Tôhoku Math Journ. 23(1971), 403-411.

ON CLOSED GEODESICS OF LENS SPACES¹⁾

TAKASHI SAKAI

(Received October 31, 1970)

We shall consider a generalized lens space $L(q; p_2, \dots, p_n)$ which is defined as follows. Let S^{2n-1} be a unit hypersphere in R^{2n} , and $G = \{T^k\}_{0 \le k \le q-1}$ be a group of isometries of R^{2n} with

$$T = \begin{vmatrix} \cos\frac{2\pi p_1}{q} - \sin\frac{2\pi p_1}{q} \\ \sin\frac{2\pi p_1}{q} & \cos\frac{2\pi p_1}{q} \\ & \ddots \\ & & \cos\frac{2\pi p_n}{q} - \sin\frac{2\pi p_n}{q} \\ 0 & & & \sin\frac{2\pi p_n}{q} & \cos\frac{2\pi p_n}{q} \end{vmatrix}$$

We assume that $p_1 = 1$ and p_i 's $(2 \le i \le n)$ are relatively prime to q(>2). Then we define $M = L(q; p_2, \dots, p_n) = S^{2n-1}/G$ which is a compact Riemannian manifold of constant curvature 1 with $\pi_1(M) = G \approx Z_q$. In this note we are concerned with the cut locus of a point and closed geodesics of $L(q; p_2, \dots, p_n)$. K.Shiohama ([1]) has studied the cut locus of L(q; 1). The methods are completely elementary.

1. Let $\varphi: S^{2n-1} \to M$ be a covering projection. Because the diameter of M is not greater than $\pi/2$, no cut point of $p \in M$ along any geodesic through p can be conjugate to p. Thus a point q belongs to the cut locus C(p) of p if and only if the following holds.

(*) If we put $\tilde{p} \in \varphi^{-1}(p)$, $\tilde{q}_1 \in \varphi^{-1}(q)$, then there exist $\tilde{q}_2 \in \varphi^{-1}(q)$ with $\tilde{q}_1 \neq \tilde{q}_2$, and $\tilde{\tau}_1 \in ||| \tilde{p}, \tilde{q}_1 |||, \tilde{\tau}_2 \in ||| \tilde{p}, \tilde{q}_2 |||$ such that length $\tilde{\tau}_1 = \text{length } \tilde{\tau}_2 = d(p, q)$, where $||| \tilde{p}, \tilde{q} |||$ denotes the set of minimizing geodesics between \tilde{p} and \tilde{q} .

¹⁾ The author wishes to express his sincere thanks to Professor S. Sasaki for the suggestion of the poblem.

T. SAKAI

In this section we shall consider the (tangent) cut locus of $m = \varphi$ $(1, 0, \dots, 0)$. This loses no generality when $\cos \frac{2\pi p_i}{q} = \cos \frac{2\pi}{q} (i = 1, \dots, n)$ hold, since in this case and only in this case M is homogeneous. (Wolf([2]) The same method is applicable to more general situation. See the Remark 2 after Theorem 1.

Now the equation of geodesic of S^{2n-1} with initial point $m = (1, 0, \dots, 0)$ and initial direction $y = (0, y_2, \dots, y_{2n})$ is given by

(1.1)
$$\sigma: t \to (\cos t, y_2 \sin t, \cdots, y_{2n} \sin t).$$

Then the condition (*) is equivalent to the following: $\varphi \hat{\sigma}(\theta)$ is a cut point of m along $\sigma = \varphi \hat{\sigma}$ if and only if

(**) there exisists a unit vector $z = (0, z_2, \dots, z_{2n})$ which is different from y and such that

$$(1.2) \quad \begin{pmatrix} \cos\frac{2\pi p_1}{q} k - \sin\frac{2\pi p_1}{q} k \\ \sin\frac{2\pi p_1}{q} k & \cos\frac{2\pi p_1}{q} k \\ & \ddots \\ & & \cos\frac{2\pi p_n}{q} k - \sin\frac{2\pi p_n}{q} k \\ 0 & & \sin\frac{2\pi p_n}{q} k & \cos\frac{2\pi p_n}{q} k \\ & & \sin\frac{2\pi p_n}{q} k & \cos\frac{2\pi p_n}{q} k \end{pmatrix} \begin{pmatrix} \cos t \\ y_2 \sin t \\ \vdots \\ y_{2n-1} \sin t \\ y_{2n} \sin t \end{pmatrix}$$

holds for some $1 \le k \le q-1$, and $0 < \theta \le \pi/2$ is the minimum value of t which satisfies (1.2).

