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The purpose of this paper is to prove the following:

THEOREM. Let M be a semi-finite AW*-algebra with center Z. If M
possesses a complete set © of Z-valued bounded positive module hσmomorphisms
which are completely additive on projections, then M can be embedded as a
double commutator in an AW*-algebra of type 1 with center which is
isσmorphic to Z.

One of the problems concerning AW^-algebras is : Whether or not there is a
non-trivial AV7*-subilgebra of a VΓ*-algebra ([3], [16]) ? As an application of the
above result, we shall show the following result which is a partial answer to this
problem and is a generalization of [13, Theorem 5.2] on a problem of Feldman.

COROLLARY. Let <B be an AW*-algebra of type 1 with center Z and
let Jl be a semi-finite AW*-subalgebra of J3 which contains Z, then Jl=Jΐ'
{the double commutator of Jl in 33) in i3.

Under the ftniteness assumption on M and Jl, H. Widom ([14]) showed the
same result (see also [3], [4], [9] and [15]).

The main tool in this paper is a "non-commutative integration theory" with
respect to a Z-valued trace Φ (a non-commutative vector measure) on the algebra of
"locally measurable operators" affiliated with the given AH^-algebra M.

This paper is devided into five sections. Section 1 is the preliminaries for the
later sections and we will introduce the notion of "@-0-convergence" in M (Definition
1.1.2) such that for any orthogonal set {ea} of projections in M with e = 2,aea

and any element a € M, a*ea = ^ac^eaa (unconditional sum of ά*eaa with respect to
@-0-convergence). In section 2, we shall prove the existence of a "@-0-continuous"
natural application (Z-valued trace) Φ on M> using the Goldman's result ([4]). In
section 3, along the same lines with [10], the extension theory of Φ to "locally
measurable operators" affiliated with M ([11], [12]) are discussed. In particular, we
shall show that the set LX(Φ) of all Φ-integrable locally measurable operators is a
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complete normed module over Z. Section 4 concerns with the construction of
AW^-module L2(Φ) (the collection of all Φ-square integrable locally measurable
operators) over Z. The last section is devoted to prove our main theorem, more
precisely to say, we shall show that the left regular representation τTi of M on
L2(Φ) is a "̂ -isomorphism of M into i3(L2(Φ)) (the set of all bounded module
endomorphisms of L2(Φ)) such that π1(MJ/ = π1{M) in ${L\Φ)) ( n^M)" is the
double commutator of τrί{M) in

1. Definitions and preliminary results. An AW^-algebra M means that
it is both a C*-algebra and a Baer*-ring ([7]).

The set of all self-adjoint elements, non-negative elements, projections, partial
isometries and unitary elements in M is written with Msa, M+, Mp, Mpi and Mu>
respectively.

We will say AW*-algebra M to be semi-finite if every non-zero projection in
M contains a non-zero finite projection in M.

For other informations about AW*-algebras, in particular, the lattice structure
theory of projections, and the algebra of "locally measurable operators", we refer
to the papers [7], [8], [11], [12], [13], [14] and [16].

Denote the collection of all finite subset of a set A by 3?(A).

1.1. Order limits and center-valued c.a. states. Let Z be an abelian
AW*-algebra, then in virtue of the Gelfand representation, Z (resp. Zsa) can be
identified with the algebra C(ί2) (resp. Cr(ί2)) of all complex (resp. real)-valued
continuous functions on a stonian space ίλ Topologized the extended real line
[—oo, +oo] by the interval topology, let C*(ίl) be the set of all [ — oo, +oo]-valued
continuous functions on O, then it is a complete lattice which is lattice isomorphic
with the unit interval of the bounded complete lattice Cr(ί2) relative to the natural
ordering for real functions and contains Cr(ί2) and Z (the set of all [0, +°o]-valued
continuous functions on Ω ([1])) as sublattices.

Let {ax} be a net in C*(ί2) and α^C*(ί2). By <zj—•#(()), we mean that
<z=limsup<zj==liminf ax. In these circumstances, we say that the net {ax} order
converges to a. For any net {bx} in C(ίl), {bλ} order-converges to b in C(Ω) if
(l/2Xfc+W)->(l/2Xδ+fr*X0) and (l/2i)(bλ-bΐ)->(l/2i){b-b*)(0) where i = V = T .
If Z is a von Neumann algebra, then bλ^b(O) if and only if {bλ} converges
strongly to b. In the case of an AW*-algebra, the following criterion is useful
for the later discussions.

LEMMA 1.1.1 ([14]). Let {ax} be a net in an abelian AW* algebra Z and
a be in Z, then ax -+a(0) if and only if for any positive real number £ and a
non-zero projection e in Z, there are a λ0 and a non-zero projection f with
f^e such that \\{aχ-a)f\\ < θ for all λ ^ λ 0 .
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Next let N be an Aΐί^-algebra and N* be the center of N. A center-valued
state φ on N is a non-negative module homomorphism φ from N to N*. φ satisfies
the following additional properties : (1) \\φ(a)\\ ^k\\a\\ for all azN (k depends only
on φ), (2) \φ(a*b)\2^φ(a*a)φ(b*b) ίoτa,beN, (3) φ{b*a*ab)^ \\a*a\\ φ[b*b) for
a,bzN. By a center-valued c.a. state φ on N, we mean a center-valued state on
N with the property that for any orthogonal family of projections {ea} in Np with
e = Σaea (e<=.Np)9 φ{e)=Σaφ(ea) in N*, where Σaφ{ea) is the unconditional sum of

the 0(eβ) in N*.

LEMMA 1.1.2. Let φ be a center-valued c.a. state on N, then for any
aeN and any orthogonal family {ea} of projections in N with e = Σaea, φ(ά*ea)
= ?<aφ(a*eaa) in N*.

Since N*+ is a bounded complete lattice, by Lemma 1.1.1, the proof is an
obvious modification of that for a similar result in [3, Lemma 3].

In the followings, let M be a semi-finite AW*-algebτa with the center Z and
suppose that there is a set © of Z-valued c.a. states on M such that φ(a*a)=0
for all φζ(& implies a=0. Let _£(©) be the set of finite linear combinations of
elements in {a*φa, φ € ©, azM], where (a*φa)(x)=φ(axa*) for xzM.

DEFINITION 1.1.2. A net {aa} mM @-0-converges to a in A/[ae->*z(@-0))
if ^α-^)->0(0) in Z for all φ z X(<5).

REMARK. (1) Let {ea} be an orthogonal family of projections in M with
ltaea=e{^Mp), then Xa€jea->e((S-Q){Jζ 3[{a})) by Lemma 1.1.2. (2) Since © is
a separating set, an @-0-limit is unique.

1.2. Existence of a trace. Let ΛΓ be a finite AW*-algebra with the center
N* which has a separating set ©' of center-valued c.a. states. Then, we have

PROPOSITION 1.2.1. There is a unique central trace Φ having the
additional property that for any increasing net {a7} in N+, with ay t α(©'-0)
for same azN+, then Φ{aΊ) \ Φ{a) in N*+.

PROOF. Existence of a trace Φ on N is due to M. Goldman [4]. Therefore
we have only to show that Φ satisfies the continuity described above. Since ©' is
a separating set, by [4, Lemma 2.6], for any p€N$, there are a non-zero projection
e in N (e^p) and a non-negative mapping φ in _£(©') with φ(e)^0 such that
Φ{a)^φ(a) for all az{eNe)+. Take a positive integer m and a non-zero central
projection (q^p) with Φ(e)^(l/m)q such that there exists a projection hzN with

= (l/m)g. Hence we can choose a family {/*?•} ™=i of mutually orthogonal
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projections in N such that hλ^e, hi — hj and = q. Let v5 be in Npi such

TO

that v*Όj = hv vjv* = hj and put ψ{b) = ^2Φ(vJbvj) for bzNy then ψ € -£(©') and

ψ(l — q) = 0. Now, noting that vfbvjZeNe for each pair of i and j 9 it follows that

for each b e Nq,

ψ(b*b) =
ij=Ί

= Φ{b*b).

Hence by Zorm's lemma there are families {qa} c i V | and {0«}c .£(©') such that

beNqa for each a. If {ay} is an increasing net of N+ such that aΊ \ a[®-0)
for some azN, then qaΦ{aΎ) | qaΦ{a) in N*+ for each Λ. Therefore by Lemma
1.1.1, Φ(αγ) ΐ Φ[a){0). This completes the proof.

2. Existence of a natural application on M+. Let 12 be the spectrum of
the center Z of the given semi-finite AW^*-algebra M and Z be the collection of
all [0, +°o]-valued continuous functions on 12.

To prove the existence of a natural application, we need the following, whose
proof can be easily supplied by the reader.

LEMMA 2.1. Let {aa} be an increasing net in ΊA such that aa \ a(0) in Z
for some a £ Z, then for any bzZ, baa f ba{0) in Z.

Since M is semi-finite, there is a finite projection p in M such that 2(/>) = l .

Let {pa}ae, be a maximal family of orthogonal equivalent projections in M such

that p-^pa for each a and p € {pa}as1t. By the maximality of {pa}aeK> there is a central
projection z such that p0 = (l — 2,a€πpa)z^pz =*F 0. Therefore we can take families {zβ}

C Z p , {/>,} CMP and {/>(<̂ , /8)}β/Jβjr/!Ulo} in Mp such that ^ z γ = 0 (/β^7), p(aβ, β)p(Ίβ, β)

= 0 (oLβ^yβ)9 Zβ = piO,β) + 2aβ**βuio)p(oLβ,β)zβ9 P(oLβ9β)zβ^pβZβ for each ^ € ^ , *(/>,)
= ^ , ^ is finite for each β, pβζ [p{oLβ,β)}aβ€πβ for each β9 (1—Xaβ€πβp{aβ,β)zβ

= P(0, β) ^pβzβ ^ 0 and 2 ^ = 1. Noting that zβpβMzβpβ is a finite

Aϊ^*-algebra whose center is Zzβpβ, if <Bβ = {(zβpβφzβpβ)pβy φ € ©} (where
{zβpβφzβpβ)pβ{x) = pβφ{zβpβxzβpβ), xzM)9 then <Bβ is a separating set of center-

valued c.a. states on zβpβMzβpβ. By Proposition 1.2.1, for each β9 we can choose

a Zz/j^-valued @^-0-continuous trace Φ^ on zβpβMzβpβ. Now let ψ> be the



EMBEDDING IN A TYPE 1 AW^-ALGEBRA 545

"^-isomorphism of Zzβpβ onto Zzβ which is defined by ψβ\x) = xpβ for each β and
let v(aβ,β) be the partial isometry such that v{aβ, β)*v{aβ, β)=zβρβ, v{aβ, β)v{aβ, £ ) *
= tify, β) for each cίβ £ τrβ and each β, v{0, β)* v(0, β) ^ zβpβ and φ, β)v(0, β)*

— P{Q> β)ίoτ ^ c h β- Define a new linear operation Φ on M+ to Z as follows:

Φ(λ) = M^aβ

where %a^Aaa is the unconditional sum of the aa in Z, then Φ is a natural application

on M+, that is,

THEOREM 2.1. TΛe operation Φ oft M + to Z satisfies the following

properties:

(1) If hvh2^M+ and λ is a non-negative number,

and Φ(λ&i)=λΦ(/*i).

( 2 ) If szM+ and tzZ+, then Φ{st)=tΦ(s).

( 3 ) If azM+ and u £ MM, Φ ( ^ ^ ) = Φ ( Λ ) .

( 4) Φ(Λ)=0 (Λ € M+) implies a=0.
(5) For every increasing net {aμ} in M+ such that aμ t α(©-0) /or

a ^ Λf+, Φ M t Φ(*)(0) £Λ Z.
( 6 ) For any non-zero a in M+, there is a non-zero b in M+ majorized by

a such that Φ{b) € Z+ .

Using Lemma 2.1 and @-0-convergence instead of Lemma 2.12 and σ(@)-
topology in [13], the proof of this theorem proceeds in a manner entirely analogous
to that of [13, Theorem 3.1], so we omit it.

Next let 5β= [s e M+> Φ[s) e Z + } , then since 5β satisfies the conditions of Lemma

1 in [2, Chapter 1 §1, 6], it follows that $ is the positive portion of a two-sided

ideal 9Ϊ and that there is a unique linear operation Φ on 9Ϊ to Z which coincides

with Φ on $ with the properties; (a) Φ[st)=Φ{ts) if s € M, tz3l\ (b) Φ[st)=sΦ{t)

if s € Z and t € 9Ϊ.
Define Rarik{x)=Φ{LP(x)) for every xzM, where LP(x) is the left projection

of x in M, and Ranlφc) has the following properties : (1) Rank (x)^ 0, it is = 0 only if
x=0. (2) Rarik(:c) = Rank(.z*), Rank(ίfcr) = Rank(x) for every complex number α!^0.
(3) Rank(:r+;y) ̂  Rardφr) + Rank( y). (4) Ranlφry) ^ Rank(^), Rank(^). In fact, (1)
and the last half part of (2) are clear from definitions. By [7, Theorem 5.2],
LP(x)~-LP(x*), which implies by [13, Lemma 2. 4] Φ{LP(X))=Φ(LP(J*)). An easy
calculation shows LP{x+y)^LP{x)\JLP{y) and by the fact that LP(x)VLP(y)-
LP(x)^LP(y) - LP(x)ALP(y), it follows that Rarik(:r+;y)^Rank(:z) + Rank( y).
LP(xy)^LP(x) shows that Rank(αry) ̂  Rank( r) and Rank(xy) =Ra.nk((xy)*)
= Rank(:y*r*) ^ Rank(:y*) = RankfoO. Thus (3) follows.

Therefore let 3!={α; αzM, Rank(^)€Z+}, then 3 is a two-sided ideal
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contained in 9Ϊ such that 2^ = 9ΪP. Moreover, by Theorem 2.1 (6) for any non-zero
projecection e in M, we can choose a non-zero projection in £? majorized by e.

3. An extension or Φ to "locally measurable operators". We shall now
consider "locally measurable operators" affiliated with M ([12]). An essentially locally
measurable operator (ELMO) is a family of ordered pairs {xa, ea}, where {xa} C C
(the algebra of measurable operators affiliated with M) and {ea} is an orthogonal
family of central projections such that Σaea = l. Two ΈLMO's {xa,ea} and {yβ,fβ}
are said to be equivalent if eafβxa = eaf$y$ for all a and β. The equivalence class
of {xa,ea} is denoted by (xa,ea) and it is called a locally measurable operator
affiliated with M(LMO), and the collection of all LMO's affiliated with M is
denoted by 31. Algebraic operations in 3ί are componentwise, then it is a
^-algebra in which C is naturally imbedded as a *-subalgebra. We use letters
•£> y> z, for the elements in 31.

In [12], we showed the followings : (1) 3i is a Baer*-ring, and (2) every element
x in 3ί has a polar decomposition x — w \ x | (| x \ = [x*x)ι/2) where w*w = RP(x)
and wzv*=LP{x). The self-ad joint part of 3ί is partially ordered by defining
x^y if x—y=z*z for some z. The subalgebra M is characterized as {x; x€ 3i,
x*x^ctl for some positive real number a}.

We want to extend Φ to 3i+ (the non-negative part of 3ί). The following
definition is due to [10].

DEFINITION 3.1. For every xz 3ί+, we define

where the supremum is taken in Z.

It is clear that the new definition agrees with the old one in case x$M+.
The following Lemma is helpful for the later discussions.

LEMMA 3.1. For every x z 3ί+, Φ{x) = Sup{Φ{a); a e= 9Ϊ+, a^x} =Sup{Φ(a);

PROOF. Since Φ(x) ̂ Sup{Φ(α), a z 9Ϊ+, a^x} ^Sup{Φ(α), a <= £F+, a^x),
we have only to prove the converse. Let £ = Sup{Φ(<z); <Z<Ξ£P, a^x} in Z.
By Theorem 2.1, there is an orthogonal family of projections {ea} in ζfp such that
Σ A = 1. For any Jz&{{a}) and azM\ a1/2(Xa,jea)a1/2^a,a1/2(%a,jea)a1/2

z &+ and a1/2(ΣaeJea)a1/2 t a(®-0). Therefore again by Theorem 2.1, Φ(a) =
Sup{Φ{a1/2(Xa€jea)a

1/2); J*&({<*})}> that is, Φ(α) ̂ έ . Thus b = Φ{x) and the
lemma follows.
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REMARK. For any x<= 31, Φ{x*x) = Φ{xx*). In fact, let x = w\x\ be the
polar decomposition of x, then xx* = wx*xw* and w*xx*w = x*x. If x*x
z^a,a€ £F+> then aw*w = vυ*wa — a and xx* = wx*xw* ^ waw* € 3?+. Thus,
Φ(xx*) ^Φ(waw*) = Φ{w*wa) = Φ{a), which implies Φ(xx*)*?:Φ(x*x). By
symmetry Φ(xPx) = Φ(xxP).

Relations between the algebraic operations in 3V" and our extended operation Φ
are given in the following:

LEMMA 3. 2. Let s and t be in 3ί+

y then
(1) Φ(s+t) = Φ(s)+Φ(t);
( 2 ) Φ{λt) = \Φ(t) for any non-negative number λ;
( 3 ) Φ{usu*) = Φ(s) for any u € Mu\
( 4 ) Φ{as) = aΦ{s) for any a € Z+.

PROOF. The statements ( 2 ) and ( 3) are clear from the definitions. For the
assertion (1) , since Φ(s)+Φ(£)fgΦ(s + ί), we have only to show the converse. Let
a be in £f+ such that a^s+t and cn = aι/2((l/n)l+s+t)-ι{s + t)1/2{noX,e that since
s+t^O, s+t+(l/n)l is invertible in 3ί and (5 + ί+(l/w)l)- 1 € {5 + ί } " for each
positive integer w), then cn and α1/2 —cn(5 + ί) 1 / 2 are bounded elements such that
\\a1/2-cn(s+t)1/2\\^l/n and | | c n | | ^ l for each n. Observe that az$+, let
α: = ί:n5

1/2 and y = cnt
ι/\ then xx^ = cnsc* ̂ cjs+t)c* ^a1/2((l/n)l + s+t)~2(s+t)2a1/2

rgα and by the same way, yy*^a, which implies x and y are in 3*. Now put <Zi
= x*x and α2 =y*y, then <?!, Λ2 ̂  S*"1", ax = 51/2c*ί:n5

1/2^5 and a2^t. Therefore
we have

Φ(s) + Φ{t) ^

Note that LP(a)cn = cn, it follows that {α1/2 - cn(s + t)^2} [a1/2 - cn(s + *)1 / 2}*

^(l/n)LP(a). On the other hand, since a1/2(s+ty'2c* = a>/2(s+t){{l/n)l+s+t)-*a}/2

^a$3, a1/2(s+t)1/2c% = cn(s+t)1/2a1/2, and cn(s+t)1/2 € Si we get that

/2 + cn{s + ί)1/2} {ίz1/2 - cn{s

Observe that \\cn{s+t)1/2\\^\\a1/2\\, it follows by the above arguments that

\\Φ(a)- Φ(cn(s + t)c*)\\ ̂  llα1'2 + cn(s+tr2\\\\<b(\a«* - (s + ί) 1 / 2 c* |) |

for each H, that is, a^cn(s+t)c* implies that
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^ Φ(a) - 2(l/n)^\\a\\^\\Φ(LP(a))\\ 1

for all positive integer n, so that Φ{s)+Φ(t)^Φ(a\ for all az3* + with
Thus by Lemma 3.1, Φ{s)+Φ{t)^Φ(s+t) and (1) follows.

To prove the assertion (4), since it is clear, by Lemma 2.1 and Lemma 3.1,
that aΦ{t)^Φ{at) for any t € J%+ and a <Ξ Z + , it is sufficient to show the converse.
Let c be in £F+ with c^at, then for each positive integer n, c^a+(l/n)t9 which
implies (a + (l/n)l)~ 1aΦ{c)^a Φ(t) by Theorem 2.1. Since LP{a)c = c LP{a) = c
and (a + il/n)!)-^] LP(a), we have Φ(c)^aΦ(t), so that aΦ(t]^Φ(at) by Lemma
3.1. This completes the proof.

Let X+= [t; t € 3ί+,Φ{t) € Z + } , then by the above lemma, J7+ has the following
properties:

(a) If s € X+ and w € Λf«, then ^w^ € ^ + and Φ(ί) = Φ(ttf«^).
(b) Let s € J7+ and t <= Jί/+ with ί ^ «r, then £ € .£+.
(c) For every s and ί € _Γ+, 5 + ί € X + and Φ(s+t) = Φ(s)+Φ(t).

Let U(Φ) = Σ>Λ*> tftv sΐSi ^ X+ , then

THEOREM 3.1 ([10]). Lι{Φ) is a unique invariant linear system {that is,
ML\Φ)M(ZL1{Φ)) such that Lι{Φ)+ = £+. Moreover, there is a unique non-
negative linear operation Φ on ΊJ{Φ) to Z, which coincides with Φ on
with the following properties'.

(1) For s 6 Lι(Φ) and azM, Φ{at) = Φ{ta)

{ 2 ) for az Z and s € L^Φ), Φ(ai) — aΦ(t)

(3) for any tzL\Φ\ Sup{|Φ(αί)|; ||α|| ̂ 1 , a € M] = Φ ( | ί | ) ;

(4) ifs,t€L*(Φ]

PROOF. The proof of the assertions except for ( 3 ) and ( 4 ) are obvious

modifications of those for similar results in section 2 for the case 91 and Φ. To

prove the assertion (3) , we argue as follows. Observe first that from the standard

calculation, | Φ ( s £ ) | 2 ^ Φ ( Λ ) Φ ( ^ ) for any s and t with s*s end t*tzX+. Let t=u\t\

be the polar decomposition of t in Lι(Φ), then for any azM with | | α | | ^ l , it

follows that
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So that I Φ(at) | ^ Φ( 11|) and Φ(«*ί) = Φ( | ί |) and ||«|| ^ 1 implies the statement ( 3).
Next let s, t e L'(Φ) and ί + ί = w | s + ί | be the polar decomposition of s+t, then
by(3)

Φ( \s +1\) = Φ(w*(s + ή) ^ |Φ(w*5)|

thus the proof is completed.

REMARK. ( 1 ) The linear map Φ on Lι{Φ) is an extension of Φ on 9Ϊ which
was defined in section 2. ( 2) If we set ||| s | | | , = ||Φ( | s| )|| for 5 € Z^Φ), then LX(Φ)
is a normed module over Z. ( 3 ) L ^ Φ j c C . In fact, since every element of
L^Φ) is a finite linear combination of elemens in X+, we have only to show that
P c C . By the spectral theorem ([11,12]), for any tz_C+ there exists an
increasing sequence of projections {fn} in {t}" (the double commutant of [i] in <_5fc)
such that tfnf^{nΛ-l)l and ( Λ + 1 ) (1—fn) fίkt for each positive integer n, so that
Φ ( 1 - / Λ ) ^ ( 1 / ( Λ + 1 ) ) Φ M , this implies that [fn] is an SDD. Thus by [11, Theorem
5.1], t <k C. This completes the proof.

THEOREM 3. 2. Lι(Φ) is a Banach space with respect to the norm | | | , ||| lβ

PROOF. First of all, we shall show that for any monotone increasing sequence
{tn} of elements in X+ which is | | | , HK-Cauchy, there is t € X+ such that | | | ί Λ —

t HI 1->0(n->oo). By taking a subsequence, we can assume that ||| tn — tn+1 \\\ i < l / 4 n for
each positive integer n without loss of generality. Note that tn+1 — tn^O (resp. ί n ^ 0 ) ,
by the spectral theorem ([11]), we can choose a sequence {en} in {tn+1 — tn}"
(resp. {fn} in {tn}") of projections such that 0^(tn+ι-tn)en^2~nΛ and (tn+ι — tn)

(l-en) (resp. 0^tnJn^2n. 1 and ί Λ ^ 2 n ( l - / n ) ) for each positive integer
Now let pn= l\ek /\fk, then it follows that

for each w, so that pn | implies that Φ(l—pn) [ 0 uniformly, 1—pn € £f and pn f 1,
that is, [pn] is an SDD([11, Definition 3.1]). Since ρn^en/\fn, if k^n^m,
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then (tm-tn)pkzM and \\{tm-tn)pk\\<l/2n-\ Moreover, tkpk = tkfkpk and tkfk

which implies tkpk^M. By the mathematical induction, {tm—tn)pk

^n^k) implies tmpk € M for all m^k. Now put a(n, k) = pktnpk

c)tnpjc(n^k), then {a{n,k)}cMsa for all n^k. Since
\\a(n + l9 k)—a(n9 k)\\^3. 2~n for all n^k, it follows that [a{n,k)}n^k is a uniformly
Cauchy sequence in Msa. Hence there exists an element s(k) € Msa such that
a(n, k)^s(k)(n-^oo) uniformly. If kt^k2, then pkι^pki implies s(k1)pk2 = s(k2)pk2,
so that [s(k),pk] is an EMO ([11, Dfinition 3.1]). Since \\tkpk-tmpk\\^l/2k-1

for all m^k, we get that l|ί*/>* —$(£)/>J ^l/te*" 1 for each positive integer k.
Thus putting ί =[>(*), />*]( € Csa ([11, Definition 3.4])), by [11, Theorem 3.1]
\\tkpk~tpk\\ = \\{tk-s(k))pk\\ ^\l2k-χ for all k, which implies that tk->t(n. e.) (>̂ ->oo)
([13, Definition 3.2]). Next we shall show that t^tn for each n. Observe that

(m^n^k) and pktnpk-^pktpk uniformly (n—>oo) and we have

npk^O for all n^k. Thus by [11, Theorem 5. 5], it follows
that t^tn for each n. Now we shall show that Φ(ί)=sup Φ[tn). Since Φ{tn)^Φ[t)

n

for all n, we have only to show the converse. Since pktnpk f pktpk uniformly
(n—>oo), for any ez3:p, \\Φ{epktkpke)-Φ{epktpke)\\->0{n-^oo\ which implies by
Lemma 1.1.1, Φ(epktnpke) | Φ{epktpke) (0) in Z \ Since Φ^J

it follows that

Φ(ί) ^ Sup Φ(ίn) ̂  Φ[epktpke) =

so that by the last paragraph of section 2 and Lemma 4.1, Φ[t1/2pkepkt
1/2)

t Φ{t1/2ρkt
1/2) in Z. Hence Φ(ί)^Sup Φ(ίn) ̂  Φ{t1/2pkt

1/2). Again by Lemma 4.1,

Φ(ί)=Sup Φ(ίJ. Sup III ίn III ,<~> implies Φ(ί) € Z and ί €
n=l

oo

:g ]P 1/4W< °°' f°r ev^ry positive number 8, there is a positive integer £(£) such

that Σl l l ίn-ίn-i HI i ^ S f o r a 1 1

for all w^A + l^*(fi). Φ(ίJ ΐ Φ[t){0) implies Φ[ί )-Φ(ί*)^ L t h a t is, ||| t-tk ||| x ^ θ
for all k^k(β). Thus the statement described above follows.

Using this fact, we can prove the completeness of L1(Φ) by the similar way as
that of [10, Theorem 14], so we omit the details. This completes the proof.

4. 4TF*-module L2(Φ) over Z. Let L2(Φ)={sz3l, 5 * ^ Γ } , then for
any s and t in L2(Φ), {s + ty'is-\-t)^2{s*s + t*ή € X+ shows by Lemma 3.2,s+t
sL2(Φ). For any a s Z and s € L2(Φ), we have Φ ( M 2 Λ ) = H 2 Φ ( Λ ) € Z+ , so
that as € L2(Φ), that is, L2(Φ) is a module over Z.

At first, we shall give the following lemma.
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LEMMA 4.1. Let s z 3ί and σs{x) = Φ(s*xs) for any x € M + , ί/i£?2 / o r any
increasing net {aΎ} in M+ such that aΊ \ e((&-0) for some e £ Mp, σs[aΊ) | o s(e) in
Z. In particular, σs is completely additive on projections.

PROOF. Since σ 5(£)^Sup σs[aΎ), we have only to show the converse. Let

bz$+ with b^ess*e, then eb = be = b and b1/2{aΎ)b1/21 b1/2eb1/2((S-0), so that by
the continuity of Φ, Φ'φι/2aφι/2) t Φ[b^2eb1/2). On the other hand, since Φ{b1/2ayb

1/2)
= Φ[dί2baψ) ^ ΦictfsJ*d/*) = Φ ( Λ ^ ) , it follows that Φ{b) ̂  Supγσ5(Λγ). Therefore by
Lemma 3.1, σs(e) ̂  Sup σs[aΎ) and the proof is now completed.

7

LEMMA 4. 2 ([10]). L2(Φ) /^^ the following properties:

( 1 ) For s and t in L2(Φ)+, Φ ( ^ ) ^ 0

( 2 ) if s, tzL2(Φ) with \s\^\t\, then Φ{U\2)^Φ(\s\\t\)^Φ(\t\2);
( 3 ) z/* 5 araί t are self-adjoint elements in L2(Φ) such that Φ{s2)^Φ{t2), then

Φ{st)^Φ{t2);
( 4 ) let t be in L2{Φ) and uzMu, then Φ(\t\2) = Φ{\utu*\2)

( 5 ) if s, tz L2(Φ), then st € L\Φ\ \ Φ[st) \2 ̂  Φ( | st \ f ^ Φ(Λ)Φ(Λ) and

φ ( A ) 1 / 2 = Sup{\Φ[st)\, Φ(Λ) ^ 1} .

PROOF. Let s and ί be in L2(Φ)+, then note that by the remark following
Theorem 3. 2, s and ί £ C + , by [11, Theorem 5.1], we can write t = [tn, en], where
tn>

en € M">tnen = tn^0 and ίn | . Let u be the Cayley transform of U Γ is the
spectrum of {V}"([1]) and Γ n = {γ; |w(γ) + l | >l/n}~ where A~ is the closure of a
set A. Denote the projection in \u\" corresponding to the clopen subset Γw by fn,
t h e n / n f LP(t) and γ( € ̂ ^ ( l + ̂ γ ) )" 1 is a continuous function on Γn. Thus enfm

€ L2(Φ) implies enfm € 2 ^ for each pair of positive integers m and n. Since
fc^/m ^ X tU2enfm z ζ? and .tf € LX(Φ), it follows that

Φ(enfmst) = Φ(stenfm) =

By Lemma 4.1, Φ^n/m tf) t Φ{s1/2ts1/2){0) in Z. On the other hand, by Lemma

1.1.1, Φ{enfmst)^Φ(st){0) in Z, therefore Φ(rf) = Φ(^ 1 / 2^ 1 / 2) ^ 0, so that the,

statement ( 1 ) follows. To prove ( 2 ), we argue as follows. Let s, t £ L2(Φ) such

that \s\^\t\, then by (1), \s\1/2(\t\-\s\ι'2)^0 implies that Φ ( M ( | ί | - M ) )

= Φ ( | s | 1 / 2 ( | ί | - | s | ) | s | 1 / 2 ) ^ 0 , that is, Φ ( | s | U | ) ^ Φ ( | s | 2 ) . By the same way,

^ Φ ( M \t\). Next let s,tz L2(Φ) sα such that Φ(* 2)^Φ(ί 2), then 0^Φ{{t-s)2)
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= Φ{t2)-2Φ{st) + Φ(s2)^2Φ[t2)-2Φ{st) and this completes the proof of the statement
(3) . Let tzL2(Φ) and uzMu, then \utu*\*u*9 which implies by Lemma 3.2 ( 3 )
that the assertion ( 4 ) follows. Now we shall show the statement {5). Let sf t

be in L2(Φ) and st=w\st\ be the polar decomposition of st, then it follows, by the
argument used in the proof of Theorem 3.1, that

= {Φ{w*St)f ^ Φ((TO*5)*(w

^ Φ{s*s)Φ{t*t).

