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1. Introduction. The uniqueness theorem of the Cauchy problem for elliptic
operators with double characteristics have been studied by many authors, [ 3 ], [ 4 ],
[ 6 ], etc. On the other hand, in [ 5 ], A.Plis has constructed an elliptic equation of
fouth order with real-valued C°° coefficients, which has non-trivial solutions with
compact support and P.Cohen [ 1 ] has constructed an equation of order m with
constant leading coefficients, with a complex characteristics of multiplicity r and
with a lower order term of order m — 1 with Ck coefficients, k<.r—2, for which
uniqueness fails. It is the point worthy of remark that there exists an equation
whose principal part is equal to Δ 3 and for which uniqueness fails, where Δ is
the Laplacian operator. The purpose of this paper is to show the uniqueness and
the unique continuation theorem for some class of elliptic equations which include
every equation with principal part Δ 3 and with a lower order term with Lipschitz
continuous coefficients. At first, we shall study the solutions of a differential inequality

(1.1) IP{D)u + Q{x; D)u\^C E \Dau\

where P[D) is a linear partial differential operator of order m with constant
coefficients and the principal part Pm(D) of P(D) is of real (resp. complex)
characteristics of multiplicity at most s (resp. r) and where Q{x\ D) is a homogeneous
operator of order m—q + 1 with Lipschitz continuous coefficients defined in a
neighbourhood of the origin 0. When £2=0, q = [{r+ϊ)/2] and P{D) is homogeneous,
Goorjian [ 2 ] proved that each solution u € Cm for the differential inequality (1.1),
which vanishes for

(1. 2) x1 < x\ + + xϊ

when x = (xl9 , xn) is in a neighbourhood of 0, also vanishes in a full neighbourhood
of 0. We are interested in the case of r = 3, q = 2. Next, applying the results for
operators with constant leading coefficients, we shall also consider the solutions of a
differential inequality
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(1.3) IA(x;Dfu + B[x;D)u\^C Σ \DΉ\

where A(x; D) is a homogeneous operater of order m with C2m+1 coefficients such

that A(0; D) is an elliptic operator of order m with simple characteristics and

where B{x; D) is a homogeneous operator of order 3m—1 with Lipschitz continuous

coefficients. The coefficients of A(x; D) and B[x; D) are defined in a neighbourhood

of 0. The purpose is to prove the following.

THEOREM 1. / / r is an odd integer^3 and [r/2]grs, then each solution

us Cm for the differential inequality (1.1) with q = [(r-f-l)/2], which vanishes

for (1. 2) when x is in a neighbourhood of 0, vanishes also in a full neighbour-

hood of 0.

Applying this Theorem to elliptic operators, we have

COROLLARY 1. Suppose that P(D) is a homogeneous elliptic operator

and that r = 3 . Then the same conclusion as in Theorem 1 holds with q—2 in

the differential inequality (1.1).

When operators are of variable coefficients, we have

THEOREM 2. Let u z C3m be a solution of the differential inequality (1. 3),

which vanishes for (1.2) when x is in a neighbourhood of 0. Then u must

vanish in a full neighbourhood of 0.

REMARK. If m = 2 and w ^ 3 , or if m = 2 and A{x; D) has real-valued

coefficients, then Theorem 2 implies the uniqueness of solutions for (1.3) across

arbitrary surface Γ of the class C 3 m, since, for each point x on Γ, by a change of

coordinates, the surface Γ can be made to coincide with the paraboloid xλ — x\ + + x\

in a neighbourhood of x with x at the origin of the new coordinates, and the class

of differential inequalities considered in {1.3) is invariant under the change of

coordinates. Hence the unique continuation theorem holds for such operators.

Explaining in detail, for a second order elliptic operator A(x; D) in a domain O c i ? n

with C5(ί2) coefficients such that if n = 2 the coefficients are real-valued and for a

homogeneous operator B{x; D) of fifth order whose coefficients are locally Lipschitz

continuous in ί2, we have the following.

COROLLARY 2. Let u e C6(ί2) be a solution for the differential inequality

in ί l

I A(x; Dfu + B(x; D)u \ ̂  C(x) Σ | Dau | ,
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with a locally bounded function C[x) in Ω. Then u must vanish identically in
Ω if u vanishes in some non-empty open subset of Ω.

