Tôhoku Math, Journ. 23(1971), 719-725.

THE DEFICIENCIES OF A COMPOSITE FUNCTION OF INTEGRAL FUNCTIONS

SEIKI MORI

(Received May 31, 1971)

1. Let f(z) and g(z) be two integral functions. It is assumed that the reader is familiar with the following symbols of frequent use in Nevanlinna's theory:

m(r, f), n(r, f), N(r, f), T(r, f), $\delta(a, f)$, etc..

Valiron [4] proved the following theorem.

If f(z) is a meromorphic function of finite order μ and of lower order λ , and if $\mu - \lambda < 1$, then all deficiencies of f(z) are invariant under a change of origin.

Gol'dberg and Belinsky [3] showed that the condition $\mu - \lambda < 1$ in the theorem can not be dropped.

These theorems can be considered as results on relation between deficiencies of a composite function f(g(z)) and those of the integral function f(z), where g(z) is a polynomial of degree 1.

From this point of view we consider the following two problems:

- (A) Is $f(a_0)$ also a deficient value of f(g(z)), when a_0 is a deficient value of g(z)?
- (B) Is w_0 also a deficient value of f(g(z)), when w_0 is a deficient value of f(z)?
 - 2. We first deal with the problem (A).

THEOREM 1. Let g(z) be a transcendental integral function and f(z) a polynomial of degree n. Then, for any w_0 , it holds that

(1)
$$\delta(w_0, f(g(z))) \ge \frac{1}{n} \sum_{i=0}^{n-1} \delta(\gamma_i, g(z)),$$

where $\{\gamma_i\}_{i=0}^{n-1}$ are zeros of $f(z) - w_0$.

PROOF. Clearly we see

S. MORI

$$N\left(r,\frac{1}{f(g(z))-w_{\mathfrak{o}}}\right)=\sum_{i=0}^{n-1}N\left(r,\frac{1}{g(z)-\gamma_{i}}\right).$$

It is known that if g(z) is a non-constant integral function and if f(z) a polynomial of degree n, then

$$\frac{T(r, f(g(z)))}{T(r, g(z))} \longrightarrow n \quad \text{as} \quad r \longrightarrow \infty,$$

(see Hayman [2], p. 54). Thus we have

$$\begin{split} \limsup_{r \to \infty} \frac{N\left(r, \frac{1}{f(g) - w_0}\right)}{T(r, f(g))} &\leq \limsup_{r \to \infty} \frac{\sum_{i=0}^{n-1} N\left(r, \frac{1}{g - \gamma_i}\right)}{\{1 - o(1)\}n \cdot T(r, g)} \\ &\leq \frac{1}{n} \sum_{i=0}^{n-1} (1 - \delta(\gamma_i, g)), \end{split}$$

so

$$\delta(w_{\mathfrak{o}}, f(g(z))) \geq \frac{1}{n} \sum_{i=0}^{n-1} \delta(\boldsymbol{\gamma}_{i}, g(z)),$$

which proves the theorem.

REMARK. Given any transcendental integral function g(z), there exists a polynomial f(z) such that the equality in (1) holds.

From Theorem 1 the following is easily obtained.

COROLLARY 1. Let f(z) and g(z) be as in Theorem 1. If a_0 is a deficient value of g(z), then $f(a_0)$ is also a deficient value of f(g(z)).

3. We shall next show that if f(z) and g(z) are both transcendental integral functions, then the conclusion of Corollary 1 does not always hold.

THEOREM 2. Let g(z) be a transcendental integral function of finite order μ and of a positive lower order λ . Then, for any $a_0(\pm \infty)$, there exists a transcendental integral function f(z) such that $f(a_0)$ is not a deficient value of f(g(z)).

PROOF. We can choose a sequence $\{a_i\}_{i=1}^{\infty}$ of complex numbers and two sequences $\{r_i\}_{i=1}^{\infty}$, $\{K_i\}_{i=1}^{\infty}$ of positive numbers which satisfy the following conditions (i) and (ii):

(i)
$$\sum_{i=1}^{\infty} \frac{1}{|a_i|} < +\infty, \sum_{i=1}^{\infty} \frac{1}{r_i^{\lambda/2}} < +\infty, r_i \longrightarrow +\infty (i \longrightarrow +\infty)$$

720

and

$$\sum_{i=1}^{\infty} \log \frac{1}{1 - \frac{1}{K_i}} < +\infty, \ K_i > 1,$$

(ii) $T(r_{i+1}, g) \ge r_{i+1}^{2/2} \log^+ |a_i|,$

$$|a_{i+1}| > K_{i+1} \cdot M(r_{i+1}, g)$$

and

$$\lim_{r\to\infty}\frac{h(r)\cdot\log r}{T(r, g)}=0$$

where $M(r, g) = \max_{\substack{|z|=r \\ |z|=r}} |g(z)|$ and h(r) denotes the number of a_k such that $|a_k| < K_i \cdot M(r_i, g)$ for $r_i = \min_{1 \le n \le \infty} \{r_n \in \{r_i\}_{i=1}^{\infty} : r \le r_n\}$.