Now let a — Sup{\Φ(st)\ Φ(t*t)t=sl} in Z, then by the above inequality

a^Φ{s*s)1/2. Let ίn=(Φ(Λ}+(l/«)l)" ] / 55*( e L2(Φ)) for each positive integer n,

then Φ{t*tn) = (Φ(s*s) + (l/n)l)~1Φ(s*s) = (Φ(i*j) + (1/»)1)-»Φ(Λ)gl and Φ(rfn)

= ( Φ ( 5 * J ) + ( 1 / M ) 1 ) - ] / 2 Φ ( J * 4 SO that

n)l)-1/iΦ{s*s)1/1Φ{s*sy/i ^ α

for all n, that is, α=Φ(s*5)1/2 and the statement (5) follows. This completes the

proof.

Now for any pair a and b in L%Φ), we define (a, £)φ = <t{b*a), then ( , )φ

satisfies the following properties:

(1) (a,b)φ=(b,a)*,
( 2) (a, a)φ ^ 0, (a, ά)φ = 0 only if α = 0,

( 3 ) (JΛ + *, c)φ = s(a, c)φ + [b, c)φ ,

for all a,bycz L2(Φ) and szZ.lί we define | | |α ||| 2 = ||{Λ, α)φ|J1/? for a € L2(Φ), then
by ([9, §2]), L?(Φ) is a normed module over Z with respect to III, III 2 Moreover, we
have the following:

( 1 ) Let {ej be an orthogonal family of projections in Z such that Σiei = e( ^ Zp)
and if a € L2(Φ) such that e^ — 0 for all z, then £# = 0.

( 2 ) Let {ej be an orthogonal family of projections in Z such that 'Σ&i = 1»
and let {αj be a bounded subset of L2(Φ), then there exists in L\Φ) an element a
such that eia = eiai for each i.

In fact, by the Baer*-ring property of 31 ([12, Theorem 3.1]), we can easily
show the statement (1) . On the other hand, since ([12, Theorem 4.1]), there exists
a unique a€ JM such that eta = e^i, to prove the assertion (2) , it suffices to show
that α^L 2 (Φ). e^a — e^^ implies e^a^ U{Φ) for each i. Denote Sup
by k and we have Φfoα*α) = e&[a*a) = e^a^) ^ ^ for all z, that is,

Ξ̂&2 l ,α€L ?(Φ) and | | | α | | | a ^ * . The statement ( 2 ) follows.
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The rest of this section is devoted to prove that L2(Φ) is complete with respect

to the norm | | |, ||| 2> that is, L2(Φ) is an AW^-module over Z. To prove this, we

need the following lemma.

LEMMA 4.3. Let {tn} be an increasing sequence in L2(Φ)+ such that

\\\tn"-tm III2—^(ra, n—>oo), then there is an element tzL2(Φ)+ such that \\\tn —1\\\2

PROOF. By passing to a subsequence if necessary, we can suppose ||| tn+x — tn ||| 2
< l / 1 6 n for each n. By the spectral theorem ([11]) we can choose sequences of

projections {en} in {tn+1 - tn\' and {fn} in {tn}" such that 0^(tn+1- tn)en

Ί and tn^2n(l-fn) for each n. Now

put pn — / \ e k /\fk, by the same arguments as in the proof of Theorem 3. 2, {pn}
k^n

is an SDD and there exists a sequence {s{k)} in Msa such that tnpk-+s(k)pk

uniformly and [s{k),ρk] is an EMO. Denote [s{k),ρk] by t. Let t2

n—tntm

= un\t2

n-tntm\(τesρ. tntm-t2

m=vn\tntm-t2

m\) be the polar decomposition of fn—tntm

(resp. tntm — ti)9 then by Theorem 3.1 ( 4 ) and Lemma 4. 2, we get that

for each pair of integers m and n. Thus {tl} is a | | | , ||| x—Cauchy sequence in L^Φ).

By Theorem 3. 2, there exists an s z L^Φ) such that Hi ^ — ^ III 1 —>0(/i—>oo) and

tl-*s n.e.{n->oo). Let rk= /\ ({tn+1 - tnY
l[pn]) f \ (tΛpni) and qn=pn /\ rn,

then by [11, Lemma 3.1], {qn} is an SDD. For any pair k and n with n^k,

(£+1 - tl)qk = tn+1(tn+1 - tn)qk + (tn+i ~ tn)tnqk

— tn+ιpn(tn+i — tn)qk + (tn+ι — tn)pntnqk,

therefore (t2

n+i-t%)qkzM and | |(^+i-^)gA:l |<2 (2/5)n, so that by the similar reason

to that of Theorem 3. 2, there is a sequence of elements {s{fή'} in Msa such that

?mqk-*s[k)'qk uniformly (ra-»oo) and {s(k)\qk} is an EMO. Let ί ' = [s(k)\ qk] z C,

then tl-^tn. e. (n-+oo). Thus qks{k)2qk = qks(k)'qk for all k, so that by the Baer*-

ring property of M, there is an SDD {qk} such that s[k)2qk — s{k]qk for each k,

while tn^>s(n.e.)f hy the υniάty oί n. e. limit, it follows that t2 = i = s ζ L !(Φ),

that is, ί^L 2 (Φ). On the other hand t^tn implies by Lemma 4.2,
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Thus |||ί—tn\\\ 2-
>0(w—>oo) and tn-^t(n. e.)(n—>oo). This completes the proof.