Now this t is determined by

(1.3)
$$\cos\frac{2\pi k}{q} \cos t - y_2 \sin\frac{2\pi k}{q} \sin t = \cos t,$$

and z is determined by

(1.4)
$$\begin{pmatrix} z_{1} \\ z_{2} \\ z_{3} \\ \vdots \\ z_{4} \\ \vdots \\ z_{2n-1} \\ z_{2n} \end{pmatrix} = \begin{pmatrix} 0 \\ -y_{2} \\ y_{3} \cos \frac{2\pi p_{2}}{q} k - y_{4} \sin \frac{2\pi p_{2}}{q} k \\ y_{3} \sin \frac{2\pi p_{2}}{q} k + y_{4} \cos \frac{2\pi p_{2}}{q} k \\ \vdots \\ y_{2n-1} \cos \frac{2\pi p_{n}}{q} k - y_{2n} \sin \frac{2\pi p_{n}}{q} k \\ y_{2n-1} \sin \frac{2\pi p_{n}}{q} k + y_{2n} \cos \frac{2\pi p_{n}}{q} k \end{pmatrix}$$

By (1.3) we have $\cot t = -y_{2}\cot \frac{\pi}{q}k$. Since $\cot t$ is monotone decreasing for $0 < t \le \pi/2$, θ in search is determined as follows:

If $y_2 = 0$: then $\theta = \pi/2$ and possible k's are $1, 2, \dots, q-1 \pmod{q}$. If $y_2 > 0$: then $k = q-1 \pmod{q}$, and $\theta = \cot^{-1}\left(y_2 \cot\frac{\pi}{q}\right)$. If $y_2 < 0$: then $k = 1 \pmod{q}$, and $\theta = \cot^{-1}\left(-y_2 \cot\frac{\pi}{q}\right)$.

Thus we get,

THEOREM 1. Let $M = L(q; p_2, \dots, p_n)$ be a lens space which we have considered as a compact Riemannian manifold of constant sectional curvature 1. Then the cut point c_y of $m = \varphi(1, 0, \dots, 0)$ along a geodesic σ_y with the initial direction $y = (0, y_2, \dots, y_{2n})$ is given as tollows:

(i) If $y_{2} = 0$, then $c_{y} = \sigma_{y}(\pi/2)$ and this point coincides with $c_{z_{k}} = \sigma_{z_{k}}(\pi/2)$ with $z_{k} = \left(0, 0, y_{3} \cos \frac{2\pi p_{2}}{q} k - y_{4} \sin \frac{2\pi p_{2}}{q} k, \cdots, y_{2n} \cos \frac{2\pi p_{n}}{q} k + y_{2n-1} \sin \frac{2\pi p_{n}}{q} k\right),$ $k = 1, \cdots, q-1.$ T. SAKAI

(ii) If
$$(1 \ge) y_2 > 0$$
, then $c_y = \sigma_y \left(\cot^{-1} \left(y_2 \ \cot \frac{\pi}{q} \right) \right)$ and this point coincides
with $c_z = \sigma_z \left(\cot^{-1} \left(y_2 \ \cot \frac{\pi}{q} \right) \right)$ with

$$z_{k} = \left(0, -y_{2}, y_{3}\cos\frac{2\pi p_{2}}{q} + y_{4}\sin\frac{2\pi p_{2}}{q}, \cdots, y_{2n}\cos\frac{2\pi p_{n}}{q} - y_{2n-1}\sin\frac{2\pi p_{n}}{q}\right).$$

(iii) If
$$(-1 \leq y_2 < 0$$
, then $c_v = \sigma_v \left(\cot^{-1} \left(-y_2 \cot \frac{\pi}{q} \right) \right)$ and this point coincides with $c_z = \sigma_z \left(\cot^{-1} \left(-y_2 \cot \frac{\pi}{q} \right) \right)$ with
 $z = \left(0, -y_2, y_3 \cos \frac{2\pi p_2}{q} - y_4 \sin \frac{2\pi p_2}{q}, \cdots, y_{2n} \cos \frac{2\pi p_n}{q} + y_{2n-1} \sin \frac{2\pi p_n}{q} \right).$

REMARK 1. The tangent cut locus of $m = \varphi(1, 0, \dots, 0)$ is given in Figure 1.

