Tôhoku Math. Journ. 22(1970), 325-332.

ON ALMOST CONTACT 3-STRUCTURE

Ying-Yan Kuo

(Received May 14, 1969; Revised June 20, 1970)

Introduction. An almost contact structure $(\phi, \xi, \eta)^{i}$ on a differentiable manifold is an aggregate consisting of a tensor field ϕ of type (1,1), a contravariant vector field ξ and a covariant vector field η which satisfy

$$\eta(\xi) = 1$$
, $\phi\phi = -I + \xi \otimes \eta$,

where \otimes means the tensor product, I is the identity tensor.

It is known that almost contact structure has many similarities to almost complex one. The main purpose of this paper is to discuss a structure of contact type similar to almost quarternion structure².

I would like to thank Professor S. Tachibana sincerely for his kind guidance and suggestions throughout writing the paper. I also express my hearty thanks to Professor S. Sasaki whose advice resulted in many improvements of the formulation.

1. Almost contact 3-structure. Suppose a differentiable manifold admits 3 almost contact structures (ϕ_i , ξ_i , η_i), i = 1, 2, 3, satisfying

$$\eta_i(\xi_j) = \eta_j(\xi_i) = 0,$$

$$\phi_i\xi_j = -\phi_j\xi_i = \xi_k,$$

$$\eta_i \circ \phi_j = -\eta_j \circ \phi_i = \eta_k,$$

$$\phi_i\phi_j - \xi_i \otimes \eta_j = -\phi_j\phi_i + \xi_j \otimes \eta_i = \phi_k,$$

for any cyclic permutation (i, j, k) of (1, 2, 3). We shall call such a structure an almost contact 3-structure. First we have the following

THEOREM 1. If a differentiable manifold admits 2 almost contact structures (ϕ_i, ξ_i, η_i) , i = 1,2, satisfying

¹⁾ S. Sasaki, [2], S. Sasaki and Y. Hatakeyama, [3].

²⁾ H. Wakakuwa, [5], M. Obata, [6].

Y.Y.KUO

(1.1)
$$\eta_1(\xi_2) = \eta_2(\xi_1) = 0$$
,

(1.2)
$$\phi_1 \xi_2 = -\phi_2 \xi_1$$
,

$$(1.3) \qquad \qquad \eta_1 \circ \phi_2 = -\eta_2 \circ \phi_1,$$

(1.4)
$$\phi_1\phi_2-\xi_1\otimes\eta_2=-\phi_2\phi_1+\xi_2\otimes\eta_1,$$

it admits an almost contact 3-structure.

In fact, we can get the third structure by putting

$$egin{array}{lll} \xi_3 = \phi_1 \xi_2 \,, & \eta_3 = \eta_1 \circ \phi_2 \,, \ \phi_3 = \phi_1 \phi_2 - \xi_1 \otimes \eta_2 \,. \end{array}$$

2. Associated metric. Let (ϕ, ξ, η) be an almost contact structure on a differentiable manifold M^n . A Riemannian metric (positive definite) g is called to be associated to the structure if it satisfies

$$g(\xi, X) = \eta(X),$$
 $g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y)$

for any vectors X and Y.

The following theorem is easily obtained.

THEOREM 2. Suppose a differentiable manifold M^n admits 2 almost contact structure (ϕ_i, ξ_i, η_i) , i = 1, 2. If there is a Riemannian metric associated to both of the structures, then (1.1), (1.2) and (1.3) follows from (1.4).

REMARK. If a Riemannian metric is associated to 2 structures of an almost contact 3-structure, it is associated to the third one.

When a Riemannian metric is associated to each structure of an almost contact 3-structure, it will be called an associated metric of the 3-structure. We shall discuss the existence of such metrics.

LEMMA. For an almost contact 3-structure (ϕ_i, ξ_i, η_i) , i = 1, 2, 3, there exists a Riemannian metric h such that

$$h(\xi_i, X) = \eta_i(X), \quad i = 1, 2, 3,$$

hold good for any vector X.

PROOF. Let j be an associated metric to (ϕ_1, ξ_1, η_1) and define a new metric f by

$$f(X, Y) = j(X - \eta_2(X)\xi_2, Y - \eta_2(Y)\xi_2) + \eta_2(X)\eta_2(Y).$$

Next define h by

$$h(X, Y) = f(X - \eta_3(X)\xi_3, Y - \eta_3(Y)\xi_3) + \eta_3(X)\eta_3(Y),$$

and we can see that it has the required property.

