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1.1. Introduction. In his paper [4] Lorentz defined the concept of almost
convergence for bounded sequences of (real or complex) scalars in terms of Banach
limits, and -characterized the almost convergent sequences as those whose translates

are uniformly (C, l)-summable, i. e., lim-— (xn+1-\- + xn+p) = x uniformly in
p->oo p

n. More recently Deeds [2] extended the notion to bounded sequences of vectors
in a separable Hubert space and used the expansion in terms of a complete
orthonormal set to obtain component-wise criteria for almost convergence. It is
the purpose of this paper to extend the results of Lorentz and Deeds to bounded
sequences of vectors in an arbitrary (real or complex) Banach space, avoiding the
'assumptions of separability, reflexivity, and the existence of a Schauder basis.
We will show that almost convergence is characteristically a generalization of
weak convergence, but that for a special class of sequences it generalizes norm
convergence.

1. 2. Definitions and notation. X will denote an arbitrary Banach space
over the real or complex numbers with dual X*, and X will denote the cononical
image of X in X**. Let m denote the space of bounded scalar sequences and
m(X) the space of bounded X-valued sequences with ||w|| = sup||#n|| for u= [xn]

n

€ m(X). L will denote a Banach limit, i. e., a positive linear functional in m*
which preserves ordinary limits and is translation invariant. J2 will denote the
collection of all Banach limits.

1. 3. Banach operators. Take any L £ J2 and a fixed element u— {xn} £ m(X).
For each x*£ X* define L(u)(x*) = L({x*(xn)}). Then L{u) is a linear functional
on X* and

|U« = sup |Γ(fO(**)l = sup I L( {**(
!iz*j| ^ 1 llas ll^l

^ s u p sup|.z*0cn)| ^sup! | .r j | =
\\x*\\<=\ n n
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Thus L(U)<ΞX** and L ^ B[m(X), X**] with | | L | | ^ 1 . If w={^n} e m(X) such

that lim;rn=;r then L(#XΛ:*) = #*(#) = £(#*) for each x ^ X * so L(u) = x, and
n-*oo

L preserves ordinary limits relative to the canonical embedding. L is clearly
translation invariant. In the case where L(u) £ X we will often consider it as
an element of x, and in the case where X is reflexive we think of L as an
element of B[m(X), X].

2.1. Almost convergence. Suppose u = {xn} £ m(X). If L(w) = x** for
every L £ Jβ we say that {.rn} is almost convergent to x** and write xnA #**.
If £;*•*=£ then we write xn—>x. We note that any weakly convergent sequence
is almost convergent to its weak limit. In general we have the following

THEOREM 2.1.1. // u= {xn} € m(X), then £n-Ux** if and only if xn(x*)
A***(**) for every x*zX*.

PROOF. If £n-^x** then by definition T{u)(x*) = L{{x\xn)}) = x*\x*) for
all L € X Λ* € X* i. e., xn(x*)-Ux**(x*) for each x* £ X* The converse follows
similarly.

We will be particularly interested in the question, in the case X is not
reflexive, when xn-^>x £ X. The following theorem suggests an answer to this
question.

THEOREM 2.1. 2. If u= {xn} € m(X) and {xn} converges weakly to x,
then xn-^x if and only if u has range in a compact subset of X.

PROOF. If xn—>x then the set {xn} U [x] is clearly totally bounded, hence
compact. Conversely, if xn—>x then there exists a neighborhood N(x 6) of x and
a subsequence {xnt\ such that xnιt&N(x S) for all k. But then there exists a
subsequence {xnic} of {xnic} such that xnjc —>χe X(i—>oo). Since xn^>x we have
x=x, which yields a contradiction.

Now let U be the class of all sequences u € m(X) which have conditionally
compact range. The next lemma is important in what follows.

LEMMA 2. 1.1. If K= [xλ :λ^Λ} is compact, then for each β>0 there
exists a finite set [x*i9 , x*r} cX^ such that 11^11= 1 (l^i^r) and

sup\xt(xλ)\>\\xλ\\ -8
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for all λ £ Λ.

PROOF. Let £ > 0 be given. For each λ £ Λ there exists an :cjf € X*,
| | ^ ί | | = 1, such that

Set Uλ= [x € X: |.rjf (#) I > IN - £ } . Then each C/λ is open and λ r c
l

The result is now immediate.

