ON THE EMBEDDING AS A DOUBLE COMMUTATOR IN A TYPE 1 AW ${ }^{*}$-ALGEBRA

Kazuyuki Saitô

(Rec. April 30, 1971)

The purpose of this paper is to prove the following:
Theorem. Let M be a semi-finite $A W^{*}$-algebra with center Z. If M possesses a complete set © of Z-valued bounded positive module homomorphisms which are completely additive on projections, then M can be embedded as a double commutator in an $A W^{*}$-algebra of type 1 with center which is isomorphic to Z.

One of the problems concerning $A W^{*}$-algebras is: Whether or not there is a non-trivial $A W^{*}$-subalgebra of a W^{*}-algebra ([3], [16]) ? As an application of the above result, we shall show the following result which is a partial answer to this problem and is a generalization of [13, Theorem 5.2] on a problem of Feldman.

Corollary. Let \mathscr{B} be an $A W^{*}$-algebra of type 1 with center \mathcal{Z} and let \mathcal{A} be a semi-finite $A W^{*}$-subalgebra of \mathscr{B} which contains \mathcal{Z}, then $A=\mathcal{A}^{\prime \prime}$ (the double commutator of \mathcal{A} in \mathscr{B}) in \mathscr{B}.

Under the finiteness assumption on M and \mathcal{A}, H. Widom ([14]) showed the same result (see also [3], [4], [9] and [15]).

The main tool in this paper is a "non-commutative integration theory" with respect to a Z-valued trace Φ (a non-commutative vector measure) on the algebra of "locally measurable operators" affiliated with the given $A W^{*}$-algebra M.

This paper is devided into five sections. Section 1 is the preliminaries for the later sections and we will introduce the notion of "ভ-0-convergence" in M (Definition 1.1.2) such that for any orthogonal set $\left\{e_{\alpha}\right\}$ of projections in M with $e=\Sigma_{\alpha} e_{\alpha}$ and any element $a \in M, a^{*} e a=\Sigma_{\alpha} a^{*} e_{\alpha} a$ (unconditional sum of $a^{*} e_{\alpha} a$ with respect to ভ-0-convergence). In section 2 , we shall prove the existence of a "ভ-0-continuous" natural application (Z-valued trace) Φ on M, using the Goldman's result ([4]). In section 3, along the same lines with [10], the extension theory of Φ to "locally measurable operators" affiliated with M ([11], [12]) are discussed. In particular, we shall show that the set $L^{1}(\Phi)$ of all Φ-integrable locally measurable operators is a
complete normed module over Z. Section 4 concerns with the construction of $A W^{*}$-module $L^{2}(\Phi)$ (the collection of all Φ-square integrable locally measurable operators) over Z. The last section is devoted to prove our main theorem, more precisely to say, we shall show that the left regular representation π_{1} of M on $L^{2}(\Phi)$ is a ${ }^{*}$-isomorphism of M into $\mathcal{B}\left(L^{2}(\Phi)\right)$ (the set of all bounded module endomorphisms of $\left.L^{2}(\Phi)\right)$ such that $\pi_{1}(M)^{\prime \prime}=\pi_{1}(M)$ in $\mathscr{G}\left(L^{2}(\Phi)\right)\left(\pi_{1}(M)^{\prime \prime}\right.$ is the double commutator of $\pi_{1}(M)$ in $\mathscr{B}\left(L^{2}(\Phi)\right)$).

1. Definitions and preliminary results. An $A W^{*}$-algebra M means that it is both a C^{*}-algebra and a Baer*-ring ([7]).

The set of all self-adjoint elements, non-negative elements, projections, partial isometries and unitary elements in M is written with $M_{s a}, M^{+}, M_{p}, M_{p i}$ and M_{u}, respectively.

We will say $A W^{*}$-algebra M to be semi-finite if every non-zero projection in M contains a non-zero finite projection in M.

For other informations about $A W^{*}$-algebras, in particular, the lattice structure theory of projections, and the algebra of "locally measurable operators", we refer to the papers [7], [8], [11], [12], [13], [14] and [16].

Denote the collection of all finite subset of a set A by $\mathscr{F}(A)$.
1.1. Order limits and center-valued c.a. states. Let Z be an abelian $A W^{*}$-algebra, then in virtue of the Gelfand representation, Z (resp. $Z_{\text {sa }}$) can be identified with the algebra $C(\Omega)$ (resp. $C_{r}(\Omega)$) of all complex (resp. real)-valued continuous functions on a stonian space Ω. Topologized the extended real line $[-\infty,+\infty]$ by the interval topology, let $C_{r}^{*}(\Omega)$ be the set of all $[-\infty,+\infty]$-valued continuous functions on Ω, then it is a complete lattice which is lattice isomorphic with the unit interval of the bounded complete lattice $C_{r}(\Omega)$ relative to the natural ordering for real functions and contains $C_{r}(\Omega)$ and \boldsymbol{Z} (the set of all $[0,+\infty]$-valued continuous functions on Ω ([1])) as sublattices.

Let $\left\{a_{2}\right\}$ be a net in $C_{r}^{*}(\Omega)$ and $a \in C_{r}^{*}(\Omega)$. By $a_{2} \rightarrow a(0)$, we mean that $a=\lim \sup a_{2}=\liminf a_{2}$. In these circumstances, we say that the net $\left\{a_{2}\right\}$ order converges to a. For any net $\left\{b_{k}\right\}$ in $C(\Omega),\left\{b_{k}\right\}$ order-converges to b in $C(\Omega)$ if $(1 / 2)\left(b_{\lambda}+b_{2}^{*}\right) \rightarrow(1 / 2)\left(b+b^{*}\right)(0)$ and $(1 / 2 i)\left(b_{\lambda}-b_{2}^{*}\right) \rightarrow(1 / 2 i)\left(b-b^{*}\right)(0)$ where $i=\sqrt{-1}$. If Z is a von Neumann algebra, then $b_{2} \rightarrow b(0)$ if and only if $\left\{b_{k}\right\}$ converges strongly to b. In the case of an $A W^{*}$-algebra, the following criterion is useful for the later discussions.

Lemma 1.1.1 ([14]). Let $\left\{a_{k}\right\}$ be a net in an abelian $A W^{*}$ algebra Z and a be in Z, then $a_{\lambda} \rightarrow a(0)$ if and only if for any positive real number ε and a non-zero projection e in Z, there are $a \lambda_{0}$ and a non-zero projection f with $f \leqq e$ such that $\left\|\left(a_{2}-a\right) f\right\|<\varepsilon$ for all $\lambda \geqq \lambda_{0}$.

Next let N be an $A W^{*}$－algebra and $N^{夕}$ be the center of N ．A center－valued state ϕ on N is a non－negative module homomorphism ϕ from N to $N^{\text {s }} . \phi$ satisfies the following additional properties：（1）$\|\phi(a)\| \leqq k\|a\|$ for all $a \in N$（ k depends only जn ϕ ），（2）$\left|\phi\left(a^{*} b\right)\right|^{2} \leqq \phi\left(a^{*} a\right) \phi\left(b^{*} b\right)$ for $a, b \in N$ ，（3）$\phi\left(b^{*} a^{*} a b\right) \leqq\left\|a^{*} a\right\| \phi\left(b^{*} b\right)$ for $a, b \in N$ ．By a center－valued c．a．state ϕ on N ，we mean a center－valued state on N with the property that for any orthogonal family of projections $\left\{e_{\alpha}\right\}$ in N_{p} with $e=\Sigma_{\alpha} e_{\alpha}\left(e \in N_{p}\right), \phi(e)=\Sigma_{\alpha} \phi\left(e_{\alpha}\right)$ in N^{ξ} ，where $\Sigma_{\alpha} \phi\left(e_{\alpha}\right)$ is the unconditional sum of the $\phi\left(e_{\alpha}\right)$ in $N^{夕}$ ．

Lemma 1．1．2．Let ϕ be a center－valued c．a．state on N ，then for any $a \in N$ and any orthogonal family $\left\{e_{\alpha}\right\}$ of projections in N with $e=\Sigma_{\alpha} e_{\alpha}, \phi\left(a^{*} e a\right)$ $=\Sigma_{\alpha} \phi\left(a^{*} e_{\alpha} a\right)$ in N^{ξ} ．

Since $N^{\text {s＋}}$ is a bounded complete lattice，by Lemma 1．1．1，the proof is an obvious modification of that for a similar result in［3，Lemma 3］．

In the followings，let M be a semi－finite $A W^{*}$－algebra with the center Z and suppose that there is a set \mathbb{S} of Z－valued c．a．states on M such that $\phi\left(a^{*} a\right)=0$ for all $\phi \in \mathbb{S}$ implies $a=0$ ．Let $\mathcal{L}(\mathbb{S})$ be the set of finite linear combinations of elements in $\left\{a^{*} \phi a, \phi \in \mathbb{S}, a \in M\right\}$ ，where $\left(a^{*} \phi a\right)(x)=\phi\left(a x a^{*}\right)$ for $x \in M$ ．

DEFINITION 1．1．2．A net $\left\{a_{\alpha}\right\}$ in M ভ－0－converges to a in $M\left(a_{\alpha} \rightarrow a(\subseteq-0)\right)$ if $\phi\left(a_{\alpha}-a\right) \rightarrow 0(0)$ in Z for all $\phi \in \mathcal{L}($（ভ）．

REMARK．（1）Let $\left\{e_{\alpha}\right\}$ be an orthogonal family of projections in M with $\Sigma_{\alpha} e_{\alpha}=e\left(\in M_{p}\right)$ ，then $\Sigma_{\alpha \in J} e_{\alpha} \rightarrow e(\mathbb{S}-0)(J \in \mathscr{F}\{\{\alpha\}))$ by Lemma 1．1．2．（2）Since \mathbb{S} is a separating set，an $\mathfrak{\Im}-0$－limit is unique．

1．2．Existence of a trace．Let N be a finite $A W^{*}$－algebra with the center $N^{夕}$ which has a separating set \mathbb{S}^{\prime} of center－valued c．a．states．Then，we have

Proposition 1．2．1．There is a unique central trace Φ having the additional property that for any increasing net $\left\{a_{\gamma}\right\}$ in N^{+}，with $a_{\gamma} \uparrow a\left(\mathbb{S}^{\prime}-0\right)$ for some $a \in N^{+}$，then $\Phi\left(a_{\gamma}\right) \uparrow \Phi(a)$ in $N^{\xi+}$ ．

Proof．Existence of a trace Φ on N is due to M ．Goldman［4］．Therefore we have only to show that Φ satisfies the continuity described above．Since \mathbb{S}^{\prime} is a separating set，by［4，Lemma 2．6］，for any $p \in N_{p}^{\text {s }}$ ，there are a non－zero projection e in $N(e \leqq p)$ and a non－negative mapping ϕ in $\mathcal{L}\left(\mathbb{S}^{\prime}\right)$ with $\phi(e) \neq 0$ such that $\Phi(a) \leqq \phi(a)$ for all $a \in(e N e)^{+}$．Take a positive integer m and a non－zero central projection $(q \leqq p)$ with $\Phi^{\prime}(e) \geqq(1 / m) q$ such that there exists a projection $h \in N$ with $\Phi(h)=(1 / m) q$ ．Hence we can choose a family $\left\{h_{j}\right\}_{j=1}^{m}$ of mutually orthogonal
projections in N such that $h_{1} \leqq e, h_{i} \sim h_{j}$ and $\sum_{j=1}^{m} h_{j}=q$. Let v_{j} be in $N_{p i}$ such that $v_{j}^{*} v_{j}=h_{1}, v_{j} v_{j}^{*}=h_{j}$ and put $\psi(b)=\sum_{j=1}^{m} \phi\left(v_{j}^{*} b v_{j}\right)$ for $b \in N$, then $\psi \in \mathcal{L}\left(\mathcal{S}^{\prime}\right)$ and $\psi(1-q)=0$. Now, noting that $v_{i}^{*} b v_{j} \in e N e$ for each pair of i and j, it follows that for each $b \in N q$,

$$
\begin{aligned}
\psi\left(b^{*} b\right) & =\sum_{i j=1}^{m} \phi\left(\left(v_{i}^{*} b^{*} v_{j}\right)\left(v_{i}^{*} b^{*} v_{j}\right)^{*}\right) \\
& \geqq \sum_{i j=1}^{m} \Phi\left(\left(v_{i}^{*} b^{*} v_{j}\right)\left(v_{i}^{*} b^{*} v_{j}\right)^{*}\right) \\
& =\Phi\left(b^{*} b\right) .
\end{aligned}
$$