If we define a new metric g from h by

$$4g(X,Y) = h(X,Y) + \sum_{i=1}^{3} \{h(\phi_i(X),\phi_i(Y)) + \eta_i(X)\eta_i(Y)\}$$

we can check that g is associated to (ϕ_i, ξ_i, η_i) , i = 1, 2, 3. Thus we have

THEOREM 3. In a differentiable manifold of almost contact 3-structure, there is an associated metric of the structure.

3. Dimension. It is well known³ that the dimension of an almost contact manifold is odd. We shall study the corresponding problem in this section.

Consider M^n with an almost contact 3-structure (ϕ_i, ξ_i, η_i) , i = 1, 2, 3. Let $M^{n+1} = M^n \times R$ be the product manifold of M^n with the real line R. If we define a tensor field Φ_i of type (1, 1) on M^{n+1} by

$$\Phi_i = egin{pmatrix} \phi_i\, \xi_i \ -\eta_i \, \ 0 \end{pmatrix}, \qquad i=1,2,3$$
 ,

they define an almost quarternion structure, i. e., they satisfy

$$egin{array}{lll} \Phi_1 \Phi_1 = \Phi_2 \Phi_2 = \Phi_3 \Phi_3 = -I\,, \ \Phi_i \Phi_j = -\Phi_j \Phi_i = \Phi_k\,, \end{array}$$

where I denotes the unit tensor and (i, j, k) is any cyclic permutation of (1, 2, 3).

On the other hand, it is known⁴' that the dimension of a manifold with an almost quarternion structure is of the form 4(m+1). Thus we get

327

Q. E. D.

³⁾ As to the proof, see S. Sasaki, [2].

⁴⁾ M. Obata, [6].

Y. Y. KUO

THEOREM 4. The dimension of a manifold with almost contact 3-structure is 4m+3 for a non-negative integer m.

Let g be an associated metric of an almost contact 3-structure and define a metric \tilde{g} on M^{n+1} by

$$\widetilde{g} = egin{pmatrix} g & 0 \ 0 & 1 \end{pmatrix}.$$

Then \tilde{g} satisfies

$$\widetilde{g}(\widetilde{X},\widetilde{Y}) = \widetilde{g}(\Phi_i\widetilde{X},\Phi_i\widetilde{Y}), \quad i = 1, 2, 3,$$

for any vectors \widetilde{X} and \widetilde{Y} on M^{n+1} .

4. Structure group of tangent bundle. Let g be an associated metric to an almost contact 3-structure (ϕ_i, ξ_i, η_i) , i = 1, 2, 3. Put $e_{4m+3} = \xi_1$, $e_{4m+2} = \xi_2$, $e_{4m+1} = \xi_3$, then they are an orthonormal field over M^{4m+3} globally. Let e_{4m} be a unit vector field defined locally in a neighborhood U such that e_{4m}, \dots, e_{4m+3} are orthonormal. If we put

$$e_{4m-1} = \phi_1 e_{4m}, \quad e_{4m-2} = \phi_2 e_{4m}, \quad e_{4m-3} = \phi_3 e_{4m},$$

these 7 vectors $e_{4m-3}, \dots, e_{4m+3}$ are orthonormal. In this way we finally have an orthonormal frame field in U consisting of

$$e_{4\lambda}$$
, $\lambda = 1, \dots, m$,
 $e_{4\lambda-i} = \phi_i e_{4\lambda}$, $i = 1, 2, 3$,
 e_{4m+1} , e_{4m+2} , e_{4m+3} .

The product manifold $M^{4m+4} = M^{4m+3} \times R$ has the almost quarternion structure Φ_i and the metric \tilde{g} stated in §3. Let e_{4m+4} be the unit vector on R. Moreover let E_1, \dots, E_{4m+4} be the orthonormal frame in $U \times R$ which are obtained by natural extension from e_1, \dots, e_{4m+4} . We have easily

(4.1)
$$\Phi_i E_{4\lambda} = E_{4\lambda-i}, \quad \lambda = 1, \cdots, m+1, \quad i = 1, 2, 3.$$

Let U' be a neighborhood on M^{4m+3} such that $U \cap U' \neq 0$. Let e'_1, \dots, e'_{4m+4} , E'_1, \dots, E'_{4m+4} be the corresponding vectors. There exists an orthogonal matrix $A = (a_{\alpha\beta})$ such that

(4.2)
$$\sum_{\beta=1}^{4m+4} a_{\alpha\beta} E_{\beta} = E'_{\alpha}, \qquad \alpha = 1, \cdots, 4m+4$$

and it is known⁵) that $A \in Sp(m+1) =$ the real representation of the symplectic group, by taking account of the choice (4.1) of frames.

