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§1. Introduction and the statement of the main theorem.
1. Introduction. It is well known that the principal ideal theorem in the

class field theory is considered as a solution of a conjecture stated by Hubert. By

virtue of his reciprocity law, E. Artin [ 1 ] reduced the conjecture into a problem

of group theory which was proved by Ph. Furtwangler [ 2 ] . There appeared

many other papers dealing with the problem, since Furtwangler's proof was fairly

complicated. Among those S. Iyanaga [ 4 ] gave a simpler proof on the strength of

Artin's splitting group, and also he succeeded to generalize the principal ideal

theorem in the absolute class field into the ray class field [ 3 ] .

There have been done several researches to express the condition under which

an ideal class becomes principal in intermediate fields, however as H. Hasse pointed

out in his "Bericht" there are many difficulties preventing generalizing of the

principal ideal theorem in those situations.

It is easily observed, by the formula of ambiguous class number, that if an
absolute class field is cyclic, then there is only one ambiguous class, that is, the
identity class. By this suggestion, Prof. Tannaka made the following conjecture
during the world war II.

"If k is the absolute class field of k and K/k is a cyclic intermediate field of

k/k, then are all ambiguous class ideals of K/k principal in kΐ"

The "Tannaka's conjecture" was shown to be true by the author by a fairly

complicated procedure [ 5 ]. In fact, our result was, one way, a generalization of

K

k*'

cyclic
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the principal ideal theorem in the sense of Hubert and also it was principal ideal

theorem in intermediate fields. That is, ambiguous class ideals among ideals of

K become principal in an intermediate field k of K/K, where K is the absolute

class field of K. After that, the author's proof was made simpler by Prof. Tannaka

and the author [ 8 ]. But it seems fairly difficult to extend the theorem in case

where K/k is an Abelian intermediate field of k/k.

Concerning those Prof. Tannaka has published the other interesting result
[ 9 ] . This may give an insight into a generalization of the theorem.

2. Statement of our main theorem. Now, H. Hasse has given the

concept of the genus field of a quadratic field over the rational field Q [ 6 ], which

has been generalized by A. Frδhlich as follows.

Let K/k be a Galois extension. An extension field Γ of K is called the genus

field of K/k, if the following conditions are satisfied

( i ) T/K is unramified.

(ii) Γ is a composition of K and an Abelian extension of k

(iii) Γ is maximal under the conditions ( i ), (ii).

Abel/
unram

The genus field is determined uniquely for K/k, and if K/k is Abelian, then Γ is

K< -i
{s}

k
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the maximal Abelian extension over k which is unramified over K. If K/k is
cyclic, the genus field of K/k is characterized as follows. Let s be a generator of
the Galois group of K/k, C% be the ideal class group of K and (Cκ)ι~s be the
image by the endomorphism

a—>c% by c\—>σ~s for c^ci,

that is, Cι£s is the so-called principal genus (Hauptgeschlecht). The genus field Γ
of K/k is the class field corresponding to this (CJ)1"5.

Moreover, an absolute class C( £ C%) is called an ambiguous class of K/k if it
is contained in the kernel of the endomorphism. Ideals in such a class C are called
ambiguous class ideals of K/k.

Now the main theorem in this paper is as follows;

THEOREM. // K/k is a cyclic extension [not necessary to be field
unramified), then all ambiguous class ideals of K/k are principal in the genus
Γ of K/k.

If K/k is an unramified cyclic extension, then the genus field Γ of K/k is the

absolute class field k of k. In this case, our main theorem turns out to be a

solution of the Tannaka's conjecture which was proved by the author before.

COROLLARY. (Terada [ 5 ]) If K/k is an unramified cyclic extension, then

all ambiguous class ideals are principal in the absolute class field k of k.

We shall prove our theorem in § 3 by using the cohomology theory. Notations
and definitions follow "Algebraic Number Theory" by J. W. S. Cassels and A.
Frohlich.

In § 2 a purely number theoretical treatment of our theorem will be shown
in any quadratic fields.

§2. A purely number theoretical treatment in any quadratic fields.

