Todhoku Math. Journ.
22(1970), 613-618.

A NOTE ON THE ALGEBRA OF MEASURABLE OPERATORS
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1. Introduction. This note is concerned with the relation between an AW*-
algebra A and the algebra M of ‘measurable operators’ affiliated with A [4], the
general idea being that properties of A are reflected in analogous properties of the
larger algebra M. We consider here two specific properties: (1) the property of
being a Baer*-ring, and (2) the monotonicity of the square root operation on
positive elements.

More precisely, to say that A is an AW™*-algebra means that A is both a
C*-algebra and a Baer*-ring. K. Saité6 has shown that M is also a Baer *-ring
([4], Theorem 6. 4) ; we offer here a simpler proof, of a nominally more general
result. The algebra A has the property that 0=a =5 implies a'?=5"* (this is
true in any C*-algebra); assuming the set of self-adjoint elements of A has a
certain ‘monotone convergence property’ (automatically verified when A is a von
Neumann algebra), we show that M has the property that 0=x=y implies
x'2=y'2, The latter result plays a role in D. Topping’s theory of vector lattices
of self-adjoint operators ([5], see p. 27, Proposition 10).

2. The Baer*-ring property. Let A be an AW*-algebra and let M be
the algebra of measurable operators affiliated with A [4]. We extract as axioms
the properties of A and M that are relevant for the discussion in this section :
(1) M is a *-algebra with unity element 1, (2) A is a *-subalgebra of M, (3)
if x,ye M and x*¥x+y*y=1, then x,y< A ([4], Lemma 5. 2), (4) A is a Baer*-ring
in the sense of I.Kaplansky [3], and (5) for any x€ M, 1+a*x is invertible and
1+x*x)"'e A ([4], Lemmas 4.1, 5.2).

Taking (1)-(5) as axioms, we show in this section that M is also a Baer*-ring.
We write

a, = (1 + z*x)™! (xe M).
Note that 2*x =0 implies £ =0. {Proof: 1 =0+1=x*x+1*1, therefore z< A

by (3), hence £=0 by a property of Baer*-rings ([3], p. 31, Theorem 21).} Also,
M has no new partial isometries (i. e., none not already in A), hence no new projections.
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{Proof : If w*w =e, e a projection, then 1=e+(1—e)=w*w+(1—e)*1—e),
therefore we A by (3).} It follows that the set of projections of M (i.e., of A)
is a complete lattice ([3], p.29, Theorem 19). Every element of A has a right
projection ([3], p.28); so does every element of M :

LEMMA 2.1. If xe M and e= RP(1—a,) (the right projection of 1—a,,
calculated in A), then xe=x and e is the smallest such projection.

PROOF. If g is a projection, the following conditions imply one another :
xg =0, 2%xg =0, l+x*x)9g =9, 9 =1+x*x)"'g =a,g9, 1—a,)g=0, eg =0.
The largest such projection is ¢ =1—e, thus 1—e is the largest projection such
that £(1—e) =0 that is, e is the smallest projection such that xe = x.

With notation as in Lemma 2.1, we write e= RP(x); that is, RP(x) is
defined to be RP(1—a,). We also define LP(x)=RP(x*); thus, LP(x) is the
smallest projection f such that fx =x. By definition,

LP(x) = RP(z*) = RP(1 — a,).
LEMMA 2.2. If x,ye M, e=RP(x) and g=LP(y), then xy=0 iff eg=0.

PROOF. If eg=0 then xy=(xe)(gy)=0. Conversely, if xy=0 then £*¥xyy*=0,
L+z*2)yy* = yy*, yy* = (1+a2%2) " yy* = a,yy*, (1—a)yy*=0, (1—a,)(1+yy%)
=l—a,, 1—a,= 1—a,)A+yy*)'=1—a,)ay, 1—a,)(1—a,)=0; since A is a
Baer*-ring this implies [RP(1—a,)][RP(1—a,)] =0 (for a self-adjoint element,
we need not distinguish between LP and RP), that is, RP(x)LP(y)=0.

Generalizing Saitd’s theorem for the case that A is an AW¥-algebra ([4],
Theorem 6. 4), we have:

THEOREM 2. 3. If A and M satisfy axioms (1)-(5), then M is a Baer*-ring.