The proofs of Theorems 1, 2 and Corollary 2 will be given in §3 by using

Carleman type estimates. This estimates will be established in §2, when operators

are of constant leading coefficients and in §3, in the case of variable coefficients.

2. Carleman type estimates for operators with constant leading
coefficients. Notation and Definitions. Let x = (xί9 , xn) be a point in the real
71-dimensional Euclidean space Rn, n^2, a = (a19 , an) is a multi-index where the

ak is non-negative integer, \cί\=^ak. k is always a single index, £ = 0 , 1 , •••, [a]

is the largest integer less than or equal to a. For the brevity we use the following

notation; ξ=(ξ19 . , ξn) € R\ ξa=ξΐ> fj , £>*= - i 9/3**, (z)2 = - 1 , D=(D19 , £>n),

We denote by P(D) a linear partial differential operator of order m with

constant coefficients and by Pm{D) the principal part of P(D). For a multi-index a,

set /> ( α )(|) = 3 I β | P ( | ) / 3 | ί 1 — a & ; in particular, for a single index k, P^{ξ)=dkP(ξ)/dξt
We say that a homogeneous operator P(£>) with constant coefficients is of real

(resp. complex) characteristics of multiplicity at most s (resp. r) if the hyperplane
xx — 0 is not characteristic for P(D) and if a family of polynomials of ξΊ,

(resp. {Pα )(ξΊ, | 2 , , ξn); 0 ^ k ^ r})

has no common real (resp. complex) zero whenever (ξ29 , ξn) is non-zero real

vector. If r = l , we say P(D) is of simple characteristics. Without loss of generality,

we always assume that s^grfgthe order of P(D).

Using the methods of Hormander [ 3 ], we shall choose as a weight function

in the exponents

(2.1) φδ[x) = (x1 - δ)2 + δ(xl + . . . + xl),

where δ > 0 will be taken sufficiently small. Then we shall now prove the basic

Carleman type estimates, which was proven by Goorjian [ 2 ], when the operator is

homogeneous, by using the weight function in the exponents
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instead of (2.1).

THEOREM 3. If for an operator P[D) of order m with constant coefficie-
?2ts, the principal part Pm(D) is of real {resp. complex) characteristics of
multiplicity at most s {resp. r), then there exist positive constants £0> 80, Mo and
Co such that the inequality

(2. 2) Jsp{τδ2)m-i*l-Vm-|αI I Dau 12exp{2rφδ)dx ^Coj \ P{D)u | 2 exp{2τφδ)dx

holds for uzC?{Uδ)y a, δ and T with \a\^m-s9 0 < δ < δ 0 , M0<τδ3+s where
Uδ= {xzRn; \x\ <£oδ} and ρ = s if s = r, or p=0 if s<r.

PROOF. At first, we use algebraic properties of the characteristic polynominal
Pm{£) t° prove a key inequality, that is : there is an open cone V in Rn, containing
the point No = ( — 1, 0, , 0), with the vertex at the origin such that the inequality

(2. 3) Q\ξ + iτN\»<»-•> ^ Σ IPt"\ξ +

holds for (ξ,τ)zRn+1 andNzV satisfying

(2.4) M1^\τN\

with some positive constants Cx and Mx. If s = r, then the second sum does not
appear in (2. 3). It is sufficient to prove the inequality (2. 3) for Pm instead of P. In
virtue of the continuity and homogeneity of Pm(ξ), it is easy to show that (2. 3)
holds for P— Pm, NeU and \ξ+iτN\ = 1, where U is an open neighbourhood on
the unit sphere \x\ = 1 and contains No. For NzU and a non-zero real vector
(ξ, T), by setting