Hence by Zorm's lemma there are families $\left\{q_{\alpha}\right\} \subset N_{p}^{\delta}$ and $\left\{\phi_{\alpha}\right\} \subset \mathcal{L}\left(\mathbb{S}^{\prime}\right)$ such that $q_{\alpha} q_{\beta}=0(\alpha \neq \beta), \quad \Sigma_{\alpha} q_{\alpha}=1, \quad \phi_{\alpha}\left(q_{\alpha}\right) \neq 0, \quad \phi_{\alpha}\left(1-q_{\alpha}\right)=0$ and $\phi_{\alpha}\left(b^{*} b\right) \geqq \Phi\left(b^{*} b\right)$ for all $b \in N q_{\alpha}$ for each α. If $\left\{a_{\gamma}\right\}$ is an increasing net of N^{+}such that $a_{\gamma} \uparrow a(\subseteq-0)$ for some $a \in N$, then $q_{\alpha} \Phi\left(a_{\gamma}\right) \uparrow q_{\alpha} \Phi(a)$ in $N^{\xi+}$ for each α. Therefore by Lemma 1.1.1, $\Phi\left(a_{\gamma}\right) \uparrow \Phi(a)(0)$. This completes the proof.
2. Existence of a natural application on \boldsymbol{M}^{+}. Let Ω be the spectrum of the center Z of the given semi-finite $A W^{*}$-algebra M and \boldsymbol{Z} be the collection of all $[0,+\infty]$-valued continuous functions on Ω.

To prove the existence of a natural application, we need the following, whose proof can be easily supplied by the reader.

Lemma 2.1. Let $\left\{a_{\alpha}\right\}$ be an increasing net in \mathbf{Z} such that $a_{\alpha} \uparrow a(0)$ in \mathbf{Z} for some $a \in \boldsymbol{Z}$, then for any $b \in \mathbf{Z}, b a_{a} \uparrow b a(0)$ in \mathbf{Z}.

Since M is semi-finite, there is a finite projection p in M such that $z(p)=1$. Let $\left\{p_{\alpha}\right\}_{\alpha \in \pi}$ be a maximal family of orthogonal equivalent projections in M such that $p \sim p_{\alpha}$ for each α and $p \in\left\{p_{\alpha}\right\}_{\alpha \in \pi}$. By the maximality of $\left\{p_{\alpha}\right\}_{\alpha \in \pi}$, there is a central projection z such that $p_{0}=\left(1-\Sigma_{\alpha \in \pi} p_{\alpha}\right) z \leqq p z \neq 0$. Therefore we can take families $\left\{z_{\beta}\right\}$ $\subset Z_{p},\left\{p_{\beta}\right\} \subset M_{p}$ and $\left\{p\left(\alpha_{\beta}, \beta\right)\right\}_{\alpha_{\beta} \in \pi_{\beta} \cup[0]}$ in M_{p} such that $z_{\beta} z_{\gamma}=0(\beta \neq \gamma), p\left(\alpha_{\beta}, \beta\right) p\left(\gamma_{\beta}, \beta\right)$ $=0\left(\alpha_{\beta} \neq \gamma_{\beta}\right), z_{\beta}=p(0, \beta)+\sum_{\alpha_{\beta} \in \pi_{\beta} \cup\{0\}} p\left(\alpha_{\beta}, \beta\right) z_{\beta}, p\left(\alpha_{\beta}, \beta\right) z_{\beta} \sim p_{\beta} z_{\beta}$ for each $\alpha_{\beta} \in \pi_{\beta}, z\left(p_{\beta}\right)$ $=z_{\beta}, p_{\beta}$ is finite for each $\beta, p_{\beta} \in\left\{p\left(\alpha_{\beta}, \beta\right)\right\}_{\alpha_{\beta} \in \pi_{\beta}}$ for each β, $\left(1-\Sigma_{\alpha_{\beta} \in \pi_{\beta}} p\left(\alpha_{\beta}, \beta\right) z_{\beta}\right.$ $=p(0, \beta) \lesssim p_{\beta} z_{\beta} \neq 0$ and $\Sigma_{\beta} z_{\beta}=1$. Noting that $z_{\beta} p_{\beta} M z_{\beta} p_{\beta}$ is a finite $A W^{*}$-algebra whose center is $Z z_{\beta} p_{\beta}$, if $\mathbb{S}_{\beta}=\left\{\left(z_{\beta} p_{\beta} \phi z_{\beta} p_{\beta}\right) p_{\beta}, \phi \in \mathbb{S}\right\}$ (where $\left.\left(z_{\beta} p_{\beta} \phi_{z_{\beta}} p_{\beta}\right) p_{\beta}(x)=p_{\beta} \phi\left(z_{\beta} p_{\beta} x z_{\beta} p_{\beta}\right), x \in M\right)$, then \mathbb{S}_{β} is a separating set of centervalued c.a. states on $z_{\beta} p_{\beta} M z_{\beta} p_{\beta}$. By Proposition 1.2.1, for each β, we can choose a $Z z_{\beta} p_{\beta}$-valued $\mathbb{S}_{\beta}-0$-continuous trace Φ_{β} on $z_{\beta} p_{\beta} M z_{\beta} p_{\beta}$. Now let ψ_{β} be the
${ }^{*}$-isomorphism of $Z z_{\beta} p_{\beta}$ onto $Z z_{\beta}$ which is defined by $\psi_{\beta}^{-1}(x)=x p_{\beta}$ for each β and let $v\left(\alpha_{\beta}, \beta\right)$ be the partial isometry such that $v\left(\alpha_{\beta}, \beta\right)^{*} v\left(\alpha_{\beta}, \beta\right)=z_{\beta} p_{\beta}, v\left(\alpha_{\beta}, \beta\right) v\left(\alpha_{\beta}, \beta\right)^{*}$ $=p\left(\alpha_{\beta}, \beta\right)$ for each $\alpha_{\beta} \in \pi_{\beta}$ and each $\beta, v(0, \beta)^{*} v(0, \beta) \leqq z_{\beta} p_{\beta}$ and $v(0, \beta) v(0, \beta)^{*}$ $=p(0, \beta)$ for each β. Define a new linear operation Φ on M^{+}to \boldsymbol{Z} as follows:

$$
\Phi(h)=\Sigma_{\beta}\left\{\Sigma_{\alpha_{\beta} \in \pi_{\beta} \cup\{0\}} \psi_{\beta}\left(\Phi_{\beta}\left(v\left(\alpha_{\beta}, \beta\right)^{*} h z_{\beta} v\left(\alpha_{\beta}, \beta\right)\right)\right)\right\}, \quad h \in M^{+}
$$

where $\Sigma_{\alpha \in A} a_{\alpha}$ is the unconditional sum of the a_{α} in \boldsymbol{Z}, then Φ is a natural application on M^{+}, that is,

THEOREM 2.1. The operation Φ on M^{+}to \boldsymbol{Z} satisfies the following properties:
(1) If $h_{1}, h_{2} \in M^{+}$and λ is a non-negative number, $\Phi\left(h_{1}+h_{2}\right)=\Phi\left(h_{1}\right)+\Phi\left(h_{2}\right)$ and $\Phi\left(\lambda h_{1}\right)=\lambda \Phi\left(h_{1}\right)$.
(2) If $s \in M^{+}$and $t \in Z^{+}$, then $\Phi(s t)=t \Phi(s)$.
(3) If $a \in M^{+}$and $u \in M_{u}, \Phi\left(u a u^{*}\right)=\Phi(a)$.
(4) $\Phi(a)=0\left(a \in M^{+}\right)$implies $a=0$.
(5) For every increasing net $\left\{a_{\mu}\right\}$ in M^{+}such that $a_{\mu} \uparrow a(\subseteq-0)$ for some $a \in M^{+}, \Phi\left(a_{\mu}\right) \uparrow \Phi(a)(0)$ in \boldsymbol{Z}.
(6) For any non-zero a in M^{+}, there is a non-zero b in M^{+}majorized by a such that $\Phi(b) \in Z^{+}$.

Using Lemma 2.1 and \mathbb{S}-0-convergence instead of Lemma 2.12 and $\sigma(\mathbb{(})$ topology in [13], the proof of this theorem proceeds in a manner entirely analogous to that of [13, Theorem 3.1], so we omit it.

Next let $\mathfrak{F}=\left\{s \in M^{+}, \Phi_{\mid}(s) \in Z^{+}\right\}$, then since \mathfrak{F} satisfies the conditions of Lemma 1 in [2, Chapter $1 \S 1,6$], it follows that \mathfrak{B} is the positive portion of a two-sided ideal \mathfrak{R} and that there is a unique linear operation $\dot{\Phi}$ on \mathfrak{N} to Z which coincides with Φ on \mathfrak{P} with the properties; (a) $\dot{\Phi}(s t)=\dot{\Phi}(t s)$ if $s \in M, t \in \mathfrak{N}$; (b) $\dot{\Phi}(s t)=s \dot{\Phi}(t)$ if $s \in Z$ and $t \in \mathfrak{N}$.

Define Rank $(x)=\Phi(L P(x))$ for every $x \in M$, where $L P(x)$ is the left projection of x in M, and $\operatorname{Rank}(x)$ has the following properties: (1) $\operatorname{Rank}(x) \geqq 0$, it is $=0$ only if $x=0$. (2) $\operatorname{Rank}(x)=\operatorname{Rank}\left(x^{*}\right), \operatorname{Rank}(\alpha x)=\operatorname{Rank}(x)$ for every complex number $\alpha \neq 0$. (3) $\operatorname{Rank}(x+y) \leqq \operatorname{Rank}(x)+\operatorname{Rank}(y)$. (4) $\operatorname{Rank}(x y) \leqq \operatorname{Rank}(x), \operatorname{Rank}(y)$. In fact, (1) and the last half part of (2) are clear from definitions. By [7, Theorem 5.2], $L P(x) \sim L P\left(x^{*}\right)$, which implies by [13, Lemma 2.4] $\Phi(L P(x))=\Phi\left(L P\left(x^{*}\right)\right)$. An easy calculation shows $L P(x+y) \leqq L P(x) \vee L P(y)$ and by the fact that $L P(x) \vee L P(y)-$ $L P(x) \sim L P(y)-L P(x) \wedge L P(y)$, it follows that $\operatorname{Rank}(x+y) \leqq \operatorname{Rank}(x)+\operatorname{Rank}(y)$. $L P(x y) \leqq L P(x)$ shows that $\operatorname{Rank}(x y) \leqq \operatorname{Rank}(x)$ and $\operatorname{Rank}(x y)=\operatorname{Rank}\left((x y)^{*}\right)$ $=\operatorname{Rank}\left(y^{*} x^{*}\right) \leqq \operatorname{Rank}\left(y^{*}\right)=\operatorname{Rank}(y)$. Thus (3) follows.

