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DIMENSION OF COMPACT GROUPS AND

THEIR REPRESENTATIONS

KAZUO SUZUKI

(Rec. Jan. 30, 1971)

In Pontrjagin's duality theory of compact abelian groups, it is well known that:

Let G be a compact abelian group, G* the dual group of G, dim G the
topological dimension in the sense of Lebesgue. Then the dimension of G is equal
to the rank of discrete group G*.

By S. Takahashi in [ 6 ], two analogies for non-commutative cases are formulated
as follows:

THEOREM A. Let G be a compact group, G the aggregate of finite

dimensional continuous representations of G, R(G) the algebra over the complex
number field C generated by the coefficients of representations in G, i. e., the
representative ring in the sense of C. Chevalley in [ 1 ]. Then the dimension of

G is equal to the transcendental degree of R{G) over C.

THEOREM B. Let G be a compact group, G the space consisting of
conjugacy classes of G, R[G*] the algebra over C genarated by characters of
elements of G, i. e., the character ring of G. Then the dimension of G is
equal to the transcendental degree of R[G*] over C.

Theorem A was solved affirmatively, but Theorem B was solved merely for
compact connected Lie groups, (See S. Takahashi [ 6 ]).

In [ 5 ] the author has refered to Theorem B in the general case, but has not
been able to solve it completely. Recently in [ 4 ], G. Segal gives several concepts
and theorems which are useful for solving Theorem B, i. e., the concept of a Cartan
subgroup of a compact Lie group, and its properties, (See § 2).

Now in this paper, we shall give an affirmative complete solution of Theorem
B.

1. On the dimension. Let X be a normal space, {t/4} a finite open covering



664 K. SUZUKI

of X, then the order of {C/J is the largest integer n such that there are n

members of the covering {C/J which have a non-empty intersection. A finite
open covering {VJ is called a refinement of a covering {C/J if each member of
[Vj] is contained in some member of {C/J. We recall that a space X has the
dimensionign, i. e., dim X^n if for any finite open covering {C/J of X, there
is a refinement {V }̂ with the order rgτz+1 of {C/J.

Let X be a compact Hausdorff space, G a compact group and (G, X) a
transformation group. Then it is well known that the orbit space X/G of X by G
is a compact Hausdorff space, (cf. D.Montgomery, L. Zippin [ 3 ] , p. 61).

LEMMA I. Let X be a compact Hausdorff space, G a finite group, (G, X)
a transformation group, X/G the orbit space of X by G. Then we have dim
X/G ^ dim X. Especially if X has the second countability axiom, then it
follows equality.

PROOF. 1) We shall prove the first part of the lemma. Let {C/J be any
finite open covering of X, x € X. Then there is an open set Vx of X, containing
X such that:

a) for any a, b^G, it follows άVx Π bVx = φ or aVx = bVx

b) for any azG, there is a member Ut of {C/t} such that aVx C U^

Because, if we put Hx = [a £ G|α:r = x] and G = aιHx-\-a2Hx + + arHx as the

coset decomposition of G by Hx, then there is an open set Yx, containing x, such

that hVx = Vx for /z € H x , <z, Vx ΓiajVx = ̂  for zV-j and ajVa.cC/i for some member

Since {Vx}χeχ is an open covering of X, and X is compact, we can take a
finite open covering {VJ of X such that Vt £ {Vx} # € X. If Φ is the natural
mapping: X—>X/G and we put Φ(V4) = Vί, then {Vί} is a finite open covering of
X/G.

Now assume dim X/G^n, then there,is a finite open covering {Wi}Λ€^ of
X / G which is a refinement of {VJ and has the order rg/z+1. If we take some
V't for TV; such that TV^cV;, and put Φ~1{W>

k)nVk = Wk, then it follows

aWk = