) Y+\left(\nabla_{Y} \eta\right) X=0
$$

holds good for any vectors X and Y.
A Sasakian manifold is a Riemannian manifold M^{n} with metric g such that it admits a unit Killing vector field ξ satisfying

$$
\left(\nabla_{Y} \phi\right) X=\eta(X) Y-g(Y, X) \xi,
$$

where ϕ is defined by

[^2]\[

$$
\begin{equation*}
\phi X=\nabla_{x} \xi \tag{5.2}
\end{equation*}
$$

\]

and X and Y are any vectors. In this case ξ is called a Sasakian structure. For a Sasakian structure $\xi,(\phi, \xi, \eta)$ defined by (5.1) and (5.2) is an almost contact structure, and g is an associated metric.

The following theorem is easily obtained.
ThEOREM 6. Let ξ_{1} and ξ_{2} be Sasakian structures orthogonal to each other. Then $\xi_{3}=\phi_{1} \xi_{2}$ is a Sasakian structure orthogonal to ξ_{1} and ξ_{2}. In this case, $\left(\phi_{i}, \xi_{i}, \eta_{i}\right), i=1,2,3$, is an almost contact 3 -structure.

We shall call Sasakian structure stated in Theorem 6 a Sasakian 3 -structure.
In a Sasakian manifold M^{n} with Sasakian structure ξ, let Ψ be an operator defined by

$$
\begin{equation*}
(\Psi u)\left(X_{1}, \cdots, X_{p}\right)=u\left(\phi X_{1}, \cdots, \phi X_{p}\right) \tag{5.3}
\end{equation*}
$$

for differential p-form u, where X_{1}, \cdots, X_{p} are vectors.
The following theorems are known ${ }^{6}$.
Theorem A. In a compact Sasakian manifold $M^{n}, \Psi u$ is harmonic for a harmonic p-form u, provided that $p<(n+1) / 2$.

ThEOREM B. In a compact Sasakian manifold M^{n}, a harmonic p-form $u,(p<(n+1) / 2)$, is orthogonal to ξ, i.e., $u\left(\xi, X_{2}, \cdots, X_{p}\right)=0$ holds good for any vectors X_{2}, \cdots, X_{p}.

By making use of these theorems, we can get
Theorem 7^{7}. For a compact manifold $M^{4 m+3}$ of Sasakian 3-structure $\xi_{1}, \xi_{2}, \xi_{3}$, the p-th Betti number is of the form $4 q$ for a non-negative integer q, if p is odd and satisfies $p<(n+1) / 2=2 m+2$.

Proof. Let $\mathfrak{X}_{p}(M)$ be the vector space of all harmonic p-form over $M^{4 m+3}$. For ξ_{i} we define Ψ_{i} similarly to (5.3). These operators Ψ_{i} define an almost quaternion structure in $\mathfrak{X}_{p}(M)$ and hence $\operatorname{dim} \mathfrak{X}_{p}(M)=4 q$.
Q. E. D.
6. Examples. (i) $R^{4 m+3}$. Consider the 3 dimensional Euclidean space R^{3}.

[^3]Let e_{1}, e_{2}, e_{3} be the fundamental vectors and define

$$
\begin{gather*}
\phi_{1}=\left(-e_{1}, 0, e_{3}\right), \quad \phi_{2}=\left(0, e_{3},-e_{2}\right), \quad \phi_{3}=\left(-e_{2}, e_{1}, 0\right), \\
\xi_{1}=e_{2}, \quad \xi_{2}=e_{1}, \quad \xi_{3}=-e_{3}, \tag{6.1}\\
\eta_{1}=e_{2}^{*}, \quad \eta_{2}=e_{1}^{*}, \quad \eta_{3}=-e_{3}^{*},
\end{gather*}
$$

where e_{i}^{*} means the dual of e_{i}. Then these structures give an almost contact 3 -structure and $g=I_{3}$ is an associated metric.