Therefore let $\mathscr{F}=\left\{a ; a \in M, \operatorname{Rank}(a) \in Z^{+}\right\}$, then \mathscr{F} is a two-sided ideal
contained in \mathfrak{N} such that $\mathscr{F}_{p}=\mathfrak{N}_{p}$. Moreover, by Theorem 2.1 (6) for any non-zero projecection e in M, we can choose a non-zero projection in \mathscr{F} majorized by e.
3. An extension oí Φ to "locally measurable operators". We shall now consider "locally measurable operators" affiliated with M ([12]). An essentially locally measurable operator (ELMO) is a family of ordered pairs $\left\{x_{\alpha}, e_{\alpha}\right\}$, where $\left\{x_{\alpha}\right\} \subset \mathcal{C}$ (the algebra of measurable operators affiliated with M) and $\left\{e_{\alpha}\right\}$ is an orthogonal family of central projections such that $\Sigma_{\alpha} e_{\alpha}=1$. Two ELMO's $\left\{x_{\alpha}, e_{\alpha}\right\}$ and $\left\{y_{\beta}, f_{\beta}\right\}$ are said to be equivalent if $e_{\alpha} f_{\beta} x_{\alpha}=e_{\alpha} f_{\beta} y_{\beta}$ for all α and β. The equivalence class of $\left\{x_{\alpha}, e_{\alpha}\right\}$ is denoted by $\left(x_{\alpha}, e_{\alpha}\right)$ and it is called a locally measurable operator affiliated with $M(\mathrm{LMO})$, and the collection of all LMO's affiliated with M is denoted by \mathscr{M}. Algebraic operations in \mathscr{M} are componentwise, then it is a *-algebra in which \mathcal{C} is naturally imbedded as a ${ }^{*}$-subalgebra. We use letters x, y, z, \cdots for the elements in \mathscr{M}.

In [12], we showed the followings: (1) \mathscr{M} is a Baer*-ring, and (2) every element x in \mathcal{M} has a polar decomposition $x=w|x|\left(|x|=\left(x^{*} x\right)^{1 / 2}\right)$ where $w^{*} w=R P(x)$ and $w w^{*}=L P(x)$. The self-adjoint part of \mathscr{M} is partially ordered by defining $x \geqq y$ if $x-y=z^{*} z$ for some z. The subalgebra M is characterized as $\{x ; x \in \mathscr{M}$, $x^{*} x \leqq \alpha 1$ for some positive real number $\left.\alpha\right\}$.

We want to extend Φ to \mathscr{M}^{+}(the non-negative part of \mathscr{M}). The following definition is due to [10].

Definition 3.1. For every $x \in \mathscr{M}^{+}$, we define

$$
\Phi(x)=\operatorname{Sup}\left\{\Phi(a), a \in M^{+}, a \leqq x\right\}
$$

where the supremum is taken in \mathbf{Z}.

It is clear that the new definition agrees with the old one in case $x \in M^{+}$. The following Lemma is helpful for the later discussions.

Lemma 3.1. For every $x \in \mathscr{M}^{+}, \Phi(x)=\operatorname{Sup}\left\{\Phi(a) ; a \in \mathfrak{N}^{+}, a \leqq x\right\}=\operatorname{Sup}\{\Phi(a)$; $\left.a \in \mathscr{F}^{+}, a \leqq x\right\}$.

PROOF. Since $\Phi(x) \geqq \operatorname{Sup}\left\{\Phi(a), a \in \mathfrak{R}^{+}, a \leqq x\right\} \geqq \operatorname{Sup}\left\{\Phi(a), a \in \mathscr{F}^{+}, a \leqq x\right\}$, we have only to prove the converse. Let $b=\operatorname{Sup}\left\{\Phi(a) ; a \in \mathscr{F}^{+}, a \leqq x\right\}$ in \mathbf{Z}. By Theorem 2.1, there is an orthogonal family of projections $\left\{e_{\alpha}\right\}$ in \mathscr{F}_{p} such that $\Sigma_{\alpha} e_{\alpha}=1$. For any $J \in \mathscr{F}(\{\alpha\})$ and $a \in M^{+}, a^{1 / 2}\left(\Sigma_{\alpha \in J} e_{\alpha}\right) a^{1 / 2} \leqq a, a^{1 / 2}\left(\sum_{\alpha \in J} e_{\alpha}\right) a^{1 / 2}$ $\in \mathscr{F}^{+}$and $a^{1 / 2}\left(\Sigma_{\alpha \in J} e_{\alpha}\right) a^{1 / 2} \uparrow a(\mathbb{S}-0)$. Therefore again by Theorem 2.1, $\Phi(a)=$ $\operatorname{Sup}\left\{\Phi\left(a^{1 / 2}\left(\Sigma_{\alpha \in \mathcal{J}} e_{\alpha}\right) a^{1 / 2}\right) ; J \in \mathscr{F}(\{\alpha\})\right\}$, that is, $\Phi(a) \leqq b$. Thus $b=\Phi(x)$ and the lemma follows.

Remark. For any $x \in \mathscr{M}, \Phi\left(x^{*} x\right)=\Phi\left(x x^{*}\right)$. In fact, let $x=w|x|$ be the polar decomposition of x, then $x x^{*}=w x^{*} x w^{*}$ and $w^{*} x x^{*} w=x^{*} x$. If $x^{*} x$ $\geqq a, a \in \mathscr{F}^{+}$, then $a w^{*} w=w^{*} w a=a$ and $x x^{*}=w x^{*} x w^{*} \geqq w^{*} w^{*} \in \mathscr{F}^{+}$. Thus, $\Phi\left(x x^{*}\right) \geqq \Phi\left(w a w^{*}\right)=\Phi\left(w^{*} w a\right)=\Phi(a)$, which implies $\Phi\left(x x^{*}\right) \geqq \Phi\left(x^{*} x\right)$. By symmetry $\Phi\left(x^{*} x\right)=\Phi\left(x x^{*}\right)$.

Relations between the algebraic operations in \mathscr{M}^{+}and our extended operation Φ are given in the following:

Lemma 3.2. Let s and t be in \mathscr{M}^{+}, then
(1) $\Phi(s+t)=\Phi(s)+\Phi(t)$;
(2) $\Phi(\lambda t)=\lambda \Phi(t)$ for any non-negative number λ;
(3) $\Phi\left(u s u^{*}\right)=\Phi(s)$ for any $u \in M_{u}$;
(4) $\Phi(a s)=a \Phi(s)$ for any $a \in Z^{+}$.

Proof. The statements (2) and (3) are clear from the definitions. For the assertion (1), since $\Phi(s)+\Phi(t) \leqq \Phi(s+t)$, we have only to show the converse. Let a be in \mathscr{F}^{+}such that $a \leqq s+t$ and $c_{n}=a^{1 / 2}((1 / n) 1+s+t)^{-1}(s+t)^{1 / 2}($ note that since $s+t \geqq 0, s+t+(1 / n) 1$ is invertible in \mathscr{M} and $(s+t+(1 / n) 1)^{-1} \in\{s+t\}^{\prime \prime}$ for each positive integer n), then c_{n} and $a^{1 / 2}-c_{n}(s+t)^{1 / 2}$ are bounded elements such that $\left\|a^{1 / 2}-c_{n}(s+t)^{1 / 2}\right\| \leqq 1 / n$ and $\left\|c_{n}\right\| \leqq 1$ for each n. Observe that $a \in \mathscr{F}^{+}$, let $x=c_{n} s^{1 / 2}$ and $y=c_{n} t^{1 / 2}$, then $x x^{*}=c_{n} s c_{n}^{*} \leqq c_{n}(s+t) c_{n}^{*} \leqq a^{1 / 2}((1 / n) 1+s+t)^{-2}(s+t)^{2} a^{1 / 2}$ $\leqq a$ and by the same way, $y y^{*} \leqq a$, which implies x and y are in \mathscr{F}. Now put a_{1} $=x^{*} x$ and $a_{2}=y^{*} y$, then $a_{1}, a_{2} \in \mathscr{F}^{+}, a_{1}=s^{1 / 2} c_{n}^{*} c_{n} s^{1 / 2} \leqq s$ and $a_{2} \leqq t$. Therefore we have

$$
\begin{aligned}
\Phi(s)+\Phi(t) & \geqq \Phi\left(a_{1}\right)+\Phi\left(a_{2}\right)=\Phi\left(x^{*} x\right)+\Phi\left(y^{*} y\right) \\
& =\Phi\left(x x^{*}\right)+\Phi\left(y y^{*}\right)=\Phi\left(c_{n} s c_{n}^{*}\right)+\Phi\left(c_{n} t c_{n}^{*}\right) \\
& =\Phi\left(c_{n}(s+t) c_{n}^{*}\right) .
\end{aligned}
$$

Note that $L P(a) c_{n}=c_{n}$, it follows that $\left\{a^{1 / 2}-c_{n}(s+t)^{1 / 2}\right\}\left\{a^{1 / 2}-c_{n}(s+t)^{1 / 2}\right\}^{*}$ $\leqq(1 / n) L P(a)$. On the other hand, since $a^{1 / 2}(s+t)^{1 / 2} c_{n}^{*}=a^{1 / 2}(s+t)((1 / n) 1+s+t)^{-1} a^{1 / 2}$ $\leqq a \in \mathscr{F}, a^{1 / 2}(s+t)^{1 / 2} c_{n}^{*}=c_{n}(s+t)^{1 / 2} a^{1 / 2}$, and $c_{n}(s+t)^{1 / 2} \in \mathscr{F}$, we get that

$$
\Phi(a)-\Phi\left(c_{n}(s+t) c_{n}^{*}\right)=\Phi\left(\left\{a^{1 / 2}+c_{n}(s+t)^{1 / 2}\right\}\left\{a^{1 / 2}-c_{n}(s+t)^{1 / 2}\right\}^{*}\right) .
$$

Observe that $\left\|c_{n}(s+t)^{1 / 2}\right\| \leqq\left\|a^{1 / 2}\right\|$, it follows by the above arguments that

$$
\begin{aligned}
\left\|\Phi(a)-\Phi\left(c_{n}(s+t) c_{n}^{*}\right)\right\| & \leqq\left\|a^{1 / 2}+c_{n}(s+t)^{1 / 2}\right\|\left\|\Phi\left(\left|a^{1 / 2}-(s+t)^{1 / 2} c_{n}^{*}\right|\right)\right\| \\
& \leqq 2\|a\|^{1 / 2}(1 / n)^{1 / 2}\|\Phi(L P(a))\|
\end{aligned}
$$

for each n, that is, $a \geqq c_{n}(s+t) c_{n}^{*}$ implies that

$$
\begin{aligned}
\Phi(s)+\Phi(t) & \geqq \Phi\left(c_{n}(s+t) c_{n}^{*}\right) \\
& \geqq \Phi(a)-2(1 / n)^{1 / 2}\|a\|^{1 / 2}\|\Phi(L P(a))\| \cdot 1
\end{aligned}
$$

for all positive integer n, so that $\Phi(s)+\Phi(t) \geqq \Phi(a)$ for all $a \in \mathscr{F}^{+}$with $a \leqq s+t$. Thus by Lemma 3.1, $\Phi(s)+\Phi(t) \geqq \Phi(s+t)$ and (1) follows.

To prove the assertion (4), since it is clear, by Lemma 2.1 and Lemma 3.1, that $a \Phi(t) \leqq \Phi(a t)$ for any $t \in \mathscr{M}^{+}$and $a \in Z^{+}$, it is sufficient to show the converse. Let c be in \mathscr{F}^{+}with $c \leqq a t$, then for each positive integer $n, c \leqq a+(1 / n) t$, which implies $(a+(1 / n) 1)^{-1} a \Phi(c) \leqq a \Phi(t)$ by Theorem 2.1. Since $L P(a) c=c L P(a)=c$ and $(a+(1 / n) 1)^{-1} a \uparrow L P(a)$, we have $\Phi(c) \leqq a \Phi(t)$, so that $a \Phi(t) \geqq \Phi(a t)$ by Lemma 3.1. This completes the proof.

