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1. Introduction. This note is concerned with the relation between an
algebra A and the algebra M of Measurable operators' affiliated with A [4], the
general idea being that properties of A are reflected in analogous properties of the
larger algebra M. We consider here two specific properties : ( 1 ) the property of
being a Baer^-ring, and (2) the monotonicity of the square root operation on
positive elements.

More precisely, to say that A is an AW*-a\gebra. means that A is both a
C*-algebra and a Baer^-ring. K. Saitό has shown that M is also a Baer *-ring
([4], Theorem 6. 4) we offer here a simpler proof, of a nominally more general
result. The algebra A has the property that O^α^b implies α1/2^b1/2 (this is
true in any C*-algebra) assuming the set of self-adjoint elements of A has a
certain 'monotone convergence property' (automatically verified when A is a von
Neumann algebra), we show that M has the property that 0t=kx^ky implies
xι/2^=yι/2. The latter result plays a role in D. Topping's theory of vector lattices
of self-adjoint operators ([5], see p. 27, Proposition 10).

2. The Baer^-ring property. Let A be an AW^-algebra and let M be
the algebra of measurable operators affiliated with A [4]. We extract as axioms
the properties of A and M that are relevant for the discussion in this section:
(1) M i s a ^-algebra with unity element 1, ( 2) A is a *-subalgebra of M, (3)
if x,y € Mand x*x+y*y = l, then x,y € A ([4], Lemma 5. 2), ( 4 ) A is a Baer*-ring
in the sense of I. Kaplansky [3], and (5) for any x^M, l + x*x is invertible and
(1 + χKχ)'1 e A ([4], Lemmas 4.1, 5. 2).

Taking (1 )-( 5 ) as axioms, we show in this section that M is also a Baer*-ring.
We write

Note that x*x = 0 implies x = 0. {Proof : 1 = 0 + 1 = x*x-\-l*ly therefore xe A
by (3), hence x=0 by a property of Baer*-rings ([3], p. 31, Theorem 21).} Also,
M has no new partial isometries (i. e., none not already in A), hence no new projections.
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{Proof: If w*w = e, e a projection, then 1 =

therefore w ^ A by (3).} It follows that the set of projections of M (i. e., of A)

is a complete lattice ([3], p. 29, Theorem 19). Every element of A has a right

projection ([3], p. 28) so does every element of M:

LEMMA 2.1. If xe M and e = RP(1 — ax) (the right projection of l — ax,

calculated in A), then xe—x and e is the smallest such projection.

PROOF. If g is a projection, the following conditions imply one another:

xg = 0, x*xg = 0, (l + x*x)g = g, g = (l + x*x)~1g = axg, (l-ax)g = 0, eg = 0.

The largest such projection is g = l — e, thus 1 — e is the largest projection such

that x(l — e) = 0; that is, e is the smallest projection such that xe — x.

With notation as in Lemma 2.1, we write e — RP(x) that is, RP(x) is

defined to be RP(l-ax). We also define LP(x)=RP(x*) thus, LP(x) is the

smallest projection / such that fx = x. By definition,

LP(x) = RP(x*) =

LEMMA 2.2. If x,yzM, e = RP(x) and g = LP(y), then xy = 0 iff eg = 0.

PROOF. If eg — 0 then xy = (xe)(gy) = 0. Conversely, if xy — 0 then x*xyy*=09

(1 + x*x)yy* — yy*, yy* = (1 + x*x)~λyy^ — axyy*, (1 — ax)yy* = 0 , (1 — ax)(l +yy*)
= l-ax, l — ax= {l-ax){l+yy*yι={l-ax)ay*, (l-ax)(l-ay*) = 0 since A is a
Baer*-ring this implies [RP(l — ax)][RP(l—air)] = 0 (for a self-ad joint element,
we need not distinguish between LP and RP), that is, RP(x)LP(y) = 0.

Generalizing Saitό's theorem for the case that A is an AW^-algebra ([4],

Theorem 6. 4), we have:

THEOREM 2. 3. If A and M satisfy axioms (l)-(5), then M is a Baer*-ring.