THEOREM 4.1. L2(Φ) is a faithful AW*-module over Z([9]) with respect
to the norm | | |, ||| 2.

PROOF. The proof of that L2(Φ) is an AΐV^-module is an obvious modification
of that for Theorem 3. 2, thus it is sufficient to show that L2(Φ) is faithful. In
fact if a € Z with at = 0 for all t € L2(Φ), then the semi-finiteness of Φ and the
Baer*-ring property of C show the desired property that a = 0. This completes the
proof.

5. Proof of the main theorem. In the followings, we always denote L2(Φ)
by 901. By [9, Theorem 7], the set J3i[3R) of all bounded module homomorphisms of
3R into 9JI is an AH^-algebra of type 1 with the center Z. The left (resp. right) regular
representation ττi(resp. τr2) of M is a ^-homomorphism (resp. ^-antihomomorphism)
of M into &$l) which is defined by 7ri(^=^(resp.7r 2(^)ί=^) for any xzM and
tzWl. Since ffcSJl, τcι{x) = 0(resp. τt2{x) = 0) implies that there exists an orthogonal
family [ea] of projections in 9JI such that xea = 0(resp. eax=0) for each a and
] Γ α e α = l . By [7, Lemma 2.2], α; = 0, that is, ττi(resp. τr2) is a ^-isomorphism (resp.
^•-antiisomorphism).

LEMMA 5.1. it^M) and τt2(M) are AW*-subalgebras of ^v9Ji).

PROOF. We have only to prove the first of these statements, the second
follows similarly. By [8, Definition], it suffices to show that for any orthogonal set

fo}i€/ of projections in M with e = ^ i € / ^ , nx W^^j^λ \ nx{e) in ^(50l)(Jz 3[I))m

In fact, since [n^ — Ttx \Σeι\x> X)Φ= Φ\#*[ e~ 'ΣlujeAxL therefore from Lemma
\ \isj II \ \ II

4.1 and [14, Lemma 1. 4] Σi*<r7ei(ei) T τtiie) m -S(3B). This completes the proof.

LEMMA 5. 2. For any a <= 9Ji, there is a sequence {an} in MΓ\W such that

III α» III , ^ III α HI, and \an-a\φ ->0(0) in Z + , wkre \x\φ = {x,x)ψ for any xzW.

PROOF. Let a=u\a\ be the polar decomposition of a in C, then for any
b€3?*> \u(\a\—b)\φ^\ \a\—b\φ9 so that we have only to prove the assertion for
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the case when a^O. Let v be the Cayley transform of a, then from the spectral
theorem ([11)), there are an SDD {en} in {v}" and a sequence of projections {fn}
in {v}" such that n(l — en)^a, aen and (l+v\fn is invertible in fnMfn for each n.
Since an = aenfn € £?+ and a^al^al if ra<rc, then

0 ^ Φ(α2) - Φ(α») = Φ(a2(l-enfn)) :g φ ( ^ ( l - ^ / m ) ) ,

so that by Lemma 4.1, O^O-lim(Φ{a2)-Φ{al))^Φ{a2{l-fm)) for all ra, which

implies by Lemma 1.1. 1, Φ(al) f Φ(α2)(0). While from Lemma 4. 2, it follows that

Φ((a—an)
2)^Φ[a2) — Φ[ai). This shows that \a—an\φ-*0{0) and the proof is completed.

LEMMA 5. 3. τtλ{M)" = τr2(M)' and τr2(M)" = τri(Af)' *τi B$Si) where SΓ is
the cσmmutant of 31 in

PROOF. The methods which will be used here are patterned after those of

[2, Chapter 1, Section 5]. Since τtι(M)' Z)π:2(M) and π2{M)' D 7Tι(M)9 we have only

to prove the converse inclusion. Let x be a left (resp. right) bounded element in 9JΪ,

that is, an element x such that there is Bx{x) (resp. B2{x)) in -S(90ΐ) such that

Bi(x)a = 7Γ2(<φ;(resρ. B2{x)a = πι(a)x) for all M i l SDΐ. First of all, we shall show

that the set 9Jli= {Bx[x) α: is left bounded} is a left ideal of 7t2(M)\ In fact, for any

a and & in ΛffΊ Bί, an easy calculation shows that {B1(x)π2{a)b,y)φ=(π2(cι)B1(x)b,y)Φ

for any y <= L2(Φ). Therefore, by Lemma 1.1.1, Lemma 5. 2 and the Schwarz'

inequality, (c, (B^π^άjfy^ = {c, {π^B^x^y^ for any c z 9JI, that is, Bx{x)τtla)

— n2{ά)Bx{x) for any a^MCλ^Sίl. The semi-ήniteness of Φ implies that there is an

increasing family of projections {ea} in MC\ 9Ji such that for any a € M, aea € M
and 7t2{aea)-+7t2{a) weakly ([14, p. 311]). Thus B1(x)7t2(a) = τt2(a)B1(x) for all azM,

that isMiCτt2(M)'. Since for any T^ τt2{M)\TB,{x)a=T- π2{a)x=τt2(a)Tx for all

β ^ M π 9 J i , TΛ: is left bounded and B1(Tx) = TB1{x). Hence the assertion follows.

From the same reason, W2={B2{x); x is right bounded} is a left ideal of π^M)'.

Let <m3 = minmf and 2JΪ4=9JΪ2D9Jί*, where « * = { * * * < = « } for any subset Si

of J3(2R), then SWi'c *ra(Af)' and SB!'c ^(Af)'. Next we shall show that a R i ^ ^ M ) ' .

In fact, for any T z τr2(M)' and T1eW3,T1π1(b)Tτt1(a) = 7t1(b)T'7rι(a)T1 for any α

and b in M Π 501, so that from the above argument, we have Ύ{Γ = TT19 that is,

τr2{M)' = W3'. By the same way, πx(M) = 9JΓ4. To prove Lemma 5.2. it suffices to

show 9tt3c9tt;. In fact, let Bx{a)^^ a n d B2{b)zSΰlv then S1(a)*=JB1(£rXresp.Bϊ(6)*

= B2(d)) for some left (resp. right) bounded element c (resp. <i). Therefore, by a

standard calculation shows that for any x and y in Mπ9ϊ l , (Λ,xy)φ = (c*,xy)φ. By

lemma 5.2, it follows that a=c*. By the same way b=d*. Again by Lemma 5.2,

there exist sequences {xn} and {yn} in Mi)9JI such that | Λ ^ — α | Φ = | Λ £ —£|Φ—>0(0)>

b » - * l = b ί - ^ U - > 0 ( 0 ) , III x n III 2 ^ I l k III, a n d HLy» III . ^ 111*111. f o r e a c h n .