ξ + iτ'N = {ξ + iτN)f I ξ + tτZVΊ

we have (2. 3) holds for P=Pm, Nz U and (ξ, r). Now set V= {£N; £>0, NzU}.
This completes the proof of (2. 3). Using the properties of this cone V, we define
neighbourhood Uδ, 0 < δ ^ l , in the following. Set Wδ= [xzRn; grad^φ:) € V,
|grad9?δ(:r)—grad^δ(0)| < δ } . Since V is open and contains the points grad^δ(0)
= 2δΛ/o, δ>0, the set Wδ is a neighbourhood of 0. Notice that (xl9x2, — -,xn) * Wl9

if and only if (8^, x2, , xn) £ Wδ. Hence \Vδ contains [x; \x\ <2θ0δ} if Wx

contains {x\\x\ <2S0}. Set Uδ= {x;\x\ <θ o δ}.
Now we shall use the partition of unity given by the functions
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θte(τ)"« - gu x,{τψ* -g» ~, xJjψ* - gn)

with δ, T > 0, where Θ is a C°° function with the support contained in the cube
max\xk\ < 1 , such that for each xzR71,

where g = (gu g2, , <7W) runs over all the points with integer coordinates. Hence,
for u € CΓ(Γ7β), we have u—^uQ where

φ*-gt,- ,aφψ*- gn).

When we set

Nt = gaάφlxβ), xQ = (gJ(τ)1/2,g2/(rB)^, ,gn/{rBγη,

we have, if u,[x) # 0, then xg e W{, NgzV and

whenever wθ̂ "2 < τδ3, 0 < δ < 1. Let τδ3 (resp. δ) be a sufficiently large (resp. small)
positive number. Integrating the inequality which is obtained by multiplying (2. 3) by
\u<,{ξ + iτNg)W we have

(2.5) CJ^ + iτN"

^ f
x I P^(ξ + irNg) 1211 MS(^ + iτNt

where ύg(ξ+iτNg) is the Fourier transform of ug(x)exρ(<x, τNg >). Using ParsevaPs
formula, from (2. 5) we get

(2.6) C j I Z^-'Mα i 2exp(2τ < x, Ng >)dx

^ ( I Σ IP{"\D)ug1
2 + Σ (τ\Ng\)««-•>

x I Pw{D)ug 12 |exp(2 T < x,Ng »dx,
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where we use the notation

Σ
\β\=m-i

and where, henceforth, C is a generic positive constant depending on n, m, P and
Θ, but independent on T, δ and u. Multiplying (2.6) by exp {2τ{φδ(xg)—<xg,Ng>})9

we have

(2.7) C f

^ ( ! Σ IP(β)(£>)«*12 + jl(r\N
J l

where ψ = 9>j(^)+ <x—xg,Ng>. By Taylor's formula, we see

Since, in the support of ug, \xi—^.il2<τ"1> 1^—^,fcl2<(τδ)""1, k^2 and
|iSΓα| < 3 δ , we obtain

(2.8) C J I Dm~>ug 1
2exp

^ f J Σ |i*β)(

On the other hand, from Cauchy's inequality, we have

(2.9) | D m ~ ^ | 2 ^ 2 n Σ

Let Λ* denote the multi-index obtained by setting the first components of cί equal
to zero, that is, Λ* = (0, a29 , an), k* = (0,0, , 0) if a = (ai9 a29 , an) and k
is a single index. By Leibniz* formula, we see

(2.10) P
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Consequently we have

(2.11) CJ I ΣT-'u I *eyφ{2τ<pt)dx

Σ, I-P(β+

ι«ι=«

Next, we need the following fundamental inequality proven by Treves [ 7 ]

(2.12) C(n, m) JV' 'δ' "1 | Q{"\D)υ\

for v€ CΓ> Λ with \a\ ^m and for the linear differential operator Q(D) of order
in with constant coefficients, where C{n,m) is a positive constant depending only on
n and m.

Applying this inequality to (2.11), we have if s = r,

J J | P(D)u \ 2exv{2τφs)dx

and, if s < r,

cf I ΓT-'u 12exp{2τφδ)dx ^ τ" s {δ"s + (τδ2)r"β} J

Without loss of generality, we assume that 0 < £0 < 1/2. Then we can use the

inequality

(2.13) (τδ)2 J\v\ 2exp{2rφδ)dx ̂  j \D,v\

for vz CΓ(CΛ), since, by setting w = v exp(τ^),
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J I Bv/dxx 12exτρ(2τφδ)dx = I \ dw/dx1 - 2τ[xx - S)w | 2 dx

^ (τδ)2 J |v\2exp(2τφδ)dx .