Let $\mathcal{L}^{+}=\left\{t ; t \in \mathscr{M}^{+}, \Phi(t) \in Z^{+}\right\}$, then by the above lemma, \mathcal{L}^{+}has the following properties:
(a) If $s \in \mathcal{L}^{+}$and $u \in M_{u}$, then $u s u^{*} \in \mathcal{L}^{+}$and $\Phi(s)=\Phi\left(u s u^{*}\right)$.
(b) Let $s \in \mathcal{L}^{+}$and $t \in \mathcal{M}^{+}$with $t \leqq s$, then $t \in \mathcal{L}^{+}$.
(c) For every s and $t \in \mathcal{L}^{+}, s+t \in \mathcal{L}^{+}$and $\Phi(s+t)=\Phi(s)+\Phi(t)$.

Let $L^{1}(\Phi)=\left\{\sum_{i=1}^{n} t_{i} s_{2}^{*}, t_{i}^{*} t_{i}, s_{i}^{*} s_{i} \in \mathcal{L}^{+}\right\}$, then
THEOREM 3.1 ([10]). $L^{1}(\Phi)$ is a unique invariant linear system (that is, $\left.M L^{1}(\Phi) M \subset L^{1}(\Phi)\right)$ such that $L^{1}(\Phi)^{+}=\mathcal{L}^{+}$. Moreover, there is a unique nonnegative linear operation $\dot{\Phi}$ on $L^{1}(\Phi)$ to Z, which coincides with Φ on \mathcal{L}^{+}, with the following properties:
(1) For $s \in L^{1}(\Phi)$ and $a \in M, \dot{\Phi}(a t)=\dot{\Phi}(t a)$;
(2) for $a \in Z$ and $s \in L^{1}(\Phi), \dot{\Phi}(a t)=a \dot{\Phi}(t)$;
(3) for any $t \in L^{1}(\Phi), \operatorname{Sup}\{|\dot{\Phi}(a t)| ;\|a\| \leqq 1, a \in M\}=\Phi(|t|)$;
(4) if $s, t \in L^{1}(\Phi)$, then $\Phi(|s+t|) \leqq \Phi(|s|)+\Phi(|t|)$.

Proof. The proof of the assertions except for (3) and (4) are obvious modifications of those for similar results in section 2 for the case \mathfrak{R} and $\dot{\Phi}$. To prove the assertion (3), we argue as follows. Observe first that from the standard calculation, $|\dot{\Phi}(s t)|^{2} \leqq \Phi\left(s^{*} s\right) \Phi\left(t^{*} t\right)$ for any s and t with $s^{*} s$ and $t^{*} t \in \mathcal{L}^{+}$. Let $t=u|t|$ be the polar decomposition of t in $L^{1}(\Phi)$, then for any $a \in M$ with $\|a\| \leqq 1$, it follows that

$$
\begin{aligned}
|\dot{\Phi}(a t)|^{2} & =|\dot{\Phi}(a u|t|)|^{2} \leqq \Phi\left(|t|^{1 / 2} u^{*} a^{*} a u|t|^{1 / 2}\right) \Phi(|t|) \\
& \leqq \Phi(|t|)^{2},
\end{aligned}
$$

So that $|\dot{\Phi}(a t)| \leqq \Phi(|t|)$ and $\dot{\Phi}\left(u^{*} t\right)=\Phi(|t|)$ and $\|u\| \leqq 1$ implies the statement (3). Next let $s, t \in L^{1}(\Phi)$ and $s+t=w|s+t|$ be the polar decomposition of $s+t$, then by (3)

$$
\begin{aligned}
\Phi(|s+t|) & =\Phi\left(w^{*}(s+t)\right) \leqq\left|\dot{\Phi}^{\prime}\left(w^{*} s\right)\right|+\left|\dot{\Phi}\left(w^{*} t\right)\right| \\
& \leqq \Phi(|s|)+\Phi(|t|)
\end{aligned}
$$

thus the proof is completed.
Remark. (1) The linear map $\dot{\Phi}$ on $L^{1}(\Phi)$ is an extension of $\dot{\Phi}$ on \mathfrak{R} which was defined in section 2. (2) If we set $\|\mid s\|_{1}=\|\Phi(|s|)\|$ for $s \in L^{1}(\Phi)$, then $L^{1}(\Phi)$ is a normed module over Z. (3) $L^{1}(\Phi) \subset \mathcal{C}$. In fact, since every element of $L^{1}(\Phi)$ is a finite linear combination of elemens in \mathcal{L}^{+}, we have only to show that $\mathcal{L}^{+} \subset \mathcal{C}$. By the spectral theorem ($[11,12]$), for any $t \in \mathcal{L}^{+}$there exists an increasing sequence of projections $\left\{f_{n}\right\}$ in $\{t\}^{\prime \prime}$ (the double commutant of $\{t\}$ in \mathscr{H}_{i}) such that $t f_{n} \leqq(n+1) 1$ and $(n+1)\left(1-f_{n}\right) \leqq t$ for each positive integer n, so that $\Phi\left(1-f_{n}\right) \leqq(1 /(n+1)) \Phi(t)$, this implies that $\left\{f_{n}\right\}$ is an SDD. Thus by [11, Theorem 5.1], $t \in \mathcal{C}$. This completes the proof.

THEOREM 3.2. $L^{1}(\Phi)$ is a Banach space with respect to the norm $\|\|,\|\|_{1}$.
Proof. First of all, we shall show that for any monotone increasing sequence $\left\{t_{n}\right\}$ of elements in \mathcal{L}^{+}which is $\|\|,\|\|_{1}-$ Cauchy, there is $t \in \mathcal{L}^{+}$such that $\| \mid t_{n}-$ $t\left\|\|_{1} \rightarrow 0(n \rightarrow \infty)\right.$. By taking a subsequence, we can assume that $\|\left\|t_{n}-t_{n+1}\right\| \|_{1}<1 / 4^{n}$ for each positive integer n without loss of generality. Note that $t_{n+1}-t_{n} \geqq 0$ (resp. $t_{n} \geqq 0$), by the spectral theorem ([11]), we can choose a sequence $\left\{e_{n}\right\}$ in $\left\{t_{n+1}-t_{n}\right\}^{\prime \prime}$ (resp. $\left\{f_{n}\right\}$ in $\left\{t_{n}\right\}^{\prime \prime}$) of projections such that $0 \leqq\left(t_{n+1}-t_{n}\right) e_{n} \leqq 2^{-n} .1$ and $\left(t_{n+1}-t_{n}\right)$ $\geqq 2^{-n}\left(1-e_{n}\right)$ (resp. $0 \leqq t_{n} f_{n} \leqq 2^{n} .1$ and $t_{n} \geqq 2^{n}\left(1-f_{n}\right)$) for each positive integer n. Now let $p_{n}=\bigwedge_{k \geqq n} e_{k} \wedge f_{k}$, then it follows that

$$
\begin{aligned}
\Phi\left(1-p_{n}\right) & \leqq \sum_{k=n}^{\infty} \Phi\left(1-e_{k} \wedge f_{k}\right) \\
& \leqq \sum_{k=n}^{\infty}\left\{\Phi\left(1-e_{k}\right)+\Phi\left(1-f_{k}\right)\right\} \\
& \leqq \sum_{k=n}^{\infty}\left\{2^{k} \Phi\left(t_{k+1}-t_{k}\right)+\left(1 / 2^{k}\right) \Phi\left(t_{k}\right)\right\} \\
& \leqq\left(1+\operatorname{Sup}\| \| t_{k}\| \|_{1}\right) 2^{-n} .1
\end{aligned}
$$

for each n, so that $p_{n} \uparrow$ implies that $\Phi\left(1-p_{n}\right) \downarrow 0$ uniformly, $1-p_{n} \in \mathscr{F}$ and $p_{n} \uparrow 1$, that is, $\left\{p_{n}\right\}$ is an $\operatorname{SDD}\left(\left[11\right.\right.$, Definition 3.1]). Since $p_{n} \leqq e_{n} \wedge f_{n}$, if $k \leqq n \leqq m$,
then $\left(t_{m}-t_{n}\right) p_{k} \in M$ and $\left\|\left(t_{m}-t_{n}\right) p_{k}\right\|<1 / 2^{n-1}$. Moreover, $t_{k} p_{k}=t_{k} f_{k} p_{k}$ and $t_{k} f_{k}$ $\leqq 2^{k} f_{k}$, which implies $t_{k} p_{k} \in M$. By the mathematical induction, $\left(t_{m}-t_{n}\right) p_{k}$ $\in M(m \geqq n \geqq k)$ implies $t_{m} p_{k} \in M$ for all $m \geqq k$. Now put $a(n, k)=p_{k} t_{n} p_{k}$ $+p_{k} t_{n}\left(1-p_{k}\right)+\left(1-p_{k}\right) t_{n} p_{k}(n \geqq k)$, then $\{a(n, k)\} \subset M_{s a}$ for all $n \geqq k$. Since $\|a(n+1, k)-a(n, k)\| \leqq 3$. 2^{-n} for all $n \geqq k$, it follows that $\{a(n, k)\}_{n \geqq k}$ is a uniformly Cauchy sequence in $M_{s a}$. Hence there exists an element $s(k) \in M_{s a}$ such that $a(n, k) \rightarrow s(k)(n \rightarrow \infty)$ uniformly. If $k_{1} \geqq k_{2}$, then $p_{k_{1}} \geqq p_{k_{2}}$ implies $s\left(k_{1}\right) p_{k_{2}}=s\left(k_{2}\right) p_{k_{2}}$, so that $\left\{s(k), p_{k}\right\}$ is an EMO ($\left[11\right.$, Dfinition 3.1]). Since $\left\|t_{k} p_{k}-t_{m} p_{k}\right\| \leqq 1 / 2^{k-1}$ for all $m \geqq k$, we get that $\left\|t_{k} p_{k}-s(k) p_{k}\right\| \leqq 1 / 2^{k-1}$ for each positiye integer k. Thus putting $t=\left[s(k), \quad p_{k}\right]\left(\in \mathcal{C}_{s a}\right.$ ([11, Definition 3.4])), by [11, Theorem 3.1] $\left\|t_{k} p_{k}-t p_{k}\right\|=\left\|\left(t_{k}-s(k)\right) p_{k}\right\| \leqq 1 / 2^{k-1}$ for all k, which implies that $t_{k} \rightarrow t(n . e).(k \rightarrow \infty)$ ([13, Definition 3.2]). Next we shall show that $t \geqq t_{n}$ for each n. Observe that $p_{k} t_{m} p_{k} \geqq p_{k} t_{n} p_{k} \geqq 0(m \geqq n \geqq k)$ and $p_{k} t_{n} p_{k} \rightarrow p_{k} t p_{k}$ uniformly ($n \rightarrow \infty$) and we have $p_{k} t p_{k}=p_{k} s(k) p_{k} \geqq p_{k} t_{n} p_{k} \geqq 0$ for all $n \geqq k$. Thus by [11, Theorem 5. 5], it follows that $t \geqq t_{n}$ for each n. Now we shall show that $\Phi(t)=\sup _{n} \Phi\left(t_{n}\right)$. Since $\Phi\left(t_{n}\right) \leqq \Phi(t)$ for all n, we have only to show the converse. Since $p_{k} t_{n} p_{k} \uparrow p_{k} t p_{k}$ uniformly $(n \rightarrow \infty)$, for any $e \in \mathscr{F}_{p},\left\|\Phi\left(e p_{k} t_{k} p_{k} e\right)-\Phi\left(e p_{k} t p_{k} e\right)\right\| \rightarrow 0(n \rightarrow \infty)$, which implies by Lemma 1.1.1, $\Phi\left(e p_{k} t_{n} p_{k} e\right) \uparrow \Phi\left(e p_{k} t p_{k} e\right)(0)$ in Z^{+}. Since $\Phi\left(t_{n}\right) \geqq \Phi\left(t_{n}^{1 / 2} p_{k} e p_{k} t_{n}^{1 / 2}\right)$ $=\Phi\left(e p_{k} t_{n} p_{k} e\right)$, it follows that