1. Preliminaries for our theorem. Let K=Q{*J~d ) be a quadratic
extension of the rational field Q with discriminant d. Let p19 p2, •••, pt be the
distinct prime divisors of d, and

A = ft2 ( ί = l , 2, •-., t)

in K. We consider two kinds of ideal class groups in K, one being the absolute
class group in the wide sense, and the other the absolute class group in the
narrow sense. We call these groups the wide group and the narrow group
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respectively. If I is the ideal group of K and S is the subgroup of the principal
ideals, then the wide group is the factor group C = I/S. And if

&. = {(a); a in K, Nκ/Q a>0],

then the narrow group is the factor group C* = //«SΌo.
If s is a generator of the Galois group of K/Q, then we may consider two

endomorphisms

c* —> (c*)1-', a i—> {czy-s

If the kernel of these endomorphisms are

A/S and A»/S«

respectively, where A, A*, are subgroups of /, we call ideals in A, Aoo ambiguous class
ideals in the wide sense and in the narrow sense, respectively. That is, an ideal 3t
is an ambiguous class ideal in the wide sense if W~s € S, and is an ambiguous class ideal
in the narrow sense if SI1"* € ASOO. Obviously

On the other hand, we call an ideal 3ί ambiguous if SI1""* = 1. Ambiguous ideals of
K/Q constitute a subgroup A o of A^, and are generated by p19 p 2>#"> Pt and
ideals in Q. It is well known that

( 2 ) A*. = Ao&o.

Now, by the so-called principal genus theorem, the genus field Γ of K/Q in
the wide sense is the class field corresponding to the class group (C*Y~S and the
genus field ΓΌo of K/Q in the narrow sense corresponds to the class group (C*) 1" 5

(cf. [ 7 ] , [10]). In case of the wide sense, we shall call simply the genus field of
K/Q. Concerning the genus field in the narrow sense, H. Hasse [ 6 ] has given
the following

> •"> VPΪ)

where pf = (- 1 ) ^ A (ρt * 2)

PT= - 4 , ± 8 (A = 2) (z = l, 2, •••, t)

Moreover we may check easily

( 4 ) (Γ: K) = (A: 5), (IV. K) = ( A . : SL), (Γ. : Γ) ^ 2 .

In this quadratic field K, our main theorem reads as follows.
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THEOREM. Every ambiguous class ideal of K/Q is a principal ideal in the
genus field Γ of K/Q.

Now we shall give another proof of this theorem without use of the
cohomology theory.

2. T h e c a s e o f Γ = Γoo. Since (A) = Pi2 and

) 2 for p t * 2

( V ± 2 ) 2 for p* = ± 8

(1 + z)2 for p* = - 4 ,

Pi is a principal ideal in ΓU by (3). Then every ambiguous ideal 3l0 of K/Q is
a principal ideal in Γoo.

If d<0, then 5 = 5c and so A=AOO, Γ=Γoo. And by (2), we may conclude
the main theorem in this case.

Next, let d > 0. Then a necessary and sufficient condition for Γoo = Γ is

A * > 0 {i=h 2, •••, t).

We shall prove the main theorem in this case, by the mathematical induction
concerning the number of prime divisors of d.

If t = 1, there is only one ramified prime ideal, the ambiguous class number
a = 1, and the main theorem is trivial.

Let t^2, and 31 be an ambiguous class ideal of K/Q. That is

(4) « 1 - = ( Λ ) , {cήeS.

If there exists an ambiguous ideal 2l0 with

« = *,(£) (£)€&

31 is a principal ideal in Γoo = Γ. Now we shall consider the other case (This case
happens by Q(V34) etc.). Since we can assume (3ί, d) = 1, we can consider a in
( 4) prime to d. Moreover, from ( 4 )

Nma = ± 1.

If NK/QOL = 1, by the so-called Hubert's theorem 90, there is β in K such that

a = β1".
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Then from ( 4 ),
β
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= 1 and—-μr- = Sί0 is an ambiguous ideal, and this is
β

not our case. Therefore, a satisfies the following

KK'

( 5) Nv<μ = - 1 .

As t ^ 2, we can assume p = pt 3= 2. Since

p = 1 (mod 4),

a fundamental unit £ of L = QWp) satisfies

(6)

Let X' = Q , and let T, σ be the generators of Galois groups of KK'/K,
I p I

KK'/K' respectively.
Now we shall prove the following.

The ideal 1 = %{l + cίS)-1 of KK' is an ambiguous class ideal of K'/Q.
(Notice: If ci is a unit, then 31 is an ambiguous ideal, and this is not our

case. Since a is not a unit, l-\-ot£±? 0)

PROOF. At first, we shall prove that either l+a£ or 1—oίS is prime to p.

Since etc Q(Vd),

a =
b + c

where a, by c, ey f, g are rational integers. Since {a, p) = 1, (£, p) = 1, we can
assume a, by e, f are prime to p. Then
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cue ae

where ξ is an integer in KL. If none of these are prime to p,

ae + bf=0, ae-bf=0 (mod p)

and so 2ae = 0 (mod p), this contradicts to [p, ae) = l and p^2.

We may assume (31, p) = 1, for (91, p) — 1 and we can use —β instead of 8 if

necessary. Then 31 is an ambiguous class ideal in K\ To prove this, we shall

first calculate

Because of 3 t w = SΓ"* = (a)

SI1"* =

By ( 5 ),( 6 ), ar = - - ^ , fi = - and then

a — ^ j = i.

That is 31 is an ambiguous ideal of KL'/K'. Since the ramified prime divisors

in KL'IK' are divisors of /> only, and 31 is prime to p by (5) , 31 is an ideal
in K\

Secondly, we shall calculate W~τ. Since 31 is in K, 311~Γ=1 and so

t 1 - ' = (l + cue)τ-λ = ((l + αaγ-ιe).
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By ( 5 ) , ( 6 ) , we can check easily (l+ot£)τ~18 is in K', and this shows SI is an
ambiguous class ideal of K'/Q.

Now we can apply the hypothesis of the induction to the ambiguous class

ideal 3l of K'/Q. SI is a principal ideal in the genus field Γ' of K'/Q. Since

Γ = F(V/0> % is a principal ideal in the genus field Γ of K/Q. So, Sί =

St(l+α£), where l+ot£€KK', is principal in Γ.

3. The case of Γ ^ ΓΌo. In this case, d > 0, and Γ is the maixmal real
subfield of ΓΌo. From (IV. K) = 2(Γ: K),

(A-: SJj = 2(A: S)

and we can easily show (S: £«,) = 2(A: AJ).

Since (S: £«,) ^ 2, we have A = A*,. Therefore, as was treated before, it is
sufficient to consider only the prime factor pt of /> i (z=l, 2, •••, ί). If p*>0,

then Λ/A* ζ Γ> a n ( l Pt *s principal in Γ. Therefore, we concern only with the

prime factor pi with p*<0. There are at least two such prmies and we call p, q

two of these. Then p, q = 2 o r ^ 3 ( m o d 4), and as is well known, the prime

factor of p in L = QWpq) is a principal ideal. That is

ρ={θ)2 θzL.

If p=f in K, then

P2 = (θ)2 i. e. p = (fl)

in K L . Since KL = Q{»Jd, «Jpq) is a real subfield of Γc =
is a subfield of Γ. Therefore p is principal in Γ.

§3. A proof of our main thorem.

1. Reduction to a theorem in the group theory. Let Γ, K, k, be the

same as in § 1, and K, Γ be the absolute class fields of K, Γ respectively. Then

Y/k is Galois by being Γ maximal unramified over Γ. We put

© = G{T/k), H = G(f/Γ), G = G(T/K) .

Then G is a normal subgroup of © with cyclic factor group ®/G, and by the
definition of the genus field, H is the commutator subgroup ®' of ©.

Let s be an element of © such that s(mod G) generates the cyclic group ©/G.
Denote the commutator subgroup of G and H by G', H' respectively, then G'
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corresponds to the field K, and H = 1. If Z is the rational integral domain,

#-2(G, Z) s G/C, ft-*(H, Z) ^ H//f (= H) .

Now consider the following two homomorphisms of G/G',

R2: the restriction mapping H~2(G, Z) ->H~2(H, Z) which is considered
as a homomorphism G/G' —>H/H'(= H).

S2: G/G' —*H/G' induced from σl—>s"1σ~1sσ (for σ^G).
R2 is called the transfer mapping from G to H.

Now our main theorem is reduced to

REDUCTION 1. Ker S^cKer R2

PROOF OF T H E MAIN THEOREM BY R E D U C T I O N l. Let Sί is an

ambiguous class ideal of K/k. Then

S ί s = for some

and ( I
\ 51

means

5~W = σ (mod G')

1 to G, this
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becauce off &/K j = 5 H ( K/K j 5 H e n c e s-ισ^sσeG i .e. σ^Ker 5,. If

Reduction 1 is shown, Ker S2cK.eτ R2 and we have

( l ) RM = l .

Now let Cr> CΓ> C# be the idele class groups of Γ, Γ, K respectively. Then we

have the following commutative diagram

G/G ~ Cκ/NCτ

RΛ Icon.

H ^ ί Cr/NCτ

where ψ, ψ ' are Artin maps for idele class groups ([11], p.197). From the fact

that Y/K is unramified, this diagram induces the following commutative diagram

nat.

for ideal class groups C% Cry where ψ*, ψ'* are Artin maps for ideal class groups.

From this diagram, ( 1 ) means I—^—j = 1, i. e. 31 is principal in Γ. Q. E. D.

2. Reduction to a theorem in the cohomology theory. We shall use
the following notations.

Z[G]: the integral group ring of G

Iσ: the ideal of Z\G\> generated by all σ— 1 (σ<zG)

IH{G) : the ideal of Z[G], generated by all λ - 1 (hzH)

N: the element ]Γ σ of Z[G]
σzG

J: any G-module

JG~*°: the kernel of the homomorphism N: J —> J defined by the multiplication

by the element N of Z[G],

Since for any G-module J

H-ι(G,J)^J™/IGJ,

we have
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H~1(G, Io) = Iff/Iff la

H~ι(H, Iff)^ir«/Inh.

Let us consider the following two homomorphisms Rλ and *SΊ, defined in

o/hh.

Rii the restriction mapping H~ι{G, IG) -*ίϊ~ι{H, IG)9 which is considered as a
homomorphism IG/IGIG —> IG~*°/IHIG

Sλ: the homomorphism IG/IGIG —> IG~*°/(IG, IHIG) induced from 1 — σ—> 1 — s~ισ~ιsσ

where (7G/> IBIG) is the module which is generated by I&, IBIG. AS s"1σ 1

Si is a well defined homomorphism.
Now, the Reduction 1 will be reduced to

REDUCTION 2. Ker 5ΊcKer Rλ.

PROOF OF T H E R E D U C T I O N 1 BY T H E R E D U C T I O N 2. Consider the
following exact sequence of G-modules (and also //-modules)

0—>h-^Z[G]—>T

Then we have the following commutative diagram

H-*(G, Z) _=u H"'(α

H-*(H, Z) _ ^ H - ^ H , 2β)

where the isomorphisms δS> δ j are the connecting homomorphisms. If we replace
these groups by the following groups

GIG _ ^ UIUU

R,\

δ | is induced from σ -*1 — σ for σ€ G. δ j is also induced from h^l—h for
h&H. As G'cH, the image δJ(G') can be defined, and

G'/H' A> (U, IBIβ)/IBIa
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and δ£ induces the following isomorphism

HIG ^ > IG"°/{IG>, ISIG) .

Since Im S2<zH/G', we have the diagram

G/G' . \ IG/IGIG

s\ \s

JLΪ/CT , ****y IG~* /[IG'> J-H^-G)

which is commutative by the definitions of ASΊ, S2. Connecting above two diagrams,

we have the next commutative diagram.

s

This completes our proof.

