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1. Introduction. The purpose of this paper is to establish a spectral
decomposition for positive elements in the maximal CCR ideal of type I AW*-
algebra and the corresponding Schatten-von Neumann-Dixmier' Theorem in a type
I AW*-algebra.

In [ 5 ], Kaplansky showed that any type I AW^-algebra is *-isomorphic to
the algebra of all bounded module endomorphisms on some AW*-module over the
center of the AW*-algebra, and can be considered as the extension of type I
factor. Moreover, in [5] , a one-dimensional projection on a Hubert space
correspqnds to an abelian projection in a type I AH^-algebra. Therefore, the
closed ideal (we shall in general mean two-sided ideal) generated by the abelian
projections in a type I AW*-algebra corresponds to the closed ideal of all
completely continuous operators on the Hubert space.

2. A spectral decomposition for positive elements in the maximal
CCR ideal of a type I ATF*-algebra. Let A be a type I AV7*-algebra with
the center £F. By the Kaplansky Theorem ([5]), we may identify A with the
algebra B(M) of all bounded module endomorphisms on the Aίl^-module M over
3s where M = Ae, e being any abelian projection in A of central support 1, and
the £F-valued inner product on M is denoted by {x, y)M = y*x in £F for x, y € M;
we shall identify the center, 3s of B{M) with ζpe. The closed ideal generated by
the abelian projections of B(M) is a maximal CCR ideal in B{M) ([2]), which
we denote by C{M).

The following lemma is useful for the later discussions.

LEMMA 1. (Kaplansky [5]) If φ is a bounded homσmorphism on an
AW*-module H over an abelian AW*-algebra % there is a unique a0 in H
such that φ(a) = (α, a0)fffor all a^H where ( , )H denotes the %-valued inner
product on H.

Let Z be the spectrum of 3?. For each ξ in Z, define [ξ] to be the closed
ideal defined by
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[ζ] = closure I f > £ t ; at € β(M), ft, € £F and ftί(f) = θ( .
U=l J

Let ψζ be the natural map of B(M) onto B(M)/[ξ]. For a in 5(Λf), let

a(ξ) = ψζ(a). Then | | a | |=sup {Mf)l|; f € Z } , and the function ζ->\\a(ζ)\\ from

Z into the positive numbers is known to be upper semi-continuous ([ 1 ]). However,

we have the following lemma for the AW*-algebra B(M).

LEMMA 2. The function ξ —> \\a(ζ)\\ of Z is continuous.

PROOF. Since \\a(ζ)\\ = \\a*(ξ)a(ζ)\\1/2

9 it is sufficient to consider the case where
a is positive. Let z be in £F, then z(ζ) = zA(ζ)I(ξ). If z(ζ)^a(ξ) for each ξ in
Z, then <p(z)^<p(a) for any pure state φ of J5(M), hence ψ(z)^ψ(a) for any
state ψ of B(M), so zΞ>a. Let £F(α)= {̂ € £F; z ^ a } . ff(α) is a bounded net
in £F in the decreasing order. Then b = g.l.b.S^α) exists and lies in £F.
Moreover, we have έ ^ α . For this, it is sufficient to show that, for every x in
My (bx, x)M ^ {dXy X)M - For each x in M, let c = (Λ:, α:)jf, <i = (OΛ:, α:)^, then,
for z€3?(ά), {zX,x)M = zc, (bx, x)M=bc and zc^d. Hence, for all positive
number e, z(c+€)^d+eb, z^ (d+eb) (c+e)'1; the last inequality holds good for
every z£3?(a), hence b^(d+eb) (c+e)"1, or b{c + e)^d+eb, from which it
follows bc^dy i. e. [bx, x)M^[ax, x)M. Since x is arbitrary, δ^Λ. Moreover,
by [ 1 ], we have bA(ξ) = l|^(f)|| and this completes the proof, since bA(ξ) is continuous
function of ξ. Q. E. D.

Employing Lemma 2, we can now establish the spectral decomposition for
positive elements in C(M). This is an alternative form for AVt̂ *-algebra of
the one which was proved by H. Halpern.