$$
\Phi(t) \geqq \operatorname{Sup}_{n} \Phi\left(t_{n}\right) \geqq \Phi\left(e p_{k} t p_{k} e\right)=\Phi\left(t^{1 / 2} p_{k} e p_{k} t^{1 / 2}\right),
$$

so that by the last paragraph of section 2 and Lemma 4.1, $\Phi\left(t^{1 / 2} p_{k} e p_{k} t^{1 / 2}\right)$ $\uparrow \Phi\left(t^{1 / 2} p_{k} t^{1 / 2}\right)$ in Z. Hence $\Phi(t) \geqq \operatorname{Sup}_{n} \Phi\left(t_{n}\right) \geqq \Phi\left(t^{1 / 2} p_{k} t^{1 / 2}\right)$. Again by Lemma 4. 1, $\Phi(t)=\operatorname{Sup}_{n} \Phi\left(t_{n}\right) . \operatorname{Sup}_{n}\| \| t_{n}\| \|_{1}<\infty$ implies $\Phi(t) \in Z$ and $t \in \mathcal{L}^{+}$. Since $\sum_{n=1}^{\infty}\| \| t_{n}-t_{n-1} \|_{1}$ $\leqq \sum_{n=1}^{\infty} 1 / 4^{n}<\infty$, for every positive number ε, there is a positive integer $k(\varepsilon)$ such that $\sum_{n=k}^{\infty}\| \| t_{n}-t_{n-1}\| \|_{1} \leqq \varepsilon$ for all $k \geqq k(\varepsilon)$, that is, $\sum_{n=k+1}^{m} \Phi\left(t_{n}-t_{n-1}\right)=\Phi\left(t_{m}\right)-\Phi\left(t_{k}\right) \leqq \varepsilon \cdot 1$ for all $m \geqq k+1 \geqq k(\varepsilon)$. $\Phi\left(t_{m}\right) \uparrow \Phi(t)(0)$ implies $\Phi(t)-\Phi\left(t_{k}\right) \leqq \varepsilon \cdot 1$, that is, $\left\|\left\|t-t_{k}\right\|_{1} \leqq \varepsilon\right.$ for all $k \geqq k(\varepsilon)$. Thus the statement described above follows.

Using this fact, we can prove the completeness of $L^{1}(\Phi)$ by the similar way as that of [10, Theorem 14], so we omit the details. This completes the proof.
4. $\boldsymbol{A} \boldsymbol{W}^{*}$-module $L^{2}(\Phi)$ over Z. Let $L^{2}(\Phi)=\left\{s \in \mathscr{M}, s^{*} s \in \mathcal{L}^{+}\right\}$, then for any s and t in $L^{2}(\Phi),(s+t)^{*}(s+t) \leqq 2\left(s^{*} s+t^{*} t\right) \in \mathcal{L}^{+}$shows by Lemma 3.2,s+t $\in L^{2}(\Phi)$. For any $a \in Z$ and $s \in L^{2}(\Phi)$, we have $\Phi\left(|a|^{2} s^{*} s\right)=|a|^{2} \Phi\left(s^{*} s\right) \in Z^{+}$, so that $a s \in L^{2}(\Phi)$, that is, $L^{2}(\Phi)$ is a module over Z.

At first, we shall give the following lemma.

Lemma 4.1. Let $s \in \mathcal{M}$ and $\sigma_{s}(x)=\Phi\left(s^{*} x s\right)$ for any $x \in M^{+}$, then for any increasing net $\left\{a_{\gamma}\right\}$ in M^{+}such that $a_{\gamma} \uparrow e(\mathbb{S}-0)$ for some $e \in M_{p}, \sigma_{s}\left(a_{r}\right) \uparrow \sigma_{s}(e)$ in \boldsymbol{Z}. In particular, σ_{s} is completely additive on projections.

Proof. Since $\sigma_{s}(e) \geqq \operatorname{Sup} \sigma_{s}\left(a_{\gamma}\right)$, we have only to show the converse. Let $b \in \mathscr{F}^{+}$with $b \leqq$ ess $^{*} e$, then $e b=b e=b$ and $b^{1 / 2}\left(a_{\gamma}\right) b^{1 / 2} \uparrow b^{1 / 2} e b^{1 / 2}(\subseteq-0)$, so that by the continuity of $\Phi, \Phi\left(b^{1 / 2} a_{r} b^{1 / 2}\right) \uparrow \Phi\left(b^{1 / 2} e b^{1 / 2}\right)$. On the other hand, since $\Phi\left(b^{1 / 2} a_{r} b^{1 / 2}\right)$ $=\Phi\left(a_{\gamma}^{1 / 2} b a_{\gamma}^{1 / 2}\right) \leqq \Phi\left(a_{\gamma}^{1 / 2} s s^{*} a_{\gamma}^{1 / 2}\right)=\Phi\left(s^{*} a_{\gamma} s\right)$, it follows that $\Phi(b) \leqq \operatorname{Sup}_{\gamma} \sigma_{s}\left(a_{\gamma}\right)$. Therefore by Lemma 3.1, $\sigma_{s}(e) \leqq \operatorname{Sup}_{\gamma} \sigma_{s}\left(a_{\gamma}\right)$ and the proof is now completed.

Lemma 4.2 ([10]). $L^{2}(\Phi)$ has the following properties:
(1) For s and t in $L^{2}(\Phi)^{+}, \Phi(s t) \geqq 0$;
(2) if $s, t \in L^{2}(\Phi)$ with $|s| \leqq|t|$, then $\left.\Phi\left(|s|^{2}\right) \leqq \dot{\Phi}^{(}|s||t|\right) \leqq \Phi\left(|t|^{2}\right)$;
(3) if s and t are self-adjoint elements in $L^{2}(\Phi)$ such that $\Phi\left(s^{2}\right) \leqq \Phi\left(t^{2}\right)$, then $\dot{\Phi}(s t) \leqq \Phi\left(t^{2}\right) ;$
(4) let t be in $L^{2}(\Phi)$ and $u \in M_{u}$, then $\Phi\left(|t|^{2}\right)=\Phi\left(\left|u t u^{*}\right|^{2}\right)$;
(5) if $s, t \in L^{2}(\Phi)$, then $s t \in L^{1}(\Phi)$, $|\dot{\Phi}(s t)|^{2} \leqq \Phi(|s t|)^{2} \leqq \Phi\left(s^{*} s\right) \Phi\left(t^{*} t\right)$ and

$$
\Phi\left(s^{*} s\right)^{1 / 2}=\operatorname{Sup}\left\{|\Phi(s t)|, \Phi\left(t^{*} t\right) \leqq 1\right\}
$$

Proof. Let s and t be in $L^{2}(\Phi)^{+}$, then note that by the remark following Theorem 3.2, s and $t \in \mathcal{C}^{+}$, by [11, Theorem 5.1], we can write $t=\left[t_{n}, e_{n}\right]$, where $t_{n}, e_{n} \in\{t\}^{\prime \prime}, t_{n} e_{n}=t_{n} \geqq 0$ and $t_{n} \uparrow$. Let u be the Cayley transform of t, Γ is the spectrum of $\{u\}^{\prime \prime}([1])$ and $\Gamma_{n}=\{\gamma ;|u(\gamma)+1|>1 / n\}^{-}$where A^{-}is the closure of a set A. Denote the projection in $\{u\}^{\prime \prime}$ corresponding to the clopen subset Γ_{n} by f_{n}, then $f_{n} \uparrow L P(t)$ and $\gamma\left(\in \Gamma_{n}\right) \rightarrow(1+u(\gamma))^{-1}$ is a continuous function on Γ_{n}. Thus $e_{n} f_{m}$ $\in L^{2}(\Phi)$ implies $e_{n} f_{m} \in \mathscr{F}_{p}$ for each pair of positive integers m and n. Since $t e_{n} f_{m} \in \mathscr{F}, t^{1 / 2} e_{n} f_{m} \in \mathscr{F}$ and $s t \in L^{1}(\Phi)$, it follows that

$$
\begin{aligned}
\dot{\Phi}\left(e_{n} f_{m} s t\right) & =\dot{\Phi}\left(s t e_{n} f_{m}\right)=\dot{\Phi}\left(s\left(t e_{n} f_{m}\right)^{1 / 2}\left(t e_{n} f_{m}\right)^{1 / 2}\right) \\
& \left.=\dot{\Phi}\left(t e_{n} f_{m}\right)^{1 / 2} s\left(t e_{n} f_{m}\right)^{1 / 2}\right) \\
& =\Phi\left(s^{1 / 2} t^{1 / 2} e_{n} f_{m} t^{1 / 2} s^{1 / 2}\right) .
\end{aligned}
$$

By Lemma 4.1, $\dot{\Phi}\left(e_{n} f_{m} s t\right) \uparrow \Phi\left(s^{1 / 2} t s^{1 / 2}\right)(0)$ in \mathbf{Z}. On the other hand, by Lemma 1.1.1, $\dot{\Phi}\left(e_{n} f_{m} s t\right) \rightarrow \dot{\Phi}(s t)(0)$ in Z, therefore $\dot{\Phi}(s t)=\Phi\left(s^{1 / 2} t s^{1 / 2}\right) \geqq 0$, so that the, statement (1) follows. To prove (2), we argue as follows. Let $s, t \in \mathrm{~L}^{2}(\Phi)$ such that $|s| \leqq|t|$, then by (1), $|s|^{1 / 2}\left(|t|-|s|^{1 / 2} \mid \geqq 0\right.$ implies that $\dot{\Phi}(|s|(|t|-|s|))$ $=\Phi\left(|s|^{1 / 2}(|t|-|s|)|s|^{1 / 2}\right) \geqq 0$, that is, $\dot{\Phi}(|s||t|) \geqq \Phi\left(|s|^{2}\right)$. By the same way, $\Phi\left(|t|^{2}\right) \geqq \dot{\Phi}(|s||t|)$. Next let $s, t \in L^{2}(\Phi)_{s a}$ such that $\Phi\left(s^{2}\right) \leqq \Phi\left(t^{2}\right)$, then $0 \leqq \Phi\left((t-s)^{2}\right)$
$=\Phi\left(t^{2}\right)-2 \Phi(s t)+\Phi\left(s^{2}\right) \leqq 2 \Phi\left(t^{2}\right)-2 \Phi(s t)$ and this completes the proof of the statement (3). Let $t \in L^{2}(\Phi)$ and $u \in M_{u}$, then $\left|u t u^{*}\right|^{2} u^{*}$, which implies by Lemma 3.2 (3) that the assertion (4) follows. Now we shall show the statement (5). Let s, t be in $L^{2}(\Phi)$ and $s t=w|s t|$ be the polar decomposition of $s t$, then it follows, by the argument used in the proof of Theorem 3.1, that

$$
\begin{aligned}
|\dot{\Phi}(s t)|^{2} & =|\dot{\Phi}(w|s t|)|^{2} \leqq(\|w\| \Phi(|s t|))^{2} \leqq \Phi(|s t|)^{2} \\
& =\left(\Phi\left(w^{*} s t\right)\right)^{2} \leqq \Phi\left(\left(w^{*} s\right)^{*}\left(w^{*} s\right)\right) \Phi\left(t^{*} t\right) \\
& \leqq \Phi\left(s^{*} s\right) \Phi\left(t^{*} t\right) .
\end{aligned}
$$

Now let $a=\operatorname{Sup}\left\{|\dot{\Phi}(s t)| ; \Phi\left(t^{*} t\right) \leqq 1\right\}$ in Z, then by the above inequality $a \leqq \Phi\left(s^{*} s\right)^{1 / 2}$. Let $t_{n}=\left(\Phi\left(s^{*} s\right)+(1 / n) 1\right)^{-1 / 2} s^{*}\left(\in L^{2}(\Phi)\right)$ for each positive integer n, then $\Phi\left(t_{n}^{*} t_{n}\right)=\left(\Phi\left(s^{*} s\right)+(1 / n) 1\right)^{-1} \Phi\left(s^{*} s\right)=\left(\Phi\left(s^{*} s\right)+(1 / n) 1\right)^{-1} \Phi\left(s^{*} s\right) \leqq 1$ and $\dot{\Phi}\left(s t_{n}\right)$ $=\left(\Phi\left(s^{*} s\right)+(1 / n) 1\right)^{-1 / 2} \Phi\left(s^{*} s\right)$, so that

$$
\left(\Phi\left(s^{*} s\right)+(1 / n) 1\right)^{-1 / 2} \Phi\left(s^{*} s\right)^{1 / 2} \Phi\left(s^{*} s\right)^{1 / 2} \leqq a
$$

for all n, that is, $a=\Phi\left(s^{*} s\right)^{1 / 2}$ and the statement (5) follows. This completes the proof.