Next consider the $4 m$ dimensional Euclidean space with standard quarternion structure $\Phi_{i}(i=1,2,3)$ and define

$$
\hat{\phi}_{i}=\left(\begin{array}{cc}
\phi_{i} & 0 \\
0 & \Phi_{i}
\end{array}\right), \quad \hat{\xi}_{i}=\binom{\xi_{i}}{0}, \quad \hat{\eta}_{i}=\left(\eta_{i}, 0\right)
$$

where ($\phi_{i}, \xi_{i}, \eta_{i}$) are given by (6.1). They are an almost contact 3 -structure in $R^{4 m+3}$ with associated metric $I_{4 m+3}$.
(ii) $S^{4 m+3}$. Consider the Euclidean space $R^{2 n+2}$ with the standard complex structure Φ. Let N be the unit normal vector field on the unit sphere $S^{2 n+1}$ with the origin as its center. It is known ${ }^{8)}$ that $\xi=\Phi N$ gives $S^{2 n+1}$ a Sasakian structure and the induced metric on $S^{2 n+1}$ is just an associated one. If we regard $S^{2 n+1}$ as a projective space $P^{2 n+1}$ by identifying anti-podal points, ξ defined above induces a Sasakian structure on $P^{2 n+1}$.

Now condider the Euclidean space $R^{4 m+4}$ with standard quarternion structure $\Phi_{i}, i=1,2,3$. They satisfy

$$
\Phi_{i} \Phi_{i}=-I, \quad{ }^{t} \Phi_{i}=-\Phi_{i}, \quad i=1,2,3, \quad \Phi_{1} \Phi_{2}=\Phi_{3} .
$$

Define ξ_{i} by $\xi_{i}=\Phi_{i} N, i=1,2,3$. Then the inner product of ξ_{1} and ξ_{2} satisfies

$$
\begin{aligned}
I\left(\xi_{1}, \xi_{2}\right) & =I\left(\Phi_{1} N, \Phi_{2} N\right)=\left({ }^{t} \Phi_{1} \Phi_{2}\right)(N, N) \\
& =-\left(\Phi_{1} \Phi_{2}\right)(N, N)=-\Phi_{3}(N, N)=0,
\end{aligned}
$$

where $I=I_{4 m+4}$ is the Euclidean metric in $R^{4 m+4}$. Thus ξ_{1} and ξ_{2} are orthogonal to each other, and hence $S^{4 m+3}$ and $P^{1 m+3}$ have a Sasakian 3 -structure by virture of Theorem 6.

[^4]
BIBLIOGRAPHY

[1] S. SASAKI, Almost contact manifolds, Lecture Note, Part I, 1965.
[2] S. SASAKI, On differentiable manifolds with certain structures which are closely related to almost contact structure, I, Tôhoku Math. J., 12(1960), 459-476.
[3] S. Sasaki and Y. Hatakeyama, On differentiable manifold with certain structures which are closely related to almost contact structures, II, Tôhoku Math. J., 13(1961), 281-294.
[4] S. TAchibana, On harmonic tensors in compact Sasakian spaces, Tôhoku Math. J., 17(1965), 271-284.
[5] H. WAKaKuwa, On Riemannian manifolds with homogenous holonomy groups $S p(n)$, Tôhoku Math. J., 10(1958), 273-303.
[6] M. Obata, Hermitian manifolds with quarternion structure, Tôhoku Math. J., 10(1958), 11-18.
[7] M. Obata, Affine connexion on manifold with almost complex, quarternion, Hermitian structure, Japan. J. Math., 26(1956), 43-77.
[8] Y. TASHIRO, On contact structure of hypersurfaces in complex manifolds, I, Tôhoku Math. J., 15(1963), 62-78.
[9] S. Tachibana and Y. Ogawa, On the second Betti number of a compact Sasakian space, Nat. Sci. Rep. Ochanomizu Univ., 17(1966), 27-32.
[10] T. Fujitani, Complex valued differential forms on normal contact Riemannian manifolds, Tôhoku Math. J., 18(1966), 349-361.
[11] Y. Tashiro and S. Tachibana, On Fubinian and C-Fubinian manifolds, Kōdai Math. Semi. Rep., 15(1963), 176-183.

Department of Mathematics
National Taiwan University
Taipei, Taiwan, Republic of China

[^0]: 1) S. Sasaki, [2], S. Sasaki and Y. Hatakeyama, [3].
 2) H. Wakakuwa, [5], M. Obata, [6].
[^1]: 3) As to the proof, see S. Sasaki, [2].
 4) M. Obata, [6].
[^2]: 5) M. Obata, [6], [7]. H. Wakakuwa, [5].
[^3]: 6) S. Tachibana, [4]. S. Tachibana and Y. Ogawa, [9]. T. Fujitani, [10].
 7) As to Kählerian manifold with quarternion structure, see H. Wakakuwa, [5].
[^4]: 8) Y. Tashiro and S. Tachibana, [11].