THEOREM I. If a is a positive element in C(M), then there is a monotone

decreasing sequence {# J of positive elements in £F and a sequence of mutually

orthogonal abelian projections {et} uniquely such that

(1) closure {ξ € Z; a^ξ) Φ 0} = {ξ € Z; q^ζ) = 1} .

where qt is the central support of et;

(2) at > 0 as ί > 00 (in the uniform topology); and

( 3 ) a = 52 aιei ttn the uniform topology).
t=l

The proof goes just in the same way as Halpern ([3]), so we shall omit it.
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3. Schatten-von Neumann-Dixmier' Theorem in type I -ATF*-algebras.
oo

Let P be the set of all positive elements a in C(M) such that if ^ a%e% is a
1 = 1

( n 1

spectral decomposition for a then the increasing sequence ] Σ Λt [ is bounded above

in £F.
DEFINITION. Let S(M) be the set of a in B(M) such that a*a € P, then

S(M) is an ideal in B{M) ([3]). We define the Schmidt class of B(M) to be
the ideal S(M) and the trace class of B(M) to be the ideal T(M) = S(M)2.

The set of positive elements of T(M) is the set P. Let a be an element of
oo

P and let a have the spectral decomposition ^ α ^ . Define the trace Tr{a) of α

f )
to be the least upper bound of the increasing sequence \ Σ a% \ in £F.

L=l Jn

If <z is an element of T(M), then there exists the positive elements [an}n=i
in T(M) such that a = αx — a 2 +i(^ 3 — α4). We can define uniquely Tr(a) = Tr(aι)
-Tr(a2)+i(Tr(a3)-Tr{aA)) so that T r is a ^-linear function of T(M) into 31

We show that the Schmidt class S(M) of B[M) is an AW*-moάa\e over £F.

THEOREM 2. TΛe ί^αZ 5(M) w an AW*-module over 2\

PROOF. Put (a, b)s = Tr(b*a) for α, b*S(M), then this is the £F-valued
inner product. Define, for a € 5(T), | |α|| f = ||(α, α)5 | | 1 / 2, then | | . ||2 on S(M) defines
a norm.

At first, we show that S(M) is complete in this norm. Let {an} be a
Cauchy sequence in S(M). By the fact that \\a\\ ^ | |α||8 for each azS(M) and
that C{M) is uniformly closed, there exists an element a in C(M) such that
l|tfn~~tfll-^O ^ w-^°°. We prove that a^S{M) and that l|α»—α||2 — 0̂ as

oo

n—>oo. Let ^ α ^ f be the spectral decomposition of \a\. Put μ n(a) = an. By

the fact that ^ Λ/A(?)̂ i(?) is the spectral decomposition of the completely continuous

operator \a{ζ)} ([3]) and [7], we have μn(a)A(ξ) = μn(a{ζ)) where μn(a(ζ)) is the
72-th characteristic number of the operator a{ξ), and \\μk(an—am) — μk{an—a)\\ —>0
as m —> oo. It follows that, for each ζ in Z and each positive number N,

U/2Λ ί If U/2
\2 I /fc \ 1 ̂ ~~* / /ί*\ /ί«\\2 I
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\ 1/2

5^ lim sup

^ lim sup \\an-am\\2

for all n. Therefore, it follows that

U/2

, - a)2 \ ^ lim sup \\an — am\\2

)

for all n. Therefore, letting ΛΓ—>oo, we find

IIΛn — a I) 2 ^ lim sup \\an — <zj | 2 , so that

lim \\an-a\\2^ lim \\an — am\\2 = 0 .

Thus the completeness of *S(M) is proved.
Next, by the property of AW^-algebra £F, we can easily show the following:

If {pt} is a set of mutually orthogonal projections in £F of 1. u. b. p, and suppose
a is an element of S(M) with pta = 0 for all z, then pa = 0.

Finally, we show the following: If {p^ is a set of mutually orthoganal
projections in £F of 1. u. b. 1 and if {#J is a bounded set in S(M), there is a
unique azS(M) such that pίa = pίai for all z. Let | | α J 2

2 = UTr^*^)! ! :giV2 for
all z, then | |αj| ^ | |αJ|2^iV. Therefore, there is an a in B(M) such that
^>.Λ = p.a. for all z. Let e be an abelian projection in β(M) and let ^ be the
central support of e. The algebra eB(M)e = 3ίe is *-isomorphic to 3?p. Following
[ 3 ], we let τe(a) denote the unique element in <3p such that eae = τe(a)e.
Let S be a set of mutually orthogonal projections and let F(S) be the set of all
finite subsets of S. For each J of F(S) and for each z, we have

This follows from the fact that 1. u. b Σ τΛa*aι) = Tr(a^a^j. The proof of this

fact is essentially same as Halpern in [ 3 ], except for noting that 77( ) is completely

additive on projections ([4]). So ]P rf(ά*a) ^N 1. Thus,

/ )
is bounded above. Therefore, by [3], a*a£P and azS{M). This completes the
proof of this theorem. Q. E. D.