Now for any pair a and b in $L^{2}(\Phi)$, we define $(a, b)_{\Phi}=\dot{\Phi}\left(b^{*} a\right)$, then $(,)_{\Phi}$ satisfies the following properties:
(1) $(a, b)_{\Phi}=(b, a)_{\Phi}^{*}$,
(2) $(a, a)_{\Phi} \geqq 0,(a, a)_{\Phi}=0$ only if $a=0$,
(3) $(s a+b, c)_{\Phi}=s(a, c)_{\Phi}+(b, c)_{\Phi}$,
for all $a, b, c \in L^{2}(\Phi)$ and $s \in Z$. If we define $\|a\|_{2}=\left\|(a, a)_{\Phi}\right\|^{1 / 2}$ for $a \in L^{2}(\Phi)$, then by ($[9, \S 2]), L^{2}(\Phi)$ is a normed module over Z with respect to $\|\|,\|\|_{2}$. Moreover, we have the following:
(1) Let $\left\{e_{i}\right\}$ be an orthogonal family of projections in Z such that $\sum_{i} e_{i}=e\left(\in Z_{p}\right)$ and if $a \in L^{2}(\Phi)$ such that $e_{i} a=0$ for all i, then $e a=0$.
(2) Let $\left\{e_{i}\right\}$ be an orthogonal family of projections in Z such that $\sum_{i} e_{i}=1$, and let $\left\{a_{i}\right\}$ be a bounded subset of $L^{2}(\Phi)$, then there exists in $L^{2}(\Phi)$ an element a such that $e_{i} a=e_{i} a_{i}$ for each i.

In fact, by the Baer*-ring property of \mathscr{M} ([12, Theorem 3.1]), we can easily show the statement (1). On the other hand, since ([12, Theorem 4.1]), there exists a unique $a \in \mathscr{M}$ such that $e_{i} a=e_{i} a_{i}$, to prove the assertion (2), it suffices to show that $a \in L^{2}(\Phi)$. $e_{i} a^{*} a=e_{i} a_{i}^{*} a_{i}$ implies $e_{i} a^{*} a \in L^{1}(\Phi)$ for each i. Denote Sup $\left\|\left\|a_{i}\right\|_{2}\right.$ by k and we have $\Phi\left(e_{i} a^{*} a\right)=e_{i} \Phi\left(a^{*} a\right)=e_{i} \Phi\left(a_{i} a_{i}\right) \leqq k^{2} e_{i}$ for all i, that is, $\Phi\left(a^{*} a\right)$ $\leqq k^{2} \cdot 1, a \in L^{2}(\Phi)$ and $\left\|\|a\|_{2} \leqq k\right.$. The statement (2) follows.

The rest of this section is devoted to prove that $L^{2}(\Phi)$ is complete with respect to the norm $\|\|,\|\|_{2}$, that is, $L^{2}(\Phi)$ is an $A W^{*}$-module over Z. To prove this, we need the following lemma.

Lemma 4.3. Let $\left\{t_{n}\right\}$ be an increasing sequence in $L^{2}(\Phi)^{+}$such that $\left\|t_{n}-t_{m}\right\|_{2} \rightarrow 0(m, n \rightarrow \infty)$, then there is an element $t \in L^{2}(\Phi)^{+}$such that $\left\|\left\|t_{n}-t\right\|_{2}\right.$ $\rightarrow 0(n \rightarrow \infty)$.

Proof. By passing to a subsequence if necessary, we can suppose $\left\|\left\|t_{n+1}-t_{n}\right\|_{2}\right.$ $<1 / 16^{n}$ for each n. By the spectral theorem ([11]) we can choose sequences of projections $\left\{e_{n}\right\}$ in $\left\{t_{n+1}-t_{n}\right\}^{\prime \prime}$ and $\left\{f_{n}\right\}$ in $\left\{t_{n}\right\}^{\prime \prime}$ such that $0 \leqq\left(t_{n+1}-t_{n}\right) e_{n}$ $\leqq\left(1 / 5^{n}\right) \cdot 1,\left(t_{n+1}-t_{n}\right) \geqq\left(1 / 5^{n}\right)\left(1-e_{n}\right), t_{n} f_{n} \leqq 2^{n} \cdot 1$ and $t_{n} \geqq 2^{n}\left(1-f_{n}\right)$ for each n. Now put $p_{n}=\bigwedge_{k \geq n} e_{k} \bigwedge f_{k}$, by the same arguments as in the proof of Theorem 3.2, $\left\{p_{n}\right\}$ is an SDD and there exists a sequence $\{s(k)\}$ in $M_{s a}$ such that $t_{n} p_{k} \rightarrow s(k) p_{k}$ uniformly and $\left\{s(k), p_{k}\right\}$ is an EMO. Denote $\left[s(k), p_{k}\right]$ by t. Let $t_{n}^{2}-t_{n} t_{m}$ $=u_{n}\left|t_{n}^{2}-t_{n} t_{m}\right|\left(\right.$ resp. $\left.t_{n} t_{m}-t_{m}^{2}=v_{n}\left|t_{n} t_{m}-t_{m}^{2}\right|\right)$ be the polar deccmposition of $t_{n}^{2}-t_{n} t_{m}$ (resp. $t_{n} t_{m}-t_{m}^{2}$), then by Theorem 3.1(4) and Lemma 4.2, we get that

$$
\begin{aligned}
\Phi\left(\left|t_{n}^{2}-t_{m}^{\prime}\right|\right) & \leqq \Phi\left(\left|t_{n}^{2}-t_{n} t_{m}\right|\right)+\Phi\left(\left|t_{n} t_{m}-t_{m}^{2}\right|\right) \\
& =\Phi\left(u_{n}^{*} t_{n}\left(t_{n}-t_{m}\right)\right)+\Phi\left(v_{n}^{*}\left(t_{n}-t_{m}\right) t_{m}\right) \\
& \leqq\left(\| \| t_{n}\left\|_{2}+\right\| \mid t_{m}\| \|_{2}\right)\left\|t_{n}-t_{m}\right\|_{2} \cdot 1
\end{aligned}
$$

for each pair of integers m and n. Thus $\left\{t_{n}^{2}\right\}$ is a $\left\|\|,\|_{1}-\right.$ Cauchy sequence in $L^{1}(\Phi)$. By Theorem 3.2, there exists an $s \in L^{1}(\Phi)$ such that $\left\|t_{n}^{2}-s\right\|_{1} \rightarrow 0(n \rightarrow \infty)$ and $t_{n}^{2} \rightarrow s$ n.e. $(n \rightarrow \infty)$. Let $r_{k}=\bigwedge_{n \geq k}\left(\left(t_{n+1}-t_{n}\right)^{-1}\left[p_{n}\right]\right) \bigwedge\left(t_{n}^{-1}\left[p_{n}\right]\right)$ and $q_{n}=p_{n} \bigwedge r_{n}$, then by [11, Lemma 3.1], $\left\{q_{n}\right\}$ is an SDD. For any pair k and n with $n \geqq k$,

$$
\begin{aligned}
\left(t_{n+1}^{2}-t_{n}^{2}\right) q_{k} & =t_{n+1}\left(t_{n+1}-t_{n}\right) q_{k}+\left(t_{n+1}-t_{n}\right) t_{n} q_{k} \\
& =t_{n+1} p_{n}\left(t_{n+1}-t_{n}\right) q_{k}+\left(t_{n+1}-t_{n}\right) p_{n} t_{n} q_{k}
\end{aligned}
$$

therefore $\left(t_{n+1}^{2}-t_{n}^{2}\right) q_{k} \in M$ and $\left\|\left(t_{n+1}^{2}-t_{n}^{2}\right) q_{k}\right\|<2 \cdot(2 / 5)^{n}$, so that by the similar reason to that of Theorem 3.2, there is a sequence of elements $\{s(k)\}$ in $M_{s a}$ such that $t_{m}^{\prime} q_{k} \rightarrow s(k)^{\prime} q_{k}$ uniformly $(m \rightarrow \infty)$ and $\left\{s(k)^{\prime}, q_{k}\right\}$ is an EMO. Let $t^{\prime}=\left[s(k)^{\prime}, q_{k}\right] \in \mathcal{C}$, then $t_{n}^{2} \rightarrow t^{\prime} n . e .(n \rightarrow \infty)$. Thus $q_{k} s(k)^{2} q_{k}=q_{k} s(k)^{\prime} q_{k}$ for all k, so that by the Baer*ring property of M, there is an $\operatorname{SDD}\left\{q_{k}^{\prime}\right\}$ such that $s(k)^{2} q_{k}^{\prime}=s(k)^{\prime} q_{k}^{\prime}$ for each k, while $t_{n}^{\prime} \rightarrow s(n . e$.$) , by the unicity of \mathrm{n}$. e. limit, it follows that $t^{2}=t^{\prime}=s \in L^{1}(\Phi)$, that is, $t \in L^{2}(\Phi)$. On the other hand $t \geqq t_{n}$ implies by Lemma 4.2,

$$
\begin{aligned}
\left.\Phi_{(}^{\prime}\left(t-t_{n}\right)^{2}\right) & =\Phi\left(t^{2}\right)-2 \dot{\Phi}\left(t t_{n}\right)+\Phi\left(t_{n}^{2}\right) \\
& \leqq \Phi\left(t^{2}\right)-\Phi\left(t_{n}^{2}\right) \\
& =\dot{\Phi}\left(s-t_{n}^{2}\right) \leqq\left\|\mid I s-t_{n}^{2}\right\|_{1} \cdot 1 .
\end{aligned}
$$

Thus $\left\|\left\|t-t_{n}\right\|_{2} \rightarrow 0(n \rightarrow \infty)\right.$ and $t_{n} \rightarrow t($ n. e.)($n \rightarrow \infty)$. This completes the proof.
THEOREM 4.1. $L^{2}(\Phi)$ is a faithful $A W^{*}$-module over $Z([9])$ with respect to the norm |||, ||| 2 .

Proof. The proof of that $L^{2}(\Phi)$ is an $A W^{*}$-module is an obvious modification of that for Theorem 3.2, thus it is sufficient to show that $L^{2}(\Phi)$ is faithful. In fact if $a \in Z$ with at $=0$ for all $t \in L^{2}(\Phi)$, then the semi-finiteness of Φ and the Baer*-ring property of \mathcal{C} show the desired property that $a=0$. This completes the proof.
5. Proof of the main theorem. In the followings, we always denote $L^{2}(\Phi)$ by \mathfrak{M}. By [9 , Theorem 7], the set $\mathscr{B}_{1}^{\prime} \mathfrak{M}$) of all bounded module homomorphisms of \mathfrak{M} into \mathfrak{M} is an $A W^{*}$-algebra of type 1 with the center Z. The left (resp. right) regular representation $\pi_{1}\left(\right.$ resp. $\left.\pi_{2}\right)$ of M is a ${ }^{*}$-homomorphism (resp. *-antihomomorphism) of M into $\left.\mathscr{B}_{(}^{\prime} \mathfrak{M}\right)$ which is defined by $\pi_{1}(x) t=x t\left(\operatorname{resp} . \pi_{2}(x) t=t x\right)$ for any $x \in M$ and $t \in \mathfrak{M}$. Since $\mathscr{F} \subset \mathfrak{M}, \pi_{1}(x)=0\left(\right.$ resp. $\left.\pi_{2}(x)=0\right)$ implies that there exists an orthogonal family $\left\{e_{\alpha}\right\}$ of projections in \mathfrak{M} such that $x e_{\alpha}=0$ (resp. $e_{\alpha} x=0$) for each α and $\sum_{\alpha} e_{\alpha}=1$. By [7, Lemma 2.2], $x=0$, that is, π_{1} (resp. π_{2}) is a *-isomorphism (resp. *-antiisomorphism).