PROOF. Let S be any subset of M and write R(S) = {yzM' Sy = 0] for

the right-annihilator of S; the problem is to show that the right ideal R(S) is

generated by a projection. Define e — sup [RP(x): xz S}. In view of Lemma 2.2,

the following conditions imply one another: yzR(S), xy = 0 for all xzS,

RP(x)LP(y) = 0 for all xzS, eLP(y) = 0, ey = 0, (l-e)y=y, ye(l-e)M. Thus

3. Monotonicity of square roots. Let A be an AW*-algebra, Λί the
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algebra of measurable operators of A. In the application [5], A is assumed to be
of finite class we do not make this restriction here, but, for the reader who is
interested only in the finite case, we cite alternative references to [1].

LEMMA 3.1. If xz M, x^O and x is invertibίe in M, then x~ι^0.

PROOF. Write x = z\ with z self-adjoint ([4], Corollary 5. 2 [1], Corollary
6. 2). Then z is invertible and x~ι = (z~lf = fer^O

LEMMA 3.2. If aeA, O^a^l, and a has an inverse in M, then a~ι^l.

PROOF. Same as ([2], p. 179, Lemma 2).

LEMMA 3. 3. If x and y are invertible elements of M such that Ot=kxί=ky,
then x~l^y~l^0.

PROOF. By Lemma 3.1, y~ι^0. Write x = s\ y = t\ with s and t self-
adjoint, and set w = sΓ\ Then w*w = t-1s2t-1 = (t'1)*xt-ι^(t-1)*yt"ϊ = t'1yΓ1 = l9

thus we A, ||w|| = l ([4], Lemma 5.2; [1], Lemma 5.1). Since w is invertible in
M, so is w*w citing Lemma 3.2 we have l^iw^w)'1 = w~ι(w~1)* = ts~ίs~ιt
= tχ-% therefore y'1 = t'ιlfι ^t"ιifx'xt)t-1 = x~\

LEMMA 3.4. If x,ye M, 0^xt=ίy, xy=yx, and y=^€l for some real
number £>0, then x1/2 ^y1/2.

PROOF. We can suppose € = 1. Then y = H-[(y- l ) 1 / 2 ] 2 shows that y is
invertible ([4], Lemma 4.1 [1], Corollary 3.1), and y~ι^l by Lemma 3. 3. Write
x = s\y = t\ with 5 ^ 0 and ί ^ O , se {x}", tz [y] ' ([4], Corollary 5.2; [1],
Corollary 6.2); since xy—yx it follows that st = ts, therefore

(*) 0^y-x = t2-s2 = (t + s)(t - s).

Since (t'1)*t'ι = (t2yl=y-1^l9 we have Γι z A and O ^ r ^ l , therefore t^l
by Lemma 3.2; then t + s^t^l shows that t + s is invertible. Let z = (t + s)~1 by
Lemma 3.1, z^O. Clearly z commutes with t and 5, and therefore with t2 — s2

=y — x^0; since the product of commuting positives is positive [e.g., in the above
notation, xy = s2t2 = ts2t — (st)*(st) ^ 0 } it follows that z(y—x)^0, i.e., in view
of (*)

LEMMA 3.5. If x,yeM and O^x^y, then xx/2^(y + £l)ι/2 for every
real number 8 > 0.
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PROOF. Since x^x+βl, where x and x + Sl commute and

Lemma 3. 4 yields

( i ) xι/2 ^(χ + eiy/2.

On the other hand, Sl^x + εl^y + 81, where x + Sl and y + £l are invertible

(see the proof of Lemma 3. 4), therefore O ^ y + β l Γ ^ O r + E l ) " 1 ^ " " 1 ! by Lemma

3.3; moreover, (y + εΐ)~ι, (x + εiy'zA, therefore (y + 8l)-l/2^(x + 8l)-1/2 by the

monotonicity of square roots in a C*-algebra, and Lemma 3. 3 then yields

(ϋ) (x + eiy/2^(y + eiy<2.

Combining ( i ) , (ii), we obtain the desired inequality.

The AW^-algebra A is said to have the monotone convergence property if

it satisfies the following condition : if an is a sequence of self-adjoint elements in

A such that aλ ίg a2 ig a3 ^ and an :=g bin = 1, 2, 3, ) for some self-adjoint

element b of A, then sup an exists (with respect to the usual ordering of self-

ad joints). The notation an\ a means that ax ^ a2 g α 3 ^ , supαn exists, and

a — sup an. We remark that a also serves as a supremum for the an in M. {The

point is that if x is a self-ad joint element of M such that ant=^x for all n, then

a^x. To prove this, it suffices to consider the case that α ^ O . Then 1^1 + an ΐ 1 + α

implies that l^(l + an)~ι | (1 + α)"1. Also, 1^1 + an^l-\-x implies, by Lemma 3.3,

that l ^ d + ίO-^CL + x)-1. Writing b = (l + a)-\ we have (l + ̂ - ^ i n f α + α J " 1

= b, therefore l + x^b~\ x^b~ι — l=a.}

The foregoing definition makes sense also for M: we say that M has the

monotone convergence property iff sup xn exists for any increasing sequence of

self-adjoint elements of M such that xn ^y(n = 1, 2, 3, ) for some self-adjoint

y in Λf.