PROOF. Let S be any subset of M and write R(S)={ye M: Sy=0} for
the right-annihilator of S; the problem is to show that the right ideal R(S) is
generated by a projection. Define e = sup{RP(x): x< S}. In view of Lemma 2.2,
the following conditions imply one another: ye R(S), xy=0 for all z< S,
RP(x)LP(y)=0 for all x€ S, eLP(y) =0, ey=0, 1—e)y=y, ye (1—e)M. Thus
R(S)=(1—e) M.

3. Monotonicity of square roots. Let A be an AW*.algebra, M the
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algebra of measurable operators of A. In the application [5], A is assumed to be
of finite class; we do not make this restriction here, but, for the reader who is
interested only in the finite case, we cite alternative references to [1].

LEMMA 3.1. If xe M, x=0 and x is invertible in M, then x~'=0.

PROOF. Write x = 2%, with g self-adjoint ([4], Corollary 5. 2; [1], Corollary
6.2). Then z is invertible and 7! = (27)? = (2™)*(z"))=0.

LEMMA 3.2. If ac A, 0=a=1, and a has an inverse in M, then a ' =1.

PROOF. Same as ([2], p. 179, Lemma 2).

LEMMA 3.3. If x and vy are invertible elements of M such that 0=x=y,
then z7'=y1=0.

PROOF. By Lemma 3.1, y'=0. Write x =s% y=1¢, with s and ¢ self-
adjoint, and set w = s¢t™'. Then w¥w=¢"'s%"1=¢ ") xt'=@t ¥yt ' =t "yt =1,
thus we A, [|lw|=1 ([4], Lemma 5.2; [1], Lemma 5.1). Since w is invertible in
M, so is w¥w; citing Lemma 3.2 we have 1=(w*w)!'=w (w )*=ts"'s""t
=tx~'t, therefore y™'=¢t 1t ' = ¢ 't )t = 2L

LEMMA 3.4 If x,ye M, 0=x=y, xy=yx, and y=EL for some real
number >0, then x'/*=y'2

PROOF. We can suppose E=1. Then y=1+[(y—1)"2]*> shows that y is
invertible ([4], Lemma 4.1; [1], Corollary 3.1), and y™'=1 by Lemma 3. 3. Write
x=s%y=1t) with s=0 and =0, se {x}”, te {y} " (4], Corollary 5.2; [1],
Corollary 6.2); since xy = yx it follows that s¢ =ts, therefore

() 0=y—zx=2—s=(@+s)t—s).

Since (¢~)*t ™' = () '=y'=1, we have t7'€¢ A and 0=¢"'=1, therefore =1
by Lemma 3.2; then t+s=¢t=1 shows that £+s is invertible. Let 2=(¢+s)""'; by
Lemma 3.1, 2=0. Clearly 2 commutes with # and s, and therefore with #*—s®
=y—x=0; since the product of commuting positives is positive {e.g., in the above
notation, xy = s’t? = ts’t = (st)*(st) =0} it follows that z(y—x)=0, i.e., in view
of (%), 0=z2(+s)(t—s)=t—s.

LEMMA 3.5. If x,ye M and 0=x =y, then x'*=(y+E&L1)"? for every
real number &> 0.
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PROOF. Since x=x+¢&l, where £ and x+&l commute and x+E&l=€&l,
Lemma 3.4 yields

(i) x/? = (x + &1)V2.

On the other hand, E1=x+&1=y+&l, where £+€l and y-+é&l are invertible
(see the proof of Lemma 3. 4), therefore 0=(y+¢&l)"'=(x+€1)"'=€'1 by Lemma
3.3; moreover, (y+&1)7!, (x+&1)~'c A, therefore (y+&1)"*=(x+€1)"? by the
monotonicity of square roots in a C*-algebra, and Lemma 3. 3 then yields

(ii) (x+ &LV = (y + €1)/2.
Combining (i), (ii), we obtain the desired inequality.