Lemma 5.1. $\pi_{1}(M)$ and $\pi_{2}(M)$ are $A W^{*}$-subalgebras of $\left.\mathscr{B}_{(} \mathfrak{M}\right)$.
Proof. We have only to prove the first of these statements, the second follows similarly. By [8, Definition], it suffices to show that for any orthogonal set $\left\{e_{i}\right\}_{i \in I}$ of projections in M with $e=\sum_{i \in \mathcal{I}} e_{i}, \pi_{1}\left(\sum_{i \in J} e_{i}\right) \uparrow \pi_{1}(e)$ in $\left.\mathscr{B}(\mathfrak{M})\left(J \in \mathscr{F}_{1} I\right)\right)$. In fact, since $\left(\pi_{1}(e)-\pi_{1}\left(\sum_{i \in J} e_{i}\right) x, x\right)_{\Phi}=\Phi\left(x^{*}\left(e-\sum_{i \in J} e_{i}\right) x\right)$, therefore from Lemma 4.1 and [14, Lemma 1.4] $\sum_{i \in J} \pi_{1}\left(e_{i}\right) \uparrow \pi_{1}(e)$ in $\mathscr{B}(\mathfrak{M})$. This completes the proof.

Lemma 5.2. For any $a \in \mathfrak{M}$, there is a sequence $\left\{a_{n}\right\}$ in $M \cap \mathfrak{M}$ such that $\left\|\left\|a_{n}\right\|\right\|_{2} \leqq\|| |\|_{2}$ and $\left|a_{n}-a\right|_{\Phi} \rightarrow 0(0)$ in Z^{+}, whre $|x|_{\Phi}=(x, x)_{\Phi}^{1 / 2}$ for any $x \in \mathfrak{M}$.

Proof. Let $a=u|a|$ be the polar decomposition of a in \mathcal{C}, then for any $b \in \mathscr{F}^{+},|u(|a|-b)|_{\Phi} \leqq||a|-b|_{\Phi}$, so that we have only to prove the assertion for
the case when $a \geqq 0$. Let v be the Cayley transform of a, then from the spectral theorem ([11)), there are an $\operatorname{SDD}\left\{e_{n}\right\}$ in $\{v\}^{\prime \prime}$ and a sequence of projections $\left\{f_{n}\right\}$ in $\{v\}^{\prime \prime}$ such that $n\left(1-e_{n}\right) \leqq a, a e_{n}$ and $(1+v) f_{n}$ is invertible in $f_{n} M f_{n}$ for each n. Since $a_{n}=a e_{n} f_{n} \in \mathscr{F}^{+}$and $a^{2} \geqq a_{n}^{2} \geqq a_{m}^{2}$ if $m<n$, then

$$
0 \leqq \Phi\left(a^{2}\right)-\Phi\left(a_{n}^{2}\right)=\Phi\left(a^{2}\left(1-e_{n} f_{n}\right)\right) \leqq \Phi\left(a^{2}\left(1-e_{n} f_{m}\right)\right)
$$

so that by Lemma 4.1, $0 \leqq 0-\lim \left(\Phi\left(a^{2}\right)-\Phi\left(a_{n}^{2}\right)\right) \leqq \Phi\left(a^{2}\left(1-f_{m}\right)\right)$ for all m, which implies by Lemma 1.1.1, $\Phi\left(a_{n}^{2}\right) \uparrow \Phi\left(a^{2}\right)(0)$. While from Lemma 4. 2, it follows that $\Phi\left(\left(a-a_{n}\right)^{2}\right) \leqq \Phi\left(a^{2}\right)-\Phi\left(a_{n}^{2}\right)$. This shows that $\left|a-a_{n}\right|_{\Phi} \rightarrow 0(0)$ and the proof is completed.

Lemma 5. 3. $\pi_{1}(M)^{\prime \prime}=\pi_{2}(M)^{\prime}$ and $\pi_{2}(M)^{\prime \prime}=\pi_{1}(M)^{\prime}$ in $\mathscr{B}(\mathfrak{P})$ where \mathfrak{Y}^{\prime} is the commutant of \mathfrak{A} in $\mathcal{B}(\mathfrak{M})$.

Proof. The methods which will be used here are patterned after those of [2, Chapter 1, Section 5]. Since $\pi_{1}(M)^{\prime} \supset \pi_{2}(M)$ and $\pi_{2}(M)^{\prime} \supset \pi_{1}(M)$, we have only to prove the converse inclusion. Let x be a left (resp. right) bounded element in \mathfrak{M}, that is, an element x such that there is $B_{1}(x)$ (resp. $B_{2}(x)$) in $\mathscr{B}(\mathfrak{M})$ such that $B_{1}(x) a=\pi_{2}(a) x\left(\operatorname{resp} . B_{2}(x) a=\pi_{1}(a) x\right)$ for all $M \cap \mathfrak{M}$. First of all, we shall show that the set $\mathfrak{M}_{1}=\left\{B_{1}(x) ; x\right.$ is left bounded $\}$ is a left ideal of $\pi_{2}(M)^{\prime}$. In fact, for any a and b in $M \cap \mathfrak{M}$, an easy calculation shows that $\left(B_{1}(x) \pi_{2}(a) b, y\right)_{\Phi}=\left(\pi_{2}(a) B_{1}(x) b, y\right)_{\phi}$ for any $y \in L^{2}(\Phi)$. Therefore, by Lemma 1.1.1, Lemma 5.2 and the Schwarz' inequality, $\left(c,\left(B_{1}(x) \pi_{2}(a)\right)^{*} y\right)_{\Phi}=\left(c,\left(\pi_{2}(a) B_{1}(x)\right)^{*} y\right)_{\Phi}$ for any $c \in \mathfrak{M}$, that is, $B_{1}(x) \pi_{2}(a)$ $=\pi_{2}(a) B_{1}(x)$ for any $a \in M \cap \mathfrak{M}$. The semi-finiteness of Φ implies that there is an increasing family of projections $\left\{e_{\alpha}\right\}$ in $M \cap \mathfrak{M}$ such that for any $a \in M, a e_{\alpha} \in M$ and $\pi_{2}\left(a e_{\alpha}\right) \rightarrow \pi_{2}(a)$ weakly ([14, p. 311]). Thus $B_{1}(x) \pi_{2}(a)=\pi_{2}(a) B_{1}(x)$ for all $a \in M$, that is, $\mathcal{M}_{1} \subset \pi_{2}(M)^{\prime}$. Since for any $T \in \pi_{2}(M)^{\prime}, T B_{1}(x) a=T \cdot \pi_{2}(a) x=\pi_{2}(a) T x$ for all $a \in M \cap \mathfrak{M}, T x$ is left bounded and $B_{1}(T x)=T B_{1}(x)$. Hence the assertion follows. From the same reason, $\mathfrak{M}_{2}=\left\{B_{2}(x) ; x\right.$ is right bounded $\}$ is a left ideal of $\pi_{1}(M)^{\prime}$. Let $\mathfrak{M}_{3}=\mathfrak{M}_{1} \cap \mathfrak{M}_{1}^{*}$ and $\mathfrak{M}_{4}=\mathfrak{M}_{2} \supset \mathfrak{M}_{2}^{*}$, where $\mathfrak{A}^{*}=\left\{x^{*}, x \in \mathfrak{A}\right\}$ for any subset \mathfrak{A} of $\mathscr{B}^{\prime}(\mathfrak{M})$, then $\mathfrak{M}_{3}^{\prime \prime} \subset \pi_{2}(M)^{\prime}$ and $\mathfrak{M}_{4}^{\prime \prime} \subset \pi_{1}(M)^{\prime}$. Next we shall show that $\mathfrak{M}_{3}^{\prime \prime}=\pi_{2}(M)^{\prime}$. In fact, for any $T \in \pi_{2}(M)^{\prime}$ and $T_{1} \in \mathfrak{M}_{3}^{\prime}, T_{1} \pi_{1}(b) T_{\pi_{1}}(a)=\pi_{1}(b) T \cdot \pi_{1}(a) T_{1}$ for any a and b in $M \cap \mathfrak{M}$, so that from the above argument, we have $T_{1} T=T T_{1}$, that is, $\pi_{2}(M)^{\prime}=\mathfrak{M}_{3}^{\prime \prime}$. By the same way, $\pi_{1}(M)^{\prime}=\mathfrak{M}^{\prime \prime 4}$. To prove Lemma 5.2. it suffices to show $\mathfrak{M}_{3} \subset \mathfrak{M}_{4}^{\prime}$. In fact, let $B_{1}(a) \in \mathfrak{M}_{3}$ and $B_{2}(b) \in \mathfrak{M}_{4}$, then $B_{1}(a)^{*}=B_{1}(c)\left(\right.$ resp. $B_{2}(b)^{*}$ $\left.=B_{2}(d)\right)$ for some left (resp. right) bounded element c (resp. d). Therefore, by a standard calculation shows that for any x and y in $M \cap \mathfrak{M},(a, x y)_{\Phi}=\left(c^{*}, x y\right)_{\Phi}$. By lemma 5.2, it follows that $a=c^{*}$. By the same way $b=d^{*}$. Again by Lemma 5.2, there exist sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ in $M \cap \mathfrak{M}$ such that $\left|x_{n}-a\right|_{\Phi}=\left|x_{n}^{*}-c\right|_{\Phi} \rightarrow 0(0)$, $\left|y_{n}-b\right|_{\Phi}=\left|y_{n}^{*}-d\right|_{\Phi} \rightarrow 0(0), \quad\left\|\mid x_{n}\right\|_{2} \leqq\|a\|_{2}$ and $\left\|y_{n}\right\|_{2} \leqq\|\mid b\|_{2}$ for each n. Therefore, by Lemma 1.1.1, from the similar arguments ([2, p.68,Lemma 3]) it follows that $\left(B_{1}(a) B_{2}(b) x, y\right)_{\Phi}=\left(B_{2}(b) B_{1}(a) x, y\right)_{\Phi}$ for any x and y in $M \cap \mathfrak{M}$. From

Lemma 5.2, we have $B_{1}(a) B_{2}(b)=B_{2}(b) B_{1}(a)$, which lmplies $\mathfrak{M}_{3}^{\prime \prime} \subset \mathfrak{M}_{4}^{\prime}$. This completes the proof.