Figure 1.

REMARK 2. Let $\{i_1, \dots, i_{k_1}; i_{k_1+1}, \dots, i_{k_2}; \dots; i_{k_{n-1}+1}, \dots, i_{k_n} = i_n\}$ be a partition of $\{1, \dots, n\}$ such that

ON CLOSED GEODESICS OF LENS SPACES

$$\cos \frac{2\pi p_{i_1}}{q} = \dots = \cos \frac{2\pi p_{i_{k_1}}}{q} = c^{(1)},$$

$$\cos \frac{2\pi p_{i_{k_1+1}}}{q} = \dots = \cos \frac{2\pi p_{i_{k_2}}}{q} = c^{(2)},$$

$$\vdots$$

$$\cos \frac{2\pi p_{i_{k_{a-1}+1}}}{q} = \dots = \cos \frac{2\pi p_{i_{k_a}}}{q} = c^{(a)},$$

and $c^{(1)}, \dots, c^{(a)}$ are all distinct. Now fix any $s \in \{1, \dots, a\}$, then for every point $\varphi(x_1, \dots, x_{2n})$ with $x_{2j-1} = x_{2j} = 0$ for $j \in \{1, 2, \dots, n\} - \{i_{k_{i-1}+1}, \dots, i_{k_i}\}$, cut locus of this point may be determined by the same way.

Next we consider the angle between the geodesics when they meet at their cut points.

THEOREM 2. Let $\sigma_{y}(\theta)$ be the cut point of $m = \varphi(1, 0, \dots, 0)$ along the geodesic σ_{y} with the initial direction $y = (0, y_{2}, \dots, y_{2n})$. Then $\sigma_{y}(\theta) = \sigma_{z}(\theta)$ holds where z has been determined in Theorem 1. Now the angle α between $\dot{\sigma}_{y}(\theta)$ and $\dot{\sigma}_{z}(\theta)$ is determined as follows.

(i) If $y_2=0$, then the angle α_k between $\dot{\sigma}_y(\pi/2)$ and $\dot{\sigma}_{z_k}(\pi/2)$ is given by

(1.5)
$$\alpha_{k} = \begin{cases} 2\pi k/q, \text{ if } k/q \leq 1/2, \\ 2\pi (q-k)/q, \text{ if } k/q > 1/2. \end{cases}$$

(ii) If $y_2 \neq 0$, then we have

(1.6)
$$\cos \alpha = \cos 2\pi/q - (1 + \cos 2\pi/q)y_2^2$$

PROOF. Since $\varphi_*\dot{\tilde{\sigma}}_y(\theta) = (\varphi \circ T^k)_*\dot{\tilde{\sigma}}_y(\theta) = \varphi_*(T^k_*\dot{\tilde{\sigma}}_y(\theta))$, we have

$$\cos lpha = < arphi_{\star}\dot{ ilde{\sigma}}_{y}(heta), arphi_{\star}\dot{ ilde{\sigma}}_{z}(heta)> = < T^{\star}{}_{\star}\dot{ ilde{\sigma}}_{y}(heta), \dot{ ilde{\sigma}}_{z}(heta)> 1$$

In case $y_2 > 0$, we get

 $\cos \alpha =$

$$\begin{pmatrix} \cos\frac{2\pi p_1}{q} & \sin\frac{2\pi p_1}{q} \\ -\sin\frac{2\pi p_1}{q} & \cos\frac{2\pi p_1}{q} \\ 0 & & \ddots \\ 0 & & \cos\frac{2\pi p_n}{q} & \sin\frac{2\pi p_n}{q} \\ 0 & & -\sin\frac{2\pi p_n}{q} & \cos\frac{2\pi p_n}{q} \\ -\sin\frac{2\pi p_n}{q} & \cos\frac{2\pi p_n}{q} \\ 0 & & -\sin\frac{2\pi p_n}{q} & \cos\frac{2\pi p_n}{q} \\ \end{pmatrix} \begin{pmatrix} -\sin\theta \\ y_2 & \cos\theta \\ \vdots \\ y_{2n-1} & \cos\theta \\ y_{2n} & \cos\theta \\ y_{2n} & \cos\theta \end{pmatrix}$$