Hence we have the inequality (2.2) for a sufficiently large τ δ 3 + s > 0 and a small
8 > 0 . This completes the proof.

Next we shall prove the similar estimates to (2. 2) for the operator P{D) + Q[x\D).

THEOREM 4. Let P(D), Q{x;D) be the operators given in Theorem 1.
Assume that r is an odd integer-^3 and that [r/2]^s. Then there exist
positive constants Su δ1? Mx and Cx such that the inequality

(2.14) f (τS2)m-lal-rτm-^\Dau\2exv(2τφδ)dx

holds for us C?(Uδ), a, T, δ WΛΛ |Λ | ^ m - [ r / 2 ] , O < 8 < 8 ! , M ^ r δ 3

PROOF. L e t r = 2ro + 1. By the continuity of the coefficients of Q( r D),
Theorem 3 and the inequality (2.12) for operator P(D) + Q(y; D) may be applied
and we have

(2.15) f £ (τδ2

+ f Σ

D)u \ 2exp(2τφδ)dx

for u € C?(Uδ), a sufficiently large τδ3 > 1, a small δ > 0 and for y belonging to a
neighbourhood of 0, with some positive constants Si and C. Now we use the partition
of unity given by the functions Θ((τδ2)1/2:r—g), where Θ is the function given in
the proof of Theorem 3. For u <= C?(Uδ) and g, put

ug(x) = u(x) Θ((τδ2)1/2x - g), xg = <7/(τδ2)1/2.
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Since, in the support of uQy \x—xg\
2<(τh2)~1 and the coefficients of Q{x;D)

are Lipschitz continuous, we see

[Q<*>(xσ D) - Q^(x; D)}ug \ 2exp(2τφδ)dx

δ2)-11 Dm-r*-mug 12exp(2τφδ)dx.

Hence, replacing y by xg and u by ug in (2.15), we have

(2.16) [ Σ (τδ 2 Γ- | α | - r τ- | β ' |Dχ| 2 exp(2τ^)^

+ f E T^'δl^11 ̂ ^ ( β ) ^ + Q w ( * D)Mα 12exp{2τφδ)dx

^ C j IP(DK + Q(^; D)ug 1
2exp(

with some another constant C if we take

and for \β\ ^ 1

Tro+l^l(T82)ro+|^|-r ^ τ ^ | - l g - 2

thus, if we take a sufficiently small δ > 0 and a large τδ 3 > 0. Summing these

inequalities (2.16) over g9 we obtain

f Σ (τB2)m-^-rrm-^\Dau\2exp{2τφδ)dx

+ f Σ r^h^\P^(D)u+Q^(x;D)u\2exv(2τφδ)dx

Thus we can get the inequality (2.14) for a sufficiently large τδ 3 > 0 and a small

δ > 0. This completes the proof.

Now we shall prove the following lemma, in order to obtain estimates of
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operators with variable coefficients.

LEMMA 1. Let A(D) be a homogeneous elliptic operator of order m with
constant coefficients and with simple characteristics and let B(D) be an operator
of order 3m-1 with constant coefficients. Set P(D) = A{D)3+B[D). Then the
inequality

(2.17) J{r$*)-ι\ΣPAiDγu\*e*P (2τy#) dx^ C2 f \P(D)u\2exp (2τφδ) dx

holds for uzC?(Uδ), T, δ with 0 < δ < δ 2 , M2<τS* where δ2, M2 and C2 are
positive constants and where Uδ = [x; \x\ <£2δ} with some £ 2 >0,

PROOF. Let V be an open cone in Rn

9 containing the point No = ( — 1, 0, , 0),
with the vertex at 0 such that the inequalities

and

C\ξ + iτN\2m^ \A(ξ + iτN)\2+ \τN\*\A

holds for {ξ,τ)z Rn+1 and Nz V, with some constant C > 0 . Then we have

C\ξ + iτN\*m\A(ξ + iTN)\* ^ \P{ξ + iτN)\2+ \τ

with another constant C > 0 . Using the same method as in the proof of Theorem 3,
we have

C f I DmA(D)2u 12ex^2τφδ)dx

^ 11 \P(D)u\2+(τδY\PCΌ(D)u\2 + Σ {\Aia)[D)A{D)2u\2

J I l l-l

+ (τδ)41 A{a\D)A™(D)2u 12} Jexp(2τ^J)Ac.