For any $a \in \mathfrak{M}$, let $\bigvee\left\{\pi_{1}(M)^{\prime} a\right\}$ be the $A W^{*}$-submodule generated by $\left\{\pi_{1}(M)^{\prime} a\right\}$ and E_{a} be the projection on $\bigvee\left\{\pi_{1}(M)^{\prime} a\right\}$ ([9, Theorem 3]), then $E_{a} \in \pi_{1}(M)^{\prime \prime}$. In fact, for any $A \in \pi_{1}(M)^{\prime}, A\left\{\pi_{1}(M)^{\prime} a\right\} \subset \bigvee\left\{\pi_{1}(M)^{\prime} a\right\}$. Let $\left\{e_{a}\right\}$ be an orthogonal family of projections in Z with $\Sigma_{\alpha} e_{\alpha}=1$ and let $\left\{y_{\alpha}\right\}$ be a uniformly bounded subset of $\left\{\pi_{1}(M)^{\prime} a\right\}$, then $\left[9\right.$, p. 842 , Definition], $A\left(\Sigma_{\alpha} e_{\alpha} y_{\alpha}\right)=\Sigma_{\alpha} e_{\alpha} A y_{\alpha}$ in \mathfrak{M}, so that $A\left(\Sigma_{\alpha} e_{\alpha} y_{a}\right) \in \bigvee\left\{\pi_{1}(M)^{\prime} a\right\}$. The continuity of A implies $A\left(V\left\{\pi_{1}(M)^{\prime} a\right\}\right) \subset$ $\vee\left\{\pi_{1}(M)^{\prime} a\right\}$, that is, $A E_{a}=E_{a} A E_{a}$ for all $A \in \pi_{1}(M)^{\prime}$, so that $E_{a} \in \pi_{1}(M)^{\prime \prime} . E_{a}$ is called a cyclic projection relative to a.

Now we are in the position to state
THEOREM 5.1. $\pi_{1}(M)^{\prime \prime}=\pi_{1}(M)$, that is, M can be imbedded as a double commutator in a type $1 A W^{*}$-algebra $\mathscr{B}(\mathfrak{M})$ with the center which is *-isomorphic with Z.

PRoof. By the spectral theorem, it suffices to show that $\pi_{1}(M)_{p}^{\prime \prime}=\pi_{1}\left(M_{p}\right)$. For any $P \in \pi_{1}(M)_{p}^{\prime \prime}$, let $\left\{E_{x}\right\}$ be a maximal family of orthogonal cyclic projections in $\pi_{1}(M)^{\prime \prime}$ majorized by P. By the definition of E_{x}, the standard argument shows that $P=\Sigma_{x} E_{x}$ in $\mathscr{B}(\mathfrak{M})$. Since $\pi_{1}(M)$ is an $A W^{*}$-subalgebra of $\mathscr{B}(\mathfrak{M})$, by [14, Lemma 4.5], in order to prove $P \in \pi_{1}(M)_{p}$, we have only to show that $E_{x} \in \pi_{1}(M)$ for all $x \in \mathfrak{M}$.

Let $x=u|x|$ be the polar decomposition of x in \mathcal{C}, then $E_{x}=\pi_{1}(u) E_{|x|} \pi_{1}(u)^{*}$. In fact, observe that $x=\pi_{1}(u)|x|$ and $|x|=\pi_{1}(u)^{*} x, A x=\pi_{1}(u) A|x|$ and $\pi_{1}(u)^{*} A x$ $=A|x|$ for any $A \in \pi_{1}(M)^{\prime}$, so that $\vee\left\{\pi_{1}(M)^{\prime} x\right\} \supset \pi_{1}(u)\left(\vee\left\{\pi_{1}(M)^{\prime}|x|\right\}\right)$. For any $y \in \bigvee\left\{\pi_{1}(M)^{\prime} x\right\}$ and for any positive real number ε, we can choose an orthogonal set $\left\{e_{\alpha}\right\}$ of projections in Z and a family $\left\{B_{\alpha}\right\}$ in $\pi_{1}(M)^{\prime}$ such that $\Sigma_{\alpha} e_{\alpha}=1$, $\operatorname{Sup}_{\alpha}\left\|B_{\alpha} x\right\| \|_{2}<\infty$ and $\left\|y-\Sigma_{\alpha} e_{\alpha} B_{\alpha} x\right\| \|_{2}<\varepsilon$. Since $e_{\alpha} \pi_{1}(u) \pi_{1}(u)^{*} B_{\alpha} x=e_{\alpha} B_{\alpha} x$ for each α, we have $\left\|\mid y-\pi_{1}(u) \pi_{1}(u)^{*} y\right\|_{2}<2 \varepsilon$, that is, $y=\pi_{1}(u) \pi_{1}(u)^{*} y$. On the other hand, $\pi_{1}(u)^{*} B_{a} x=B_{\alpha}|x|$ and $\left|\left|B_{\alpha}\right| x\right|\left\|_{2} \leqq\right\| \mid B_{\alpha} x \|_{2}$ for each α implies that $\left|\left|\left|\pi_{1}(u)^{*} y-\Sigma_{\alpha} e_{\alpha} B_{\alpha}\right| x\right| \|_{2}<\varepsilon\right.$ and $\pi_{1}(u)^{*} y \in \bigvee\left\{\pi_{1}(M)^{\prime}|x|\right\}$. Therefore combining the above results, $y \in \pi_{1}(u)\left(\vee\left\{\pi_{1}(M)^{\prime}|x|\right\}\right)$, that is, $\vee\left\{\pi_{1}(M)^{\prime} x\right\}=\pi_{1}(u)\left(\vee\left\{\pi_{1}(M)^{\prime}|x|\right\}\right)$. By the same way, it follows that $\pi_{1}(R p(x))\left(\vee\left\{\pi_{1}(M)^{\prime}|x|\right)=\bigvee\left\{\pi_{1}(M)^{\prime}|x|\right\}\right.$. From these facts, we get that $E_{x}=\pi_{1}(u) E_{|x|} \pi_{1}(u)^{*}$. Hence to prove that $E_{x} \in \pi_{1}(M)$, we may assume $x \geqq 0$ without loss of generality.

Let $x \in \mathfrak{M}$ with $x \geqq 0$, then there exist a projection e_{n} and f_{n} in $\{x\}^{\prime \prime}$ satisfying the properties described in the proof of Lemma 5.2. Let $a_{n}=x e_{n} f_{n}(\in \mathscr{F})$, then $a_{n} \uparrow, a_{n} \leqq x$ and $\left|a_{n}-x\right|_{\Phi} \rightarrow 0(0)$. Since $a_{n}=\pi_{1}\left(e_{n} f_{n}\right) x=\pi_{2}\left(e_{n} f_{n}\right) x, E_{a_{n}} \leqq E_{x}$ and $E_{a_{n}} \uparrow$. Moreover $\left|a_{n}-x\right|_{\Phi} \rightarrow 0(0)$ implies $E_{a_{n}} \uparrow E_{x}$ in $\mathscr{B}^{\prime}(\mathfrak{M})$. Thus by [14, Lemma 4.5], to prove $E_{x} \in \pi_{1}(M)$, we have only to show that $E_{a_{n}} \in \pi_{1}(M)$ for each n.

Now we shall prove that $E_{a} \in \pi_{1}(M)$ for all $a \in \mathscr{F}$. Since $\pi_{3}(M)$ is an $A W^{*}$ subalgebra of $\mathscr{B}(\mathfrak{M})$, it is sufficient to show that $E_{a}=L P(\mathscr{B}(\mathfrak{M})) \pi_{1}(a)$) ($[8$, Lemma 2]). Observe that for any $b \in M \cap \mathfrak{M}, \pi_{2}(b) a=a b=\pi_{1}(a) b \in \vee\left\{\pi_{1}(a) \mathfrak{M}\right\}$, let E be the projection in $\mathscr{B}(\mathfrak{M})$ corresponding to $\bigvee\left\{\pi_{1}(a) \mathfrak{M}\right\}$, then $E \pi_{2}(b) a=\pi_{2}(b) a$ for all $b \in M \cap \mathfrak{M}$. The semi-finiteness of Φ implies that for any $A \in \pi_{2}(M)$, there is a net $\left\{a_{\alpha}\right\}$ in $M \cap \mathfrak{M}$ such that $\left\|\pi_{2}\left(a_{\alpha}\right)\right\| \leqq\|A\|$ for each α and $\pi_{2}\left(a_{\alpha}\right) \rightarrow A$ strongly in $\mathscr{B}(\mathfrak{M})$. Therefore $E \pi_{2}(b) a=\pi_{2}(b) a$ for all $b \in M$. For any $A \in \pi_{2}(M)^{\prime \prime}\left(=\pi_{1}(M)^{\prime}\right)$, since $\pi_{2}(M)$ is an $A W^{*}$-subalgebra of $\mathscr{B}(\mathfrak{P})$, by [14, Lemma 4.2], there is a bounded net $\left\{A_{2}\right\} \subset \pi_{2}(M)$ such that $A_{2} \rightarrow A$ strongly in $\mathcal{B}(\mathfrak{M})$, thus $E A a=A a$, which implies $\bigvee\left\{\pi_{1}(M)^{\prime} a\right\} \subset \bigvee\left\{\pi_{1}(a) \mathfrak{M}\right\}$, that is $E_{a} \leqq E$. For any $x \in \mathfrak{M}$, by Lemma 5.2, there is a sequence $\left\{b_{n}\right\}$ in $M \cap \mathfrak{M}$ such that $\left|x-b_{n}\right|_{\Phi} \rightarrow 0(0)$ and $\left\|b_{n}\right\|\left\|_{2} \leqq\right\| x \|_{2}$ for each n, so that $E_{a} \pi_{1}(a) b_{n}=\pi_{1}(a) b_{n}$ implies $E_{a} \pi_{1}(a) x=\pi_{1}(a) x$, that is, $E=E_{a}$. An easy calculation shows that $E=L P(\mathscr{B}(\mathfrak{M}))\left(\pi_{1}(a)\right)$ and the proof is now completed.

Corollary. Let \mathscr{B} be an $A W^{*}$-al gebra of type 1 with center \mathcal{Z} and let \mathcal{A} be a semi-finite $A W^{*}$-subalgebra of \mathscr{B} which contains \mathcal{L}, then $\mathcal{A}=\mathcal{A}^{\prime \prime}$ in \mathcal{B}.

By Theorem 5.1, the proof proceeds in entire analogy to that of [14, Theorem 4.4], so we omit the details.

References

[1] J. Dixmier, Sur certains espaces considèrès par M. H. Stone, Summa Brasil. Math., 2 (1951), 151-182.
[2] J. DIXMIER, Les algèbres d'opérateurs dans l'espace hilbertien, Gauthier-Villars, Paris, (1957).
[3] J. Feldman, Embedding of $A W^{*}$-algebras, Duke Math. J., 23(1956), 303-307.
[4] M. Goldman, Structure of $A W^{*}$-algebras I., Duke Math. J., 23(1956), 23-34.
[5] H. HALPERN, Embedding as a double commutator in a type $1 A W^{*}$-algebras, Trans. Amer. Math. Soc., 148(1970), 85-98.
[6] R. V. Kadison and G. K. Pedersen, Equivaleace in operator algebras, to apperar.
[7] I. Kaplansky, Projections in Banach algebras, Ann. of Math., 53(1951), 235-249.
[8] I. Kaplansky, Algebras of type 1, Ann. of Math., 56(1952), 460-472.
[9] I. KAplansky, Modules over operator algebras, Amer. J. Math., 45(1953), 839-858.
[10] T. Ogasawara and K. Yoshinaga, Extension of 8 -application to unbounded operators, J. Sci. Hiroshima, 19(1955), 273-299.
[11] K. SAITô, On the algebra of measurable operators for a general $A W^{*}$-algebra, Tôhoku Math. J., 21(1969), 249-270.
[12] K. Saitồ, On the algebra of measurable operators for a general $A W^{*}$-algebra II, to appear.
[13] K. SAITÔ, A non-commutative theory of integration for a semi-finite $A W^{*}$-algebra and a problem of Feldman, Tôhoku Math. J., 22(1970), 420-461.
[14] H. WiDOM, Embedding in Algebras of type 1, Duke Math. J., 23(1956), 309-324.
[15] J. D. Maitland Wright, The Radon-Nikodym theorem for Stone-algebra valued measures, Trans. Amer. Math. Soc., 139(1969), 75-94.
[16] Ti YEN, Trace on finite $A W^{*}$-algebras, Duke Math. J., 22(1955), 207-222.