Therefore, by Lemma 1.1.1, from the similar arguments ([2, p. 68,Lemma 3]) it

follows that (B^cήB^bjx, y)φ = (B2(b)Bι{a)x, y)φ for any x and y in Mn 9JI. From
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Lemma 5.2, we have 5i(έz)52(6)=J5a(δ)β1(α), which Implies W* c2JU. This completes
the proof.

For any a <= 9JI, let V {ΛΊ(M)'α} be the AW*-submodule generated by {τtι{M]ά\
and Ea be the projection on V {*i(M)'α} ([9, Theorem 3]), then £ α <s 7tλ{M)". In
fact, for any Ae nx(M)\ A{τrι{M)fa} c V {τri(M)'α}. Let {>„} be an orthogonal
family of projections in Z with Σ α ^ α = l and let {ya} be a uniformly bounded
subset of {πx{M)ά\> then [9, p. 842, Definition], A^aeay^-Ί,aeaAya in 9JI, so
that A(Σ«e«:yβ)<Ξ V W M M The continuity of A implies A(Vί^i(M)'fl])c
V f ^ Λ ί f ψ that is, AEa=EaAEa for all AzπJJM)', so that Eazπx{M)'. Ea is
called a cyclic projection relative to <z.

Now we are in the position to state

THEOREM 5.1. ττi(M)" = πΊ(M}, that is, M can be imbedded as a double
commutator in a type 1 AW*-algebra -S(9Jl) with the center which is
*-isomorphic with Z.

PROOF. By the spectral theorem, it suffices to show that 7tι(M)p = 7ti[Mp).
For any Pz 7Ti(M)p, let [Ex] be a maximal family of orthogonal cyclic projections
in 7Ti(Λf)" majorized by P. By the definition of Ex, the standard argument shows
that P=XXEX in .3(3R). Since nx(M) is an AW™-subalgebra of -g(9Jt), by [14,
Lemma 4.5], in order to prove Pz τri(M)p, we have only to show that Ex € τti(M)
for all x <= 9K.

Let x=u\x\ be the polar decomposition of x in C , then Ex — nι{u)E\x\niu)1/r.
In fact, observe that x=7tχ{u)\x\ and \x\=^(u)*x, Ax=^(u)A\x\ and ττi(#)*Ax
= A | J : | for any A^nlM), so that y {τtΊ(M)fχ} DπΊ(u)(\J {^(MJ\x\}). For any
y £ V {TΓ^M)':*:} and for any positive real number £, we can choose an orthogonal
set [ea] of projections in Z and a family {i?α} in 7tι{M)' such that Σ«eβ=l,
Sup HI Bax HI 2 < oo and |||;y--Σ«eβ£αα: III 2 < B. Since eaTtjμj^ufBaX = eaBax for

α

each Λ, we have \\\y—7tΊ(u)7t1(u)*y\\\1<2B9 that is, y = πi(u)πi(u)*y. On the other
hand, *,(«)*&#=&|a: | and || |Ba\x\ \\\ 2 ^ |||Bax\\\ 2 for each a implies that
Ill*i(w)*:y-Σ«<?αβ«|:r| | | | , < e and itiufy € V W M ) ' | ^ | } . Therefore combining the

above results, y € ^(w)(V {WM)ΊxI}), that is, V {τr,{M)'x\ = π,(u)(V WM)' |x | } ) ,
By the same way, it follows that πi(Rp(x)) (V MM)' \ x \ )= V {WΛf)' | x |}. From
these facts, we get that Ex — n^u)E\x\nΛ{u!f. Hence to prove that Ex^7ti,M\ we
may assume x^O without loss of generality.

Let x € 90t with x ^ 0, then there exist a projection en and fn in {α:}"
satisfying the properties described in the proof of Lemma 5.2. Let θn=xenfn{ € 3)>
then On] yOn^x and |On—x\φ->0(0). Since On=7tΊ{enfn)x = π2(enfn)x, Ean^£x

a n d £ α n t . Moreover K-α: | φ ->0(0) implies £ α n T £ x in ^(3Jl). Thus by [14,
Lemma 4.5], to prove Ex € 7r3(M), we have only to show that Ea% € π'j(M) for each
n.
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Now we shall prove that Ea Ξ π^M) for all a £ £?. Since 7tΊ(M) is an AW*-

subalgebra of -$(9ϊl), it is sufficient to show that Ea=LP(^{W)) τtlά)) ([8, Lemma

2]). Observe that for any bzMnm, τt2{b)a = ab = πΊ{a)bζ V {itjμ)501}, let E be

the projection in ^(9Jl) corresponding to V \jtia) SOI}, then E7t2{b)a=τr2(b)a for all

£ € M Π SQΐ. The semi-finiteness of Φ implies that for any A € 7t2(M), there is a net

{<2α} in M Π Dt such that ||7t2{aa)|| ^ l|A|) for each a and π2(aa)—>A strongly in

_®(3Jt). Therefore Eτt2(b)a = τt2(b)a for all b € M. For any A € ̂ (Af)" ( = τr1(M)/),

since τr2{M) is an AW^-subalgebra of i8(3Jl), by [14, Lemma 4.2], there is a bounded

net {Aλ}Cτt2{M) such that A*->A strongly in .S(2Jt), thus £ A α = A(2, which

implies V W M ) Λ } C V {πj(a)Wl}9 that is Ea^=E. For any α:^ SOi, by Lemma 5.2,

there is a sequence {£„} in MnWl such that | ^ - έ w | φ - ^ 0 ( 0 ) and ||| bn\\\ 2 ^ ||| J : | | | 2
for each w, so that Ea7ΐι[a)bn= τtia)bn implies Ea7C1(ά)x= 7rΊ{a)x, that is, E=Ea.

An easy calculation shows that E=LP{^((3R))(7tι{a)) and the proof is now completed.

COROLLARY. Let IB be an AW*-algebra of type 1 with center Z and

let Jί be a semi-finite AW*-subalgebra of i3 which contains Z, then Jl—Jζ'

in&.

By Theorem 5.1, the proof proceeds in entire analogy to that of [14, Theorem

4.4], so we omit the details.
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