Consequently using the inequalities (2.12) and (2.13), we obtain the inequality (2.17).
This completes the proof.



THE UNIQUENESS OF THE CAUCHY PROBLEM 483

3. Carleman type estimates for certain elliptic operators with variable
coefficients. In this section, we shall give the similar estimates to Theorem 3 for
the operator P(x;D) = A(x; D)3+B(x; D\ where A(x;D) is a homogeneous elliptic
operator of order m with C 2 m + 1 coefficients such that A(0; D) is of simple
characteristics and where B(x;D) is a homogeneous operator of order 3m—1 with
Lipschitz continuous coefficients. Then we shall give the proofs of Theorems 1,2
and Corollary 2. The following lemma was proven by Hormander [ 3 ].

LEMMA 2. The inequality

(3.1) j\rB2)m-^-1rm^\D'u\2exp{2rφδ)dx ^ C3 J \A(x; D)u\2exp{2rφδ)dx

holds for uzC?{Uδ), tf, T, δ with \a\^m, 0 < δ < δ 3 , M,<τSz where
[/,= {x; \x\ <£3δ} with some £ 3 > 0 .

Then, using this Lemma and Lemma 1, we have

THEOREM 5. There exist positive constants £4, δ4, M4 and C4 such that the
inequality

(3. 2) J(τδ
2Γ-'β'-V"-'β' IDauItex&τφjdx ^C,J\P(x; D)u\2ex^2rφδ)dx

holds for uzC?{Uδ), a, r, $ with \a\ ^ 3 m , 0 < δ < δ 4 , M^<rSz where

PROOF. In virtue of the continuity of the coefficients of A{x; D) and B{x; D)>
applying Theorem 3, Lemma 1 and the inequality (2.13) to the operator A{y\D)z

+B(y;D), we have

(3.3) f £ {rS2fm~]a]'3'rim']a]\Dau\2exp(2τφδ)dx

2 )" 1 E τW\A^(y;D)A(y;D)Dmu\2exά2rφδ)dx
\*\*ι

^ |β |δIβΊIA$»{y;D)u+B*\y\D)u\2ex^2rφδ)dx
l«l

^ cf I A{y Όfu + B(y D)u \ 2exp(2rφδ)dx
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for u£ C?[Uδ)9 a sufficiently large τ δ 3 > l , a small δ > 0 and for y belonging to a

neighbourhood of 0 with some positive constants £4 and C where A3{y; D)=A{y; Df.

Now we use the partition of unity given by the functions ®(w(τ9 δ)1/2x—g) where

Θ is the function given in the proof of Theorem 3 and where w(τ, δ) = τδ 3 / 2 . If

we set, for uz C?(Uδ) and gy

ug(x) = u{x)-®(w(τ,δ)1/2x-g)y xg = g/w{r,δ)ι/2

then we have, for a sufficiently large τδ3 > 0 and a small δ > 0,

(3.4) Σ h = [ Σ (τS 2) 3 m- | α I"V— | α | I ΣTtig 12exp(2τ(pδ)dx
3 = 1 ^ I a I ̂ 3771

rδ2)"1 Σ T1"1 I&*\x; D)A{x; D)Dmu0\
2eyφ(2τφs)dx

\P(x;D)ua\
i + I {A[x Df — A(xg .

(τδ2)-M{A(α:;Z))2-Afo;.