3. Some remarks concerning the integral group ring Z[©]. We shall
use the following notations.

τi> T2> * * > τm : elements of G such that

a) {τiίf, τ 2 H , , τ m o H ] is a basis of the Abelian group G/H,

b) τ m o + 1 H = . . . = r m J f = H ,

c) fa, τ 2, •••, rm} generates G.

ei, 2̂> •••> ^m: t n e order of TiJfiΓ, T 2 H , •••, τmH (mod ff) respectively

(emo+i = ' = em = 1).

Λ - l + r. + r l + . . + r r 1 (£ = L 2, - , m) (/m § + 1 = . . . = / m = 1)

Z[@], 7©: similar to Z[G], IG.

/(?(©), ίσ(®)> /^(®): the ideals of Z[©] which are generated by IG, IH, IG>,

respectively.
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7*7©: the Z[<8] ideal /*[©] 7®.
a0 = 1 — 5 € /©

<Zi = 1—Tj € 7<? (£ = 1, 2 , > m)

LEMMA 1. The restriction mapping

R,ι H-*(G, Iβ) = h/hh >fi-1{H> h) = / r / / ^

zs induced by

x I >/i/2 -fmx for x € 7ff.

PROOF. If {σ J is a representative system of G(mod 77), the restriction
mapping 7?x is induced by

x I Σ ^ 1

By our definition of rt we have

X ^ _ _ X -—Xl—β ί̂ mft^mKί -P P p p p •/* f~\ " p T™̂
/ ζf. ΞH > \ tf) ΊΓVJΓ / i / O / / I / 9 / »n ^ ^ <• L'»

LEMMA 2. TΛ^ /^/ϊ Z[©]-mo<ί^ (7β'[©]> 7σ7©)/7σ7© z*5 generated by

( 2 ) #i#j — #jΛj (ί, / = 1, 2> , w) .

PROOF. Denote σ~ιτ~ιστ — [σ, T]. We have

1 — [<r, rp] = 1 — [σ, pl/o"1^, τ]/>

= 1 — [σ, p] + [σ, plp-^l — [σ, T]) (mod 7σ7@)

for σ, r, pzG. Since η , τ 2 , •••, τ m generate G, it is sufficient to see that

1 — [rif τj\ [i, j = 1, 2, , m)

is generated by ( 2). This is obvious from

1 — [̂ V Tj] = τi~
ιτj1(ajai — ataj). Q. E. D.

Since s, τlf τ2, •••, τm generate ©, and 77= ©' we have

LEMMA 3. TΛe /e/i Z[©]-moJ^e 7σ[©]/7ff7© ίί generated by

(i, j = 1, 2, , m)

(i = 1, 2, , m).
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LEMMA 4. ( i ) χy = yx (mod IJ[®\) if x, yz Z[®\

xy = yx (mod IΠ[G]) if x, y € Z[G]

(ii) xya^yxdi (mod 7*7©) if x, yz Z[®\.

PROOF. It is sufficient to show for group elements x,y.

ocy—yx — xy(l— y~ιx~ιyx)

= 0 (mod IJi®]) if x, yz®

= 0 (mod J J G ] ) if x,yeG

^yx)^ = 0 (mod 7#7©) if J:, y e &.

L E M M A 5. 7̂ 7© n Z[G] = IHIG.

PROOF. It is sufficient to show that

Let © - " ϊ : sιG, G = Σ σJH> t h e n

Since

1 - h σjS1 = (1 - A) + A(l - σ,) + A σ,(l - sι)

for A € 77, we have

Λ € H j ι,j

Hence, it is sufficient to show that

I f rt€ Σ ^ j ( ) [ ]

Λ = Σ Λ UΛ(1 - h)σj(l - s1) (aiih € Z)
<.y.Λ

= Σ aatSX — h)σ5 —
ι.y,Λ ij,h

Since Z[®] = Σ ZiG]sl is a direct sum and a € Z\G\
i=0
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( 3 ) a = Σ, am(l - h)σs - Σ, «ort(l - h)σ,
i.JΛ ;,Λ

Σ, au*(l ~ h)σj = 0 (» = 1, 2, •••, n - 1 ) .
Uί.h

Since Z[G] = Σ Z[H]σj is adirect sum, this shows

Σ «iM(l - A) = 0

and finally

a>i5κ = 0 (i = 1, 2, , n — 1).