$$= c_1 \sin^2 \theta - 2y_2 s_1 \sin \theta \cos \theta - y_2^2 c_1 \cos^2 \theta + \sum_{k=2}^{n} \{ (y_{2k-1}c_k \cos \theta + y_{2k}s_k \cos \theta)^2 + (-y_{2k-1}s_k \cos \theta - y_{2k}c_k \cos \theta)^2 \} = c_1 \sin^2 \theta - 2y_2 s_1 \sin \theta \cos \theta - y_2^2 c_1 \cos^2 \theta + \cos^2 \theta (1 - y_2^2) = c_1 + (\cos 2\theta + 1)/2 \{ (1 - y_2^2 - c_1(1 + y_2^2)) \} - y_2 s_1 \sin 2\theta = c_1 - (1 + c_1)y_2^2, \end{cases}$$

where we have put $c_k = \cos \frac{2\pi p_k}{q}$, $s_k = \sin \frac{2\pi p_k}{q}$ for the sake of simplicity. In case of $y_2 < 0$ or $y_2 = 0$, the same calculation is valid. q. e. d.

REMARK 3. If $\sigma_y(\theta) = \sigma_z(\theta)$ be the cut point of *m* along geodesics σ_y and σ_z respectively, then the initial directions *y* and *z* are at an angle β with $\cos\beta = \langle y, z \rangle = -y_2^2 + \sum_{a=2}^n (y_{2a-1}^2 + y_{2a}^2) \cos \frac{2\pi p_n k}{q}$. In particular let the initial directions be given by $(0, \pm 1, 0, \dots, 0)$, then $\langle \dot{\sigma}_y(\pi/q), \dot{\sigma}_z(\pi/q) \rangle = -1$ holds, and we have a simple closed geodesic of length $2\pi/q$.

2. Closed geodesics. Next we shall consider closed geodesics of $M = L(q; p_2, \dots, p_n)$. First, note that every geodesic loop in M of length θ may be obtained as follows. Let $p \in M$ and $\tilde{p} \in \varphi^{-1}(p)$, then the geodesic with initial point $p = (x_1, \dots, x_{2n})$ and initial direction $y = (y_1, \dots, y_{2n})$ is given as follows.

(2.1)
$$\widetilde{\sigma}: t \longrightarrow \begin{pmatrix} x_1 \cos t + y_1 \sin t \\ \vdots \\ x_{2n} \cos t + y_{2n} \sin t \end{pmatrix}.$$

Now $\sigma = \varphi \tilde{\sigma}$ is the geodesic loop of length θ with base point p if and only if there exists some integer k determined by modulo q such that

(2.2)
$$\begin{pmatrix} c_{1}^{\prime} - s_{1}^{\prime} & 0 \\ s_{1}^{\prime} & c_{1}^{\prime} & 0 \\ & \ddots & \\ & & c_{n}^{\prime} - s_{n}^{\prime} \\ 0 & & s_{n}^{\prime} & c_{n}^{\prime} \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{2n-1} \\ x_{2n} \end{pmatrix} = \begin{pmatrix} x_{1}\cos\theta + y_{1}\sin\theta \\ x_{2}\cos\theta + y_{2}\sin\theta \\ \vdots \\ x_{2n-1}\cos\theta + y_{2n-1}\sin\theta \\ x_{2n}\cos\theta + y_{2n}\sin\theta \end{pmatrix}$$

holds where we put $c'_i = \cos \frac{2\pi p_i}{q} k$ and $s'_i = \sin \frac{2\pi p_i}{q} k$. Since $\langle x, y \rangle = 0$, and ||x|| = 1 holds, we have easily from (2.2)

(2.3)
$$\cos\theta = (x_1^2 + x_2^2)c_1' + \cdots + (x_{2n-1}^2 + x_{2n}^2)c_n'.$$