LEMMA 3. 6. If A has the monotone convergence property, then so does

M.

PROOF. Suppose xn, yzM are self-adjoint, Xι^x2^^s^ , and xn=y
for all n. Subtracting xx throughout, we can suppose xx §= 0. Then

1 ^ 1 + ^ ^ l + x2 ^ ^ 1 + y ,

therefore by Lemma 3. 3,

1 ^ (1 + ^O" 1 ^ (1 + x2)
Bι ^ ^ (1 + yTΛ ^ 0 .
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Since (1 + XnY1 € A, we may set z — inf (l-\-xn)~\ and it follows readily from
Lemma 3.3 that xn\z~ι — 1. {An essential point is that z is invertible. Indeed,
z^(l+y)~l^0. Setting t = (l+y)ί/2, we have t2 = l+y invertible, hence t is
invertible, and t*zt}^t*(l+y)~ιt = t{f)~ιt = 1 thus tzt = t*zt is invertible, hence
so is t~ι{tzt)Γι =z}.

We remark that the foregoing considerations can be cast more generally in
terms of directed families (of any cardinality) the directed family formulation of
Lemma 3. 6 generalizes an earlier result for algebras of finite class ([2], p. 179,
Corollary).

LEMMA 3. 7. If A has the monotone convergence property, and y is any
positive element of M, then

PROOF. By Lemma 3.5 we have yι/2^(y + Sl)ι/'2 for all £ > 0 .
Consider the sequence yn=y + (l/n)l (w = l, 2, 3, ) thus yx ^y2^y3 g:

. By Lemma 3.4,

in view of Lemma 3. 6, we may set £ = inf(3/n)
1/2, and it will clearly suffice to show

that z=y1/2.
We note first that z£ {y}"'. {Proof: Assuming sz {y}' we are to show that

zs — sz. Since {y} is a ^-subalgebra of M, we can suppose s is self-ad joint. If u is
the Cayley transform of s ([4], Theorem 5.1 [1], Theorem 4.1), one has {s}'= [u}\
thus it will suffice to show that zu=uz. Since {u}" = {s}"a {y}"'= {y}'= [yn] ,
we have (yn)

ι/2 £ [yn}"c {u}'"= [u}\ that is, u commutes with (yn)
ι/2 then

uzu*= u[m{(ynγ
/2]u*= ird[u(yny<*u*] = inf(yn)

1/2 = z,

as was to be shown.}
Since (yn)

ι/2^yί/2 for all n, we have z^yί/2 since, moreover, z commutes
with yi/2 (by the preceding paragraph) it follows that z2^y. {Indeed, z2— y
= (z+yί/2)(z— yί/2) is the product of commuting positives.} On the other hand,
zf=^(yn)

1/2 for all n, and since z commutes with (yn)
ι/2 it follows that z2^yn;

thus

therefore z2—y$A and \\z2— y\\^l/n for all n, i.e., z2— y = 0, z=yι/2.
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THEOREM 3.8. If A has the monotone convergence property, and if
x,yzM satisfy O^x^y, then x1/2^yί/2.

PROOF. For any £>0, Lemma 3. 5 yields x1/2 ^(y + Sΐ)1/2 in view of Lemma

3.7, this implies xι/2 ^yι/2.

For the case that A is of finite class, Theorem 3. 8 evolved in correspondence

(1963) with Professor Topping, to whom I am indebted for several of the key ideas.

REMARK. In Lemma 3. 3, the assumption that y is invertible is redundant

that is, if y ^ x Ŝ  0 and x is invertible, then y is also invertible. {Proof : By

Lemma 3.1 we may write x~ι=t2 with t*=t; then tyt^txt — 1, therefore tyt

is invertible, hence so is t~ι{tyt)t~ι = y.}
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