As $E_{4m+i} = E'_{4m+i}$ for i = 1, 2, 3, 4, we know that

$$A = \begin{pmatrix} B & 0 \\ 0 & I_4 \end{pmatrix}, \quad B \in Sp(m).$$

If we restrict our attention to M^{4m+3} , we get from (4.2)

$$\sum_{\beta=1}^{4m+3} c_{\alpha\beta} e_{\beta} = e'_{\alpha}, \qquad \alpha = 1, \cdots, 4m+3,$$
$$C = (c_{\alpha\beta}) = \begin{pmatrix} B & 0\\ 0 & I_{3} \end{pmatrix}, \qquad B \in Sp(m).$$

Thus we have

THEOREM 5. Let M^{4m+3} be a differentiable manifold of almost contact 3-structure. Then the structure group of the tangent bundle is reducible to $Sp(m) \times I_3$.

5. Sasakian structure and Betti numbers. Consider a Riemannian manifold with metric g. For a vector field ξ we shall define a covariant vector η by

(5.1)
$$g(\xi, X) = \eta(X),$$

where X is any vector. The condition for ξ to be a Killing vector field is that

$$(\bigtriangledown_{\mathbf{x}}\eta)Y + (\bigtriangledown_{\mathbf{y}}\eta)X = 0$$

holds good for any vectors X and Y.

A Sasakian manifold is a Riemannian manifold M^n with metric g such that it admits a unit Killing vector field ξ satisfying

$$(\bigtriangledown_Y \phi) X = \eta(X) Y - g(Y, X) \xi$$
,

where ϕ is defined by

⁵⁾ M. Obata, [6], [7]. H. Wakakuwa, [5].

$$(5.2) \qquad \qquad \phi X = \bigtriangledown_{x} \xi$$

and X and Y are any vectors. In this case ξ is called a Sasakian structure. For a Sasakian structure ξ , (ϕ, ξ, η) defined by (5.1) and (5.2) is an almost contact structure, and g is an associated metric.

The following theorem is easily obtained.

THEOREM 6. Let ξ_1 and ξ_2 be Sasakian structures orthogonal to each other. Then $\xi_3 = \phi_1 \xi_2$ is a Sasakian structure orthogonal to ξ_1 and ξ_2 . In this case, (ϕ_i, ξ_i, η_i) , i = 1, 2, 3, is an almost contact 3-structure.

We shall call Sasakian structure stated in Theorem 6 a Sasakian 3-structure. In a Sasakian manifold M^n with Sasakian structure ξ , let Ψ be an operator defined by

(5.3)
$$(\Psi u)(X_1,\cdots,X_p) = u(\phi X_1,\cdots,\phi X_p)$$

for differential *p*-form *u*, where X_1, \dots, X_p are vectors. The following theorems are known⁶⁾.

THEOREM A. In a compact Sasakian manifold M^n , Ψu is harmonic for a harmonic p-form u, provided that p < (n+1)/2.

THEOREM B. In a compact Sasakian manifold M^n , a harmonic p-form u, (p < (n+1)/2), is orthogonal to ξ , i.e., $u(\xi, X_2, \dots, X_p) = 0$ holds good for any vectors X_2, \dots, X_p .

By making use of these theorems, we can get

THEOREM 7⁷). For a compact manifold M^{4m+3} of Sasakian 3-structure ξ_1, ξ_2, ξ_3 , the p-th Betti number is of the form 4q for a non-negative integer q, if p is odd and satisfies p < (n+1)/2 = 2m+2.

PROOF. Let $\mathfrak{X}_p(M)$ be the vector space of all harmonic *p*-form over M^{4m+3} . For ξ_i we define Ψ_i similarly to (5.3). These operators Ψ_i define an almost quaternion structure in $\mathfrak{X}_p(M)$ and hence dim $\mathfrak{X}_p(M) = 4q$. Q. E. D.

6. Examples. (i) R^{4m+3} . Consider the 3 dimensional Euclidean space R^3 .

⁶⁾ S. Tachibana, [4]. S. Tachibana and Y. Ogawa, [9]. T. Fujitani, [10].

⁷⁾ As to Kählerian manifold with quarternion structure, see H. Wakakuwa, [5].