The AW*-algebra A is said to have the monotone convergence property if
it satisfies the following condition: if a, is a sequence of self-adjoint elements in
A such that ¢, =a,=a;=--- and a,=b(n=1,2,3,---) for some self-adjoint
element & of A, then sup a, exists (with respect to the usual ordering of self-
adjoints). The notation a,?a means that ¢, =a,=<a;=---,supa, exists, and
a=supa, We remark that a also serves as a supremum for the a, in M. {The
point is that if x is a self-adjoint element of M such that a,=x for all n, then
a=x. To prove this, it suffices to consider the case that @,=0. Then 1=1+a,11+a
implies that 1=(1+a,)™ | 1+a)"'. Also, 1=1+a,=1+x implies, by Lemma 3. 3,
that 1=(1+a,)'=(1+x)"'. Writing b=(1+a)~!, we have (1+x)'=inf(1+a,)™!
=b, therefore 1+x=b""', x=b"'—1=a.}

The foregoing definition makes sense also for M: we say that M has the
monotone convergence property iff sup x, exists for any increasing sequence of
self-adjoint elements of M such that x,=y(n=1,2,3,:-+) for some self-adjoint
y in M.

LEMMA 3.6. If A has the monotone convergence property, then so does
M.

PROOF. Suppose x,, y€ M are self-adjoint, x, =z, =x;=--+, and 2, =y
for all n. Subtracting x; throughout, we can suppose x; =0. Then

1Sl4+Sl+a,=---=1+y,
therefore by Lemma 3. 3,

1%(1+.’L‘1)-1§(1+x2)51%..,z(l+y)'-"_120.
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Since (1+x,)'e A, we may set z=inf (1+x,)7!, and it follows readily from
Lemma 3.3 that x,1 2 '—1. {An essential point is that z is invertible. Indeed,
2=(1+y)"'=0. Setting £ =(1+y)"?, we have t*=1+y invertible, hence ¢ is
invertible, and t*zt = ¢*(1+y) 't = ¢(2*)~'¢ = 1; thus 2t = ¥zt is invertible, hence
so is t7'(tzt)t™! = =}

We remark that the foregoing considerations can be cast more generally in
terms of directed families (of any cardinality); the directed family formulation of
Lemma 3.6 generalizes an earlier result for algebras of finite class ([2], p. 179,
Corollary).

LEMMA 3.7. If A has the monotone convergence property, and vy is any
positive element of M, then

Y7t = infauly + €1

PROOF. By Lemma 3.5 we have yY?=(y+&1)"* for all €>0.
Consider the sequence y,=y+(1/m)1 (n=1,2,3,+++); thus y,=y,=y, =+~ -
=y=0. By Lemma 3. 4,

(yl)l/z g (y2)1/2 g e 2y1/2 ;

in view of Lemma 3.6, we may set z=inf(y,)"?, and it will clearly suffice to show
that z=1y!2

We note first that ze {y}”. {Proof: Assuming s< {y}’ we are to show that
zs=sz. Since {y} is a *-subalgebra of M, we can suppose s is self-adjoint. If # is
the Cayley transform of s ([4], Theorem 5.1; [1], Theorem 4. 1), one has {s}" = {«}’,
thus it will suffice to show that zu=uz. Since {u}"={s}"C{y}" ={y} ={y.},
we have (y,)"?¢ {y,}" C {¢}"”" = {a}’, that is, # commutes with (y,)"?; then

uzu® = u[inf(y,)"*Ju* = influ(y,)*u*] = inf(y,)"? = 2,

as was to be shown.}

Since (y,)/*=y'? for all n, we have 2=y since, moreover, £ commutes
with y'? (by the preceding paragraph) it follows that 2?=y. {Indeed, 2’—y
= (z+y")(z—yY?) is the product of commuting positives.} On the other hand,
2= (y,)"? for all n, and since z commutes with (y,)"? it follows that 2*=<y,;
thus

1/2 .
’

0=-y=y.,—y=1/n1,

therefore 2?’~ye A and |2’—y||=1/n for all n, i.e., 2*—y =0, g =y
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THEOREM 3.8. If A has the monotone convergence property, and if
x,ye M satisfy 0=x =y, then x'/* =y

PROOF. For any >0, Lemma 3.5 yields /> = (y+&1)"/?; in view of Lemma
3.7, this implies x'/* = y'2

For the case that A is of finite class, Theorem 3.8 evolved in correspondence
(1963) with Professor Topping, to whom I am indebted for several of the key ideas.

REMARK. In Lemma 3.3, the assumption that y is invertible is redundant ;
that is, if y=2z=0 and x is invertible, then y is also invertible. {Proof: By
Lemma 3.1 we may write x7'=¢* with t*=1¢; then #yt=i¢xt =1, therefore tyt
is invertible, hence so is ¢~!'(tyt)t ! = .}
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