We can now prove the following

THEOREM 2.1. 3. // u= {xn} £ U, then xn-^x** if and only if | | & ) - . r * * | |
—>0(p—>oo) uniformly in n, in which case x**=£ for some x^X and this
is equivalent to \\Sξ(u)— x\\—>0(p—> oo) uniformly in n. Here we use the notation

PROOF. If ί f t Λ ^ * then by definition x*(xn)-1*x**(x*) for each x*z X*,
which by Lorentz theorem is equivalent to

uniformly in w, for each r* ̂  X*. By Mazur's theorem [3 page 416], for fixed
n, {Sζ(u)}p=ι is conditionally compact, so there exists a subsequence [Sζk(u)}
convergent to x £ X. But then for each x* £ X* we have

x*(S*(u)) -> x*{x) = x**(x*) (k -> oo)

and thus x**=x. Now let K be the closure of {Sί(u)—x]Zp-i By lemma 2.1.1
there exist [xf, •••,#?}, ||^* || = 1(1 ̂  i ̂  r), such that

sup I xϊ(y) I > \\y\\ - € for all 3> ̂  ^

Choose N>0 such that for all p>N, l ^ i ^ r ,

\xΐ(Sp

n(u))-xf(x)\>S for all n.

Then p>N^> ||*S;(M)— . r | |<2£ uniformly in n. For the converse, suppose
||SS(w)-.r**||->0(p->oo) uniformly in n. Then α r ^ = ί and we have S*({x*(xn)})
—>x*(x) (p—>oo) uniformly in ^ and | | . r * | | ^ l . By Lorentz theorem we have
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x\xn)-^x\x) for each x* € X, so £» A £(=***) by Theorem 2.1.1.

2. 2. An example. One can quite generally give examples of sequences not
in U which converge weakly to zero, hence are almost convergent to zero, but for
which ||*5S(u)||—>0(p—»oo). The following example is essentially due to Deeds [2].
Let X be a reflexive Banach space with a Schauder basis {gt} Γ. We may assume
(renorming if necessary) that the basis is monotone [1]. Define a sequence of
integers [nk} by taking nλ=l and choosing n2 such that

^e^ I

I
Set Si = '>ni a r e chosen, choose wt+i such that

This is possible since

t + 1g t + 1 | | J ^
2 *

+ +

Set ^ ! = ex :̂TO = if Then

Since X is reflexive, {g?} is a basis for X*, where et(eό) = δtj [1]. If
then

so that and also xn-^>0. Thus we have

3.1. Periodic and almost periodic sequences. If u = [xn] £ m(X) is
periodic then u^U since the range of u is finite dimensional. For such sequences
we have the following.

THEOREM 3.1.1. A sequence u— {xn} is periodic if and only if {x*(xn)}
is periodic for each x* € X*.
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PROOF. The necessity is obvious. For the sufficiency we proceed as in [2].
Set

Ek = {x* e X* : x*(xn+lc) = x*(xn) for all n}.

00

Then X*= \J Ek and each Ek is closed. By the Baire category theorem some Ek

f c = l

contains a ball S={x*: \\x*—x*\\<p). Then we have y*(xn+k—χn) = 0 for all
| | ^ | | < p and all n, so that xn+k—xn = 0 for all n> and k is a period for [xn}>
By theorem 2.1.1 and 2. 1. 3 we see that if {xn} is periodic with period k, then

{xn} is almost convergent to the mean value -r- {xλ + +xk).

A sequence {xn} is almost periodic if for each £ > 0 there is a k such that

each interval [l,l + k] contains an integer p such that sup||α:n+p— rn | | = £ Deeds
n

[2] showed that such a sequence is in U and that the almost periodic sequences
form a linear subspace of m(X).

THEOREM 3.1. 2. / / {xn} e [/, ί/î /z {α:n} w almost periodic if and only
if {x*(xn)} is almost periodic for each x* e X*.

PROOF. The necessity is obvious. For the sufficiency, let K be the closure
of {xn+p—xn}n,P=i a n d suppose €>0 is given. By lemma 2.1.1 there exists a
finite set [xf, , xr*} QX*,\\xf\\ = 1, such that

sup \xf{xn+p-xn) I > \\xn+p-xn\\ -G/2

for all n>p^l. Then we can find a k such that each interval [1,1 +k] contains
an integer p such that

sup sup \xf(xn+p-xn)\ ^ 8/2 .

It follows that for this integer p

Since Lorentz [4] proved that every almost periodic scalar sequence is almost
convergent, the result follows for vector sequences by theorem 2. 1. 1, 2.1. 3 and
3.1. 2.

Deeds [2] gave an example in Hubert space which shows that theorem 3.1. 2
no longer holds if we drop the assumption that [xn] £ U.
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