Therefore, from ( 3 )

a = Σ *OM(1 ~ h)σΛ - 2Z αo j Λ(l ~ h)σs = 0 .

This completes the proof.

LEMMA 6. If an element A € Z[@] satisfies

( i ) A α t = 0 (mod 7J®]) (A = 1, 2, ••-, m)
(ii) A^eιe2 'em (mod IG[&])

then

(in) A=fJ2...fm (mod /*[©]).

PROOF. Since the ideal /<- of Z[G] is generated by ak(k = 1, 2, , w) and
7 ,̂ we have from ( i )

(4) A ( 1 - C Γ ) Ξ = 0 (mod IJί&\) f o r a l l σ ^ G .

If we put A = Σ aijh

A(l - σ) s Σ ai3h σμ*(l - σ) (mod

by Lemma 4 ( i ) Σ

\j,h

If σ,σ = σj/Λ',

- σ) = [
i \3,h

\ /
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As Id®] = Σ IHO JS1 (direct), we have from ( 4 ) , ( 5 )

Σ «iJ-* = Σ «ϋ». ( f o r aU u j)
hsΠ h

Since σ is arbitrary,

Σ aι5h = n (for all j) (rt € Z ) .

Hence

( 6 ) A = l

w

(mod

n^o j ( m o d Xfft®])

= (Σ v) ( Σ ^ = (Σ>/) /, Λ •/.

Since fι = e% (mod / β ) , /ir[®]c/β[®] and 7 β C/ β [®]

A = (Σr j \ eιet -~em (mod

Now let us use the assumption (ii). Then

eie2 em = ί Σ ^ ' ) 1̂̂ 2 em (mod

And so

1 - r0 - Σ ^ Ί0 = exe, . .*J 1 - r0 - Σ ^ Ί (mod

n l

Since /^[®] = Σ Iest 1S a direct sum, this shows

^έV tfm (l-^o) = 0

1̂̂ 2 em ri = 0 (t = 1, 2, , n — 1)

and so

r 0 = 1, n = r 2 = = . . . = r n >! = 0 .

This shows, from ( 6 )
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4*. Existence of certain elements in the integral group ring. Now, let
us use the following notations.

Xip Yij (i, i = l> 2, •••, m): variables
&k (£ = 0, 1> 2, •••> m)\ variables
R: the polynomial ring Z[XiJ9 Yφ otj]
SI: an ideal of R which is generated by

Xtias (i=l,2,

j, Y)i Xj — (j=l>2, ,m)

\1m5/

D o : Do = det (X1 + Y&, X2 + Y2ct0 > Xm + Ym<*o)

Όk : Όk = det UX1 + Yia0, , Σ + =1,2, m)

that is, Όk is obtained from Do by replacing the £-th column
TO

with Y

A : A = det (Xl9 X2, •-, X J
D : Do = A + Όa0

Then we have the following

L E M M A 7. ( i ) Aak == 0 (mod 81)

(ii) Dk = Dak (mod SI) or K — l, z, , m.

Vc)

P R O O F . ( i ) Aak = det (Xί9 X 2 , •••, Xkah, •••, Xm)

= det I X 1 ? X 2 , , 2 ^ X Λ > * > Xm I

= 0 (mod SI)

(*) The idea of the treatment of this section is due to Dr. N. Adachi. The author's original proof
was more complicated.
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(ii) D A = det [X, + U , •••,£; YjtfA* > Xm +

= det XX + F Λ , . . . ,

Hence

- Όoak = - det ίxx + Yxa,, , f^X^, , Xm

,..., xm

i X p . . . , ] Γ

for some M^ 31. Hence

D , - D Λ , = M Ξ O (mod 31).