We now establish that Hom(C(M), £?), the set of all uniformly bounded
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module homomorphisms on C(M) to 2s is identified with the trace class T(M) of
B(M).

THEOREM 3. If φ is an element of Hom(C(M), ζfj, there is a unique aφ

in T(M) such that φ(a) = Tr{aaφ) for all a in C(M). Moreover, for each
azT(M) let \\a\\x = ||7V((α*α)1/2)||. Then the function || ||i is a norm on T(M)
under which T(M) is an involutive Banach algebra. The function φ -+aφ is an
isometric isomorphism of Hom(C(M), 20 onto T(M) (as Banach space).

The proof of this theorem is same as that of Halpern in [ 3 ].

Since an abelian AW/^-algebra Si is *-isomorphic with the algebra of complex-
valued continuous functions on a Stonean space which is the spectrum of 31, we
have in the followings to consider "order-convergence" of a net in 31. The
following criterion for the order-convergence in 31 is useful.

LEMMA 3. (Widom [ 8 ]) A net {aλ} of 31 order-converges to a (written

aλ —> a (O)) if and only if given a non-zero projection e in 31 and a positive

number e there exists a non-zero projection f in 3ί with f^e and a λ0 such

that λ ^ λ 0 implies \\f(aλ — a)\\ <e.

Then, we have the following lemma, which is stated in the strong topology
for a von Neumann algebra.

LEMMA 4. (Widom [8]) The unit sphere of 31 is complete relative to

order-convergence.

Now, we show that Hom(T(M), 20, the set of all bounded (with respect to

|| l|i) module homomorphisms on T(M) to 2s is identified with B(M).

THEOREM 4. Let a0 <= B(M). The function φ(a) = Tr(aa0) for a € T(M) is
an element of Hom(T(M), £F). Conversely, if φ is an element of Hom(T(M), £?),
there is a unique aφ € B(M) such that φ(a) = Tr(aaφ) for all azT(M). The

function φ—>aφis an isometric isomorphism of Hom(T(M), £F) onto B(M)

(as Banach space).

PROOF. Let a0 z B(M) and let a z T(M). Then we have

Thus the function φ(a) = Tr(aaQ) for a € T(M) is an element of Hom(T(M), £F) and

\\Φ\\ = K l | by [3].
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Let φ be an element of Hom(T(M), £F). For every fixed b in S(M), the
function a —> φ(b*a) is a bounded module homomorphism on S(M). In fact, by [ 6 ],

\\Φ(b*a)\\ ^ IW| ||Tr(|& α| ) | | ^ ||<M| l|&l|2l|α||2.

By Lemma 1 and Theorem 2, there is, for every b € S{M), a unique Φ{b) in
S(M) such that ^(6*α) = (α, Φ(b))s for every α in S(M). L e t / be a projection in
C(M) and e be an abelian projection. Then

K(Φ(/))|| = l|τ.(Φ(/))*B = ||Tr(Φ(/) *)l| = II (e, Φ(f))s\\

= \\Φ(fe)\\^\\φ\\ \\Tr(\fe\)\\

= Hίill \\Tr{{τe(f))φe)\\ = \\φ\\ l|τe(/) /2|| ^ | |^ | | .

Now, we have ||Φ(/)I|^21|¥>||. Indeed, Φ(/) is in S(M) and Φ(/)=Φ(/) 1 -Φ(/) 2

+*(Φ(/)»-Φ(/)4) where Φ(A in S(M)+ for » = 1, 2, 3, 4, hence

= max. (11^/),B, ||Φ(/)2l|)+max. (||Φ(/)3||, \\Φ(fU

Suppose that max.fllΦί/y, I|Φ(/)2I|) = ||Φ(/)il|, and let f ) αtet be the spectral

decomposition of Φ(/) x then

Similary, max.(||Φ(/)3||, I|Φ(/)4||) ^ WΦl Therefore | | Φ ( / ) | ) ^ 2 \\φ\\. Moreover,
Φ( ) has the following property: for azS(M) and bzB{M), we have bΦ{a)
= Φ{ba). Indeed, for c €

(c, bΦ(a))8 = {b*c, Φ(a))s = φ{a*b*c) = φ((ba)*c) = (c, Φ(ba))8.