Secondly we calculate the angle α between $\dot{\sigma}(0) = y$ and $\dot{\sigma}(\theta)$. By the same way as the proof of Theorem 2 (§1), we get

$$\cos \alpha = \begin{pmatrix} c_{1}^{'} - s_{1}^{'} & 0 \\ s_{1}^{'} & c_{1}^{'} & \\ & \ddots & \\ & & c_{n}^{'} - s_{n}^{'} \\ 0 & s_{n}^{'} & c_{n}^{'} \end{pmatrix} \begin{pmatrix} y_{1} \\ y_{2} \\ \vdots \\ y_{2n-1} \\ y_{2n} \end{pmatrix} \cdot \begin{pmatrix} -x_{1}\sin\theta + y_{1}\cos\theta \\ -x_{2}\sin\theta + y_{2}\sin\theta \\ \vdots \\ -x_{2n-1}\sin\theta + y_{2n-1}\cos\theta \\ -x_{2n}\sin\theta + y_{2n}\cos\theta \end{pmatrix}$$
$$= \sum_{j=1}^{n} (c_{j}y_{2j-1} - s_{j}^{'}y_{2j})(-x_{2j-1}\sin\theta + y_{2j-1}\cos\theta) \\ + (s_{j}^{'}y_{2j-1} + c_{j}y_{2j})(-x_{2j}\sin\theta + y_{2j}\cos\theta) \\= \sum_{j=1}^{n} \left\{ A_{j}(s_{j}^{'2} - c_{j}^{'2}) + A_{j}c_{j}^{'}\cos\theta + \frac{A_{j}c_{j}^{'}(1 - 2c_{j}^{'}\cos\theta + \cos^{2}\theta)\cos\theta}{\sin^{2}\theta} \right\}$$
$$= \frac{1}{1 - \left(\sum_{j=1}^{n} A_{j}c_{j}^{'}\right)^{2}} \left\{ 1 - 2\sum_{j=1}^{n} A_{j}c_{j}^{'2} + \left(\sum_{j=1}^{n} A_{j}c_{j}^{'}\right)^{2} \right\}$$

where we put $A_j = x_{2j-1}^2 + x_{2j}^2$. Note that $\sum_{j=1}^n A_j = 1, 0 \leq A_j \leq 1$, and $\cos\theta = \sum_{j=1}^n A_j c_j'$ hold by virtue of (2.3). In particular, for $\alpha = 0$ it is necessary and sufficient that

(2.4)
$$\left(\sum_{j=1}^{n} A_{j} c_{j}^{\prime}\right)^{2} = \sum_{j=1}^{n} A_{j} c_{j}^{\prime^{2}}$$

holds. On the other hand by Cauchy-Schwarz ineqality we have

T. SAKAI

$$\left(\sum_{j=1}^n \sqrt{A_j} \cdot \sqrt{A_j} c_j^{\prime}\right)^2 \leq \sum_{j=1}^n A_j c_j^{\prime 2}$$

where equity holds if and only if $(\sqrt{A_j}c'_j)/\sqrt{A_j} = \text{constant.} \quad j = 1, \dots, n$. And in this case we have $\cos\theta = \sum_{j=1}^n A_j c'_j = \cos\frac{2\pi p_0}{q}k$, where p_0 is one of p_j .

Thus closed geodesics on M of length $< 2\pi$ and multiplicity 1 are given as follows:

- 1) Case of $p_0=1$. If q is odd, then $k\equiv 1$ or $q-1 \pmod{q}$ and $\theta = 2\pi/q$ holds. If q is even, then $k\equiv 1$, or $q/2 \pmod{q}$, and $\theta = 2\pi/q$ (corresponding to the case $k\equiv 1$ or q-1) or $\theta = \pi$ (corresponding to the case $k\equiv q/2$) holds.
- 2) Generally, since p_0 is relatively prime to q, there exists an integer $s_0 \pmod{q}$ q such that $p_0 s_0 + qt = 1$ holds for some integer t. Thus $\cos \theta = \cos \frac{2\pi p_0}{q} s_0$ $= \cos \frac{2\pi}{q}$ holds. So we get the following: if q is odd, $k \equiv s_0$ or $q - s_0$ (mod. q) and we have $\theta = 2\pi/q$. If q is even, then $k \equiv s_0$, $q - s_0$, or $qs_0/2$ (mod. q) and we have $\theta = 2\pi/q$ (corresponding to the case $k \equiv s_0$ or $q - s_0$) or $\theta = \pi$ (corresponding to the case $k \equiv qs_0/2$).