(ar D ) - .

where, henceforth, C is a positive constant depending on n, m, A(x D), B{x D) and

Θ, but independent on T, δ and u. We shall give the proof of the inequality (3. 4)

from (3.3). Since, in the support of ug, \x—xg\
2 <iv(r, δ)"1 and the coefficients of

B(x D) are Lipschitz continuous, we have

J\ [B{x; D)-B(xg D)}ug \ 2exp{2τcpδ)dx

^ C Jzu(τ, δ)"11D3771-1^ 12exp(2τφδ)dx,

and since, for | α | = 1,
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AM{xg D)A(xg D) - A{"\x; D)A{x; D)

= {A«\xt D) - A« \x; D)} {A(xg D)-A(x; D)}

+ {A< \xβ D) - A^(x; D)}A{x; D)

+ {A(xg D) - A{x D)} AM(x D)

+ lower order term of order 5jΞ 2m — 2,

we have

j 8"21 {A("\xg D)A(xg D) - A<*\x D)A{x Z))} Dm«ff 12exp{2τ<ps)dx

^ Cδ"2 J j w{τ, δ)~ 21D 3" 1" 1^ 12 + w(τ, δ)"1 {I A(x;

And since, for \a\ ^ 2 ,

Ar'(x5 D) + B^(xg D) - PM(x; D) = P^(xg D) - Pw(x; D)

+ lower order term of order ^ 3m — \a\ — 1

and the coefficients of P{x;D) are Lipschitz continuous, we have

Γτι«ιδι« ι i {A£\χt D) + Bι°\xg D) - P{a\x;D)}ug \ *

^ Cf r^^-1 {τv(τ>8)-i\D3m-^ug\
2 + ID3 1""1"1"1^|2

Hence, replacing y by xg and M by ug in (3. 3), and then using the inequality (3.1),
we have the inequality (3. 4), if we take

(τδ2)-2τ > (δhv(r,B))-\ (rδ2)-1^ > δ~2,

and for \a\ ^ 2 ,

thus, if we take a sufficiently large τδ3 > 0 and small δ > 0.
On the other hand, we can also write the last three terms on the right hand

side of (3. 4) as follows.
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A(x; Df - A{xg; Df = - {A(x; D) - A{xg; D)}2 + 2{A{x; D) - A{x0; D)}A{x; D)

+ lower order term of order ^ 2m — 1

and

A(x; Df - A(xg; Df = {A(x; D) - A(x0; D)}3 - 3 {A(x; D) - A(xg; D)} 2A(x; D)

+ 3 {A{x; D)-A{xg D)}A{x; Df

+ {a differential operator of order 2m — 1} A(x; D)

+ {A{x;D)—A(xg;D)} {a differential operator of order 2m—1}

+ lower order term of order ^ 3m — 2

and for \β\ = 1 ,

P™(x; D) - P^(xg D) = 3 {A(*>(*; D)A(x; D)2 - A^(xg D)A(^α D)2}

+ lower order term of order ^ 3m — 2

= 3 {A(*; D) - A(xg D)}2 { A ^ ; D)-A™ (xg D)}

- 3 [A(x; D) - A(^α D)} *A«\x; D)

- 6{A(x; D) - A(xg;D)} [A^(x; D)-A™(xe; D)}A(x; D)

+ 6{A(x; D) - A ( ^ ; D ) } A ( ^ ; D)A(Λ:; D)

+ 3 {A^(Λ:; D) - A(V(xg; D)}A{x; Df

+ lower order term of order ĝ 3m — 2.

Hence we have

(3.5) f Σ {rB2fm-^'Ψm-^\Daug\
2exp{2rφδ)dx

+ f Σ τlαIδ'β#l I ^ f c ; β K 12exp(2τ^)^
J »|α|

^ C J I P ( J : D ) ^ 12exp(2τ<pδ)dx

for a sufficiently large τδ3 > 0 and a small δ > 0. Here we give the proof of the
inequality (3. 5) by (3. 4). Using the above three identities, we have
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75 ^ cf Iw(τ, δ)"31 D3mu01
2 + w(τ, δ)"21 A(x; D)D*mua |2

+ w[τ, δ)"1 {I ̂ ( x ; D)2Dmwβ |
s + | D 3 1 " " 1 ^ |2}

+ I A(x;

7β ^

+ w(r, δ)"1

and

T, δ)" 31D 3" 1" 1^ 12 + w(τ, δ)"21 A{x D)D2m-ιuβ | 2

w(τ, δ ) " 1 1 ^ ; DfD^u, 12 + |D 3 m - 2 «, | *}exp(2r<p,)dx

C Σ, r*m f {Mr, δ)"21 A^(x; D)D*mu, |2

τ, δ)"11 A( f l )(x; D)A(x; D)Dmua \ 2}

Hence we have

for a sufficiently large τδ3 > 0 and a small δ > 0. This completes the proof of the
inequality (3. 5). Thus, summing these inequalities (3. 5) over g, we have

|«|S3ϋ!