LEMMA 8. There exists
D, D f c € Z t ® ] (ife = 0, 1, 2 , •••, m )

satisfying the following relations:

( i) DLak ΞΞ D ^ (mod IHI%) {k, I = 0, 1, 2, , m)

(ii) DkΞ=Dak (mod 7e[©]) (Λ = 1, 2, , m)

(iii) A = Da, +ff2 . fm (mod

PROOF. From

and Lemma 3, we can find Pj$, J3iA. € Z[©] satisfying

+ Σ ^ ^ (αiαA: - a*βι) = Σ A * (αo^A - ΛA^O) (mod

Let

fc-1

1 = 1

where Sik is Kronecker's δ. Then
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TO TO

( 7 ) Σ A
ik
a
k
 = Σ B

ίk
 (a

o
a
k
 - a

k
a
0
) (mod I

H
I
&
).

m.

Since Σ Bik(aoak — aka0) € IH[&], and 7jff/©C/j&[©], we have by ( 7 )

( 8 ) Σ,AtkaksIir[®].
fc=l

Now, let us consider a ring homomorphism

φ: R

defined by

φ{Xv) = Aφ φ{Yii) = BΦ ψM = a, (mod

where ZtΘl/Z^t©] is a commutative ring by Lemma 4 ( i) . Then (8) shows
SίcKer φ. If

<p(Dk) = Dk {k = 0, 1, 2, ., m), 9»(D) = A p(A) = A,

Lemma 7 shows

(9) M = 0 (mod 1B[&])

(10) Dk = D ak (mod /„[©]) (* = 1, 2, , m).

Since αΛ € /σ, we have by the definition of ylίfc

AiJ: Ξ= 0 (mod /e[©]) for i ±? k

Au = et (mod Jβ[

Hence
-em (mod

and (9), Lemma 6 shows

A =/,/,.-•/» (mod

From D 0 = A+Dα 0 > we have

A == Z)α0 + / ! / , ./m (mod

On the other hand, we can rewrite (7) as follows

(mod
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If we put

then

a2

F. TERADA

TO (fc)

== — (Ak+Bka0)ak (mod

det Fk = - Dk .

Let Ffc be the cofactors matrix of Fk> then

/A 0^ (ax

(mod 7^7©)

,0 A/

From this we have

Όka{ = D^fc (mod 7̂ 7©)

for ky I = 1, 2, , m and k^l,

Dka0 = 7)0^ (mod 7^7©) (k = 1, 2, , m).

This completes our proof.

5. Proof of the reduction 2.

L E M M A 9. Let % z Z[@] (ί = 1, 2, , m). If

then

PROOF. This assumption means by Lemma 2
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Then

TO

/ , Vi
t = l

Σ Ϊ

by Lemma 8

TO

^ Σ
1=1
TO

= Σ
ί=l

= D

α o α < ) = J S s ι

ViiDido — DaQ

TO

fklWkQ-l —

at (mod

αt) (mod

2f) (mod w )

(mod Tff/®).

(by (iii))

(by ( i ) )

(by (ii) and Lemma 4 (ii))

= Σ fki(D»Pι - D%ak) (mod 7̂ 7®) (by Lemma 4 (ii), (ii))
t = l

= 0

Now we can prove the reduction 2. Our purpose is to prove

Ker S i C K e r Rx.

Let α^Ker *Si, i. e. a£lG and Sι(a) € (IG>,IβIG). For any a€lG, there exists
Ύi€ Z such that

(11) a = Σ γ Λ ( m o d ^ ^ )

In fact, as we can write a = Σ Λ*(l ~" σ)» Λ* € >̂ it is sufficient to show that

TO

1 — <r ΞΞ ̂  y t α 4 (mod 7^7<y).
ι=l

Since τly τ2 > •••, τ m generate G, and

1 - rσ = (1 - T) + (1 - σ) (mod IGIΘ),

the above statement is obvious.

By (11)
TO TO

ASI(Λ) ^ Σ ^ί^ί(ai) = Σ ^i5"17**"1 ( Λ Λ "~ ̂ oaί) (mod IG>>ISIG)

TO TO TO

/=1 i = l ΐ = l

TO

= s Σ V"1^"1 /i Λ -/««i (mod IHIG).
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Now, by Lemma 9 and Lemma 5

S^a) € (U, IHh)

means Rι(a) £ IHIG> i.e. a£ Ker Rlt This completes the proof.
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