Now we introduce the following equivalence relation \sim in $\{p_1, \dots, p_n\}$. Let $s_i \pmod{q}$ be an integer such that $p_i s_i + qt_i = 1$ holds for some integer $t_i (i = 1, \dots, n)$. Then we define $p_i \sim p_j$ if and only if $\cos \frac{2\pi p_j}{q} s_i = \cos \frac{2\pi p_i}{q} s_i = \cos \frac{2\pi}{p}$ holds. Let $\{p_1 = p_{j_1}, \dots, p_{j_{m_i-1+1}}, \dots, p_{j_{m_b}} = p_{j_n}\}$ be a partition of $\{p_1, \dots, p_n\}$, with respect to this equivalence relation. Then we have

THEOREM 3. (i) Case of odd q. Fix any $s \in \{m_1, \dots, m_b\}$, then through every point $\varphi(x_1, \dots, x_{2n})$ with $x_{2j-1} = x_{2j} = 0$ for $p_j \in \{p_1, \dots, p_n\} - \{p_{j_{m_{s-1}+1}}, \dots, p_{j_m}\}$, there exists a unique simple closed geodesic with initial direction $\varphi_*(x_2, \dots, x_{2n} - x_{2n-1})$ and of length $2\pi/q$. Another geodesics are closed geodesics of length 2π and of multiplicity 1.

(ii) Case of even q. Fix any $s \in \{m_1, \dots, m_b\}$, then through every point $\varphi(x_1, \dots, x_{2n})$ with $x_{2j-1} = x_{2j} = 0$ for $p_j \in \{p_1, \dots, p_n\} - \{p_{j_{m_{i-1}+1}}, \dots, p_{j_{m_i}}\}$, there exists a unique simple closed geodesic with initial direction $\varphi_*(x_2, -x_1, \dots, x_{2n}, -x_{2n-1})$ and of length $2\pi/q$. Another geodesics are closed geodesics of length π and of multiplicity 1.

Finally we shall treat some special cases. We put $c_i = \cos \frac{2\pi p_i}{q}$ $(i = 1, \dots, n)$.

COROLLARY 1. If $c_1 = c_2 = \cdots = c_n$ holds, that is, if $p_i \equiv 1$ or $q-1 \pmod{q}$, then through every point of M, there exists a unique simple closed geodesic of length $2\pi/q$. If q is odd (respectively even,) another geodesics are closed geodesics of length 2π (respectively π) and of multiplicity 1.

COROLLARY 2. Let q be a prime, and $\{i_1, \dots, i_{k_1}; \dots; i_{k_{n-1}+1}, \dots, i_{k_n} = i_n\}$ be a partition of $\{1, \dots, n\}$ such that $c_{i_1} = \dots = c_{i_{k_1}} = c^{(1)}; \dots; c_{i_{k_{n-1}+1}}, \dots = c_{i_{k_n}} = c^{(a)}$ holds and $c^{(1)}, \dots, c^{(a)}$ are all distinct Fix any $s \in \{1, \dots, a\}$, then through every point $\varphi(x_1, \dots, x_{2n})$ with $x_{2j-1} = x_{2j} = 0$ for $j \in \{1, \dots, n\} - \{i_{k_{n-1}+1}, \dots, i_k\}$, there exists a unique simple closed geodesic of length $2\pi/q$. Another geodesics are closed geodesics of langth 2π and multiplicity 1,

REMARK 4. (i) $c_1 = \cdots = c_n$ holds if and only if M is homogeneous. (ii) $\{(x_1, \dots, x_{2n}) | x_{2j-1} = x_{2j} = 0$ for $j \in \{1, \dots, n\} - \{i_{k_{s-1}+1}, \dots, i_{k_s}\}\}$ is a homogeneous totally geodesic submanifold of M which is isometric to $L(q; 1, \dots, 1)$ of dimension $2(k_s - k_{s-1}) - 1$.

References

[1] K. SHIOHAMA, On the diameter of δ -pinched manifolds J. Diff. Geo. vol 4. pp. 61-74 [2] J. A. WOLF, Spaces of constant curvature, McGraw-Hill, 1967.

Colledge of General Education Tôhoku University Kawauchi, Sendai, Japan.