^ C ίΣΨ,8)M\P™(x;D)u\2exv(2rφδ)dx.

Consequently we have the inequality (3. 2) for a sufficiently large τδ3 > 0 and a small
δ > 0 . This completes the proof.

Now we are ready to prove Theorems 1, 2 and Corollary 2.

THE PROOF OF THEOREM 1. Let Uδ be a neighbourhood of such that (2.14)
holds and Uδ is contained in the neighbourhood initially given in this Theorem.
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Take a function Xz C?(Uδ) such that X — 1 in a neighbourhood Uδtl, of 0, and set

v = Xu. Then we have in UδΛ

(3.6)

where g = [ ( r + l ) / 2 ] . Since, in the support of v, xl+ ••• +x2

nf^xl9 and Xι<B

in £/ M , we have φδ{x)<φδ(0) in the support of v except when # = 0, Hence we

have for some positive constant Lδ

(3.7) <P*(x)^<pδ(0)-Lδ,

when x is in the support of v and in the complement CUδtl of UδΛ. By approximation,

we can apply (2.14) to v. This gives, by using (3. 6),

Uδ,l \a\^m-q

Q(x Dp \

or, by restricting the integration in the left hand side to UίΛ, it gives

( {τδ~2-C} Σ, {D-υl'eztffrψtfx
**Uδt\ \a\^m-Q

I P{D)υ + Q(x Djv \ 2exp(2τφδ)dx .

Let U8t9cUitl be a neighbourhood of 0 where φδ{x)^φδ(0)—Lδ/2. Choose

τδ~2 > 2 C and then fix δ > 0 . Then we have, using (3. 7),

f |t; | 2Jα:^exp(-τLδ)f \P{D)o + Q[x\ D)v\2 dx

and, letting τ ^ + o o , we have v~u=0 in J7δ>2. This completes the proof.

The proof of Theorem 2 is exactly the same as the proof of Theorem 1. We

have only to use the estimates (3. 2) instead of (2.14).
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THE PROOF OF COROLLARY 2. We denote by Ωo the set of points x in

12 such that u vanishes in some neighbourhood at x. By the assumption and the

definition, Ωo is the non-empty open set. Give any points x0 in Ωo and xΛ in Ω. Since

Ω is connected, there is a continuous arc γ = {x(t)\ 0 ̂  t ig 1} in Ω such that

x(0) = x0, x{l) = Xι. -

Take a positive number r 0 such that B[xQ, ro)<zΩo, B(x0, rQ) being the open ball

at the centre x0 with the radius r0, and then set

4rx = min (r0, dis(γ, 3ί2)) > 0, •

and

t0 = sup [t;x(s) <= Ωi for 0 ^ 5 ^ ί}^,

where 3ί2 is the boundary of Ω and dis(γ, dΩ) is the distance from γ to 3Ω, and

where ί2χ is the subset of Ωo> consisting of points x such that u vanishes in

ΩΓ)B{x, rx). Since B{xo,2r1)(ZΩo, we have to>O, and since γ is a continuous arc,

for any points x in B(x{t0), rx)

\x-x(to-S)\ < \x-x(to)\ + \x(to)-x{to-ε)\ <r,

if we take a sufficiently small £ > 0. This means B{x(t0), rΊ) is contained in f20

and J^ί 0 )^ Λi.

Suppose that ί o < l Since the surface »5(j:(io)^i)= {^c,|^c—^o)l = π l is smooth,

after a change of coordinates, applying Theorem 2, we have that S(x{t0), rλ) is

contained in Ωo. Hence B{x{t0), £0) is contained in Ωx for some £ 0 > 0 . In virtue of

the continuity of γ, we can get x(s)e Ωλ for O ^ 5 ^ ί o + ^ i with some θ i > 0 . This

gives a contradiction. Consequently we have xι = x[l)ζΩι. This completes the

proof.
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