Let e_1, e_2, e_3 be the fundamental vectors and define

(6.1)

$$\phi_1 = (-e_1, 0, e_3), \quad \phi_2 = (0, e_3, -e_2), \quad \phi_3 = (-e_2, e_1, 0),$$

$$\xi_1 = e_2, \quad \xi_2 = e_1, \quad \xi_3 = -e_3,$$

$$\eta_1 = e_2^*, \quad \eta_2 = e_1^*, \quad \eta_3 = -e_3^*,$$

where e_i^* means the dual of e_i . Then these structures give an almost contact 3-structure and $g = I_3$ is an associated metric.

Next consider the 4m dimensional Euclidean space with standard quarternion structure $\Phi_i(i = 1, 2, 3)$ and define

$$\widehat{\phi}_i = egin{pmatrix} \phi_i & 0 \ 0 & \Phi_i \end{pmatrix}, \qquad \widehat{\xi}_i = egin{pmatrix} \xi_i \ 0 \end{pmatrix}, \qquad \widehat{\eta}_i = (\eta_i, 0),$$

where (ϕ_i, ξ_i, η_i) are given by (6.1). They are an almost contact 3-structure in R^{4m+3} with associated metric I_{4m+3} .

(ii) S^{4m+3} . Consider the Euclidean space R^{2n+2} with the standard complex structure Φ . Let N be the unit normal vector field on the unit sphere S^{2n+1} with the origin as its center. It is known⁸ that $\xi = \Phi N$ gives S^{2n+1} a Sasakian structure and the induced metric on S^{2n+1} is just an associated one. If we regard S^{2n+1} as a projective space P^{2n+1} by identifying anti-podal points, ξ defined above induces a Sasakian structure on P^{2n+1} .

Now condider the Euclidean space R^{4m+4} with standard quarternion structure Φ_i , i = 1, 2, 3. They satisfy

$$\Phi_i \Phi_i = -I, \quad {}^t \Phi_i = -\Phi_i, \quad i = 1, 2, 3, \quad \Phi_1 \Phi_2 = \Phi_3.$$

Define ξ_i by $\xi_i = \Phi_i N$, i = 1, 2, 3. Then the inner product of ξ_1 and ξ_2 satisfies

$$I(\xi_1, \xi_2) = I(\Phi_1 N, \Phi_2 N) = ({}^{\iota} \Phi_1 \Phi_2)(N, N)$$

= $-(\Phi_1 \Phi_2)(N, N) = -\Phi_3(N, N) = 0,$

where $I = I_{4m+4}$ is the Euclidean metric in R^{4m+4} . Thus ξ_1 and ξ_2 are orthogonal to each other, and hence S^{4m+3} and P^{4m+3} have a Sasakian 3-structure by virture of Theorem 6.

⁸⁾ Y. Tashiro and S. Tachibana, [11].

Y. Y. KUO

BIBLIOGRAPHY

- [1] S. SASAKI, Almost contact manifolds, Lecture Note, Part I, 1965.
- [2] S. SASAKI, On differentiable manifolds with certain structures which are closely related to almost contact structure, I, Tôhoku Math. J., 12(1960), 459-476.
- [3] S. SASAKI AND Y. HATAKEYAMA, On differentiable manifold with certain structures which are closely related to almost contact structures, II, Tôhoku Math. J., 13(1961), 281-294.
- [4] S. TACHIBANA, On harmonic tensors in compact Sasakian spaces, Tôhoku Math. J., 17(1965), 271-284.
- [5] H. WAKAKUWA, On Riemannian manifolds with homogenous holonomy groups Sp(n), Tôhoku Math. J., 10(1958), 273-303.
- [6] M. OBATA, Hermitian manifolds with quarternion structure, Tôhoku Math. J., 10(1958), 11-18.
- [7] M.OBATA, Affine connexion on manifold with almost complex, quarternion, Hermitian structure, Japan. J. Math., 26(1956), 43-77.
- [8] Y. TASHIRO, On contact structure of hypersurfaces in complex manifolds, I, Tôhoku Math. J., 15(1963), 62-78.
- [9] S. TACHIBANA AND Y. OGAWA, On the second Betti number of a compact Sasakian space, Nat. Sci. Rep. Ochanomizu Univ., 17(1966), 27-32.
- [10] T. FUJITANI, Complex valued differential forms on normal contact Riemannian manifolds, Tôhoku Math. J., 18(1966), 349-361.
- [11] Y. TASHIRO AND S. TACHIBANA, On Fubinian and C-Fubinian manifolds, Kodai Math. Semi. Rep., 15(1963), 176-183.

DEPARTMENT OF MATHEMATICS NATIONAL TAIWAN UNIVERSITY TAIPEI, TAIWAN, REPUBLIC OF CHINA