In fact, we fix $r_1 > 1$ and choose a_1 such that $|a_1| > M(r_1, g)$. We next take r_2 $(>r_1)$ such that

$$T(r_2, g) \ge r_2^{1/2} \log^+ |a_1|$$
 and $r_2 \ge 2^{3/2}$.

Further, for this r_2 , we choose a_2 such that

$$|a_2| > K_2 \cdot M(r_2, g),$$

where

$$K_2 = \frac{1}{1 - e^{-1/2^2}}.$$

If a_i has already been determined such that $|a_i| > K_i \cdot M(r_i, g)$, then we determine $r_{i+1}(>r_i)$ satisfying

$$T(r_{i+1}, g) \ge r_{i+1}^{2/2} \log^{+} |a_i| \text{ and } r_{i+1} \ge (i+1)^{3/2}$$

and we choose a_{i+1} such that $|a_{i+1}| > K_{i+1} \cdot M(r_{i+1}, g)$ where

$$K_{i+1} = \frac{1}{1 - e^{-1/(i+1)^2}}.$$

By constructing sequences $\{a_i\}_{i=1}^{\infty}$, $\{r_i\}_{i=1}^{\infty}$ and $\{K_i\}_{i=1}^{\infty}$ in this way, we see easily that these sequences satisfy the conditions (i) and (ii). We now consider the infinite product

S. MORI

$$f(z) = \begin{cases} \prod_{i=0}^{\infty} \left(1 - \frac{z}{a_i}\right), & a_0 \neq 0\\ \prod_{i=1}^{\infty} z \cdot \left(1 - \frac{z}{a_i}\right), & a_0 = 0 \,. \end{cases}$$

Then f(z) is an integral function with simple zeros at a_i . Hence we have

$$\begin{split} m\left(r,\frac{1}{f(g)}\right) &= \frac{1}{2\pi} \int_{0}^{9\pi} \log^{+} \prod_{i=0}^{\infty} \left| \frac{1}{1 - \frac{g(re^{i\theta})}{a_{i}}} \right| d\theta + O(\log r) \\ &\leq \frac{1}{2\pi} \int_{0}^{2\pi} \log^{+} \prod_{i=0}^{h(r)-1} \left| \frac{1}{1 - \frac{g(re^{i\theta})}{a_{i}}} \right| d\theta + \\ &+ \frac{1}{2\pi} \int_{0}^{2\pi} \log^{+} \prod_{i=h(r)}^{\infty} \left| \frac{1}{1 - \frac{g(re^{i\theta})}{a_{i}}} \right| d\theta + O(\log r) \end{split}$$

and

$$\prod_{i=h(r)}^{\infty} \left| \frac{1}{1 - \frac{g(re^{i\theta})}{a_i}} \right| \leq \prod_{i=h(r)}^{\infty} \frac{1}{1 - \left| \frac{g(re^{i\theta})}{a_i} \right|} \leq \prod_{i=h(r)}^{\infty} \frac{1}{1 - \frac{M(r, g)}{K_i M(r, g)}} = \prod_{i=h(r)}^{\infty} \frac{1}{1 - \frac{1}{K_i}},$$

so we see

$$\log^{+} \prod_{i=h(r)}^{\infty} \left| \frac{1}{1 - \frac{g(re^{i\theta})}{a_{i}}} \right| \leq \log^{+} \prod_{i=h(r)}^{\infty} \frac{1}{1 - \frac{1}{K_{i}}} = \sum_{i=h(r)}^{\infty} \log \frac{1}{1 - \frac{1}{K_{i}}} < 2.$$

Thus it follows that

$$\begin{split} m\left(r,\frac{1}{f(g)}\right) &\leq \frac{1}{2\pi} \int_{0}^{2\pi} \log^{+} \prod_{i=0}^{h(r)-1} \left| \frac{a_{i}}{g(re^{i\theta}) - a_{i}} \right| d\theta + O(\log r) \\ &\leq \frac{1}{2\pi} \int_{0}^{2\pi} \log^{+} \prod_{i=0}^{h(r)-1} \left| \frac{1}{g(re^{i\theta}) - a_{i}} \right| d\theta + \log^{+} \prod_{i=0}^{h(r)-1} |a_{i}| + O(\log r) \\ &\leq \sum_{i=0}^{h(r)-1} m\left(r,\frac{1}{g-a_{i}}\right) + \sum_{i=0}^{h(r)-1} \log^{+} |a_{i}| + O(\log r) \,. \end{split}$$

By the second fundamental theorem, we obtain

$$\sum_{i=0}^{h(r)-1} m\left(r, \frac{1}{g-a_i}\right) \leq 2 T(r, g) + m\left(r, \frac{g'}{g}\right) + m\left(r, \sum_{i=0}^{h(r)-1} \frac{g'}{g-a_i}\right) + O(\log r)$$