The set C(M)P of all projections in C{M) is an increasing directed set under
the usual ordering for projections in B(M) with 1. u. b. 1. We shall show that
when g ζ C(M)P converges to 1 in B(M)9 Φ(g) is strongly convergent to a fixed
element aφ in B(M). If g varies over C(M)P, for each xzM, we have
(gx, χ)M order-converges to (x, x)M in £F, hence
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This means by Lemma 3, that, for each x € M, and for a given non-zero projection
e^fFand any positive number e, there exists a non-zero projection f^3,f^e
and a gozC[M)p such that g^g0, gzt(M)p implies l | / | ( l -^)x | 2 | | <e2 . Now,
for g, g in C(M)P such that g9 g ^ g0, we have

(Φ(g)x, x)M =

= {&oΦ{ff)x> x)u

= (Φ(go)xjήM + (Φ(^)Λ, (1 - tfo)*)*

together with the similar relation by g', we have

(Φ(g)x, x)u - (Φ(sO#» Λ:)if

:, (1 - g,)x)M ~ (Φ(g')x, (1 - 0O)X)M>

so that

\\Ά(Mg)*>χ)M

r, /(I - go)x)M\\ + ll(Φ(^)/r> /(I -

by ||Φ(^)I| ^ 2 | | ^ | | for all gzC(M)p and, for b in B{M), bΦ{a)=Φ{ba) for every
α€ 5(M). Hence, by Lemma 3 and Lemma 4, we see that Φ(^) strongly converges
to an element aφ in B(M):

(Φ{g)x9 x)M * {aφX> X)M (O) for every x € M.

Next, we have Φ(f)=faφ for every / € C(M)P, because

(/Λ^C, y)jf = (<^> /y)* = order-lim (Φ(^)Λ:, fy)x
geC(M)P

= order-li.τi (fΦ{g)x, y)M= (Φ(f)x> y)n
Q*C(M)9

for every #, ,y € M.

Let α, 6 € 5(M), then

so we have | |Φ(6)I | 8 ^ \\φ\\ l|&l|2. Therefore Φ( ) is continuous in S(M).

But, for a in S(M), if ^2 aιei λS ^ e s Pe c t r a l decomposition of \a\ and
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bn= Σ aί(ueί) where u is the partial isometry such that u\a\ is polar decomposition
4 = 1 ,

of a, t h e n \\bn—a\\2 — > 0 if w — > ° o ( [ 7 ] ) , h e n c e
n

Φ(a) = lim Φ(bn) = lim2^α4wΦ(0t)

n

= lim ^ CLiUefiφ = lim έ n α^

i. e. \\Φ(a)-bnaΦ\\2 = I]ΦW - Φ ( W I | « - > 0 if w->oo .

But ||6nΛψ — tfa$||2^ ||&n—αl]2l|<zψ|| —>0 if w'—>oo . Therefore Φ(a) = aaφ for every

Finally, let 6 € P. Then &1/2 € 5(M). We have

φ(b) = φ(b1/2bί/2) = (bι/\ Φ(b1/2))s

= (bι/\ b1/2aφ)s = Tr{aφ*b) .

Therefore, for every b e T(M), φ{b) = Tr{aφ*b) = Tr(baφ*).
Therefore, if φ is an element of Hom(T(M), £F) there is one and only one

aφ in B(M) such that φ{ά) = Tr{aaφ) for all azT(M). Since the function φ ->aφ

is linear, the function is isometric isomorphism of the Banach space Hom(T(M), 3?)
onto B(M). Q. E. D.

Finally, the author wishes to express his hearty thanks to Prof. M. Fukamiya
in the presentation of this paper. The author also wishes to thanks to Mr.
T. Okayasu, Mr. K. Saito, Mr. H. Takemoto and Mr. T. Kikuchi for several valuable
comments.
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