722

It is easy to see that

$$m\left(r, \frac{g'}{g}\right) = O(\log r)$$

and

$$m\left(r,\sum_{i=0}^{h(r)-1}\frac{g'}{g-a_i}\right)=O(h(r)\cdot \log r).$$

On the other hand, a result of Clunie (see Hayman [2] p. 54) implies that if f(z) and g(z) are two transcendental integral functions, then

(2)
$$\frac{T(r, f(g))}{T(r, g)} \longrightarrow \infty \text{ as } r \longrightarrow \infty.$$

Hence, for the sequence $\{r_n\}_{n=1}^{\infty}$ chosen above, we have

$$\frac{m\left(r_n, \frac{1}{f(g)}\right)}{T(r_n, f(g))} \leq \frac{2 T(r_n, g) + \sum_{i=0}^{h(r_n)-1} \frac{T(r_i, g)}{r_i^{1/2}} + O(h(r_n) \log r_n)}{T(r_n, g)} \cdot \frac{T(r_n, g)}{T(r_n, f(g))}$$

which gives us

$$\liminf_{r\to\infty}\frac{m\left(r,\frac{1}{f(g)}\right)}{T(r,f(g))}=0,$$

by the conditions (i), (ii) and (2). Thus we obtain

$$\delta(0, f(g)) = \liminf_{r \to \infty} \frac{m\left(r, \frac{1}{f(g)}\right)}{T(r, f(g))} = 0.$$

This proves Theorem 2.

COROLLARY 2. Let f(z) and g(z) be transcendental integral functions. Even if $a_0(\neq \infty)$ is a deficient value of g(z), $f(a_0)$ is not always a deficient value of f(g(z)).

For, by a result of Edrei and Fuchs [1], the function g(z) constructed in the proof of Theorem 2 is of positive lower order, since g(z) has a finite deficient value. Hence Theorem 2 implies this corollary.

4. Concerning the problem (B), we can prove the following theorem.

THEOREM 3. Let g(z) be a polynomial of degree n and f(z) a transcen-

S. MORI

dental meromorphic function of order μ_f and of lower order λ_f . Assume that $\mu_f - \lambda_f < 1/n$. Then, for any w_0 , it holds that

$$\delta(w_0, f(g)) = \delta(w_0, f).$$

PROOF. Using the method due to Valiron [4], we obtain

$$(1-\varepsilon) N\left(s', \frac{1}{f-w_0}\right) - O(\log r) \leq N\left(r, \frac{1}{f(g)-w_0}\right)$$
$$\leq (1+\varepsilon) N\left(s, \frac{1}{f-w_0}\right) + O(\log r)$$

and

$$(1-\varepsilon)T(s', f) - O(\log r) \leq T(r, f(g)) \leq (1+\varepsilon)T(s, f) + O(\log r)$$

for any $\varepsilon > 0$ and for all sufficiently large values of r and we have

$$\lim_{r\to\infty}\frac{T(s,f)}{T(s',f)}=1$$

provided that $\mu_f - \lambda_f < 1/n$, where $g(z) = a_0 z^n + \cdots + a_n$, |z| = r, $|a_i| = \alpha_i$ $(i = 0, 1, 2, \dots, n)$, $s = \alpha_0 r^n + \cdots + \alpha_n$ and $s' = \alpha_0 r^n - \alpha_1 r^{n-1} - \cdots - \alpha_n$. Hence

$$\limsup_{r \to \infty} \frac{N\left(r, \frac{1}{f(g) - w_0}\right)}{T(r, f(g))} \leq \limsup_{r \to \infty} \frac{(1 + \varepsilon) N\left(s, \frac{1}{f - w_0}\right)}{(1 - \varepsilon)T(s, f)} \cdot \frac{T(s, f)}{T(s', f)}$$
$$= 1 - \delta(w_0, f) .$$

Similarly we have

$$\lim_{r\to\infty} \sup_{\tau\to\infty} \frac{N\left(r,\frac{1}{f(g)-w_0}\right)}{T(r,f(g))} \ge 1-\delta(w_0,f).$$

Thus we obtain

$$\delta(w_0, f(g)) = \delta(w_0, f) .$$

As a direct consequence of Theorem 3, we have

COROLLARY 3. Under the same condition as in Theorem 3, if w_0 is a deficient value of f(z), then w_0 is also a deficient value of f(g(z)).

724

References

- A. EDREI AND W. H. J. FUCHS, On the growth of meromorphic functions with several deficient values, Trans. Amer. Math. Soc., 93(1959), 293-328.
- [2] W. K. HAYMAN, Meromorphic functions, Oxford Univ. press, 1964.
- [3] A. A. GOL'DBERG AND P. P. BELINSKY, Application d'un théorème sur les représentations conforms aux questions d'invariance des fonctions méromorphes, Ukrain. Mat. Zhurnal, 3(1954), 263-269, (Russian).
- [4] G. VALIRON, Valeurs exceptionelles et valeurs deficientes des fonctions méromorphes, C. R. Acad. Sci. Paris, 225(1947), 556-558.

Mathematical Institute Tôhoku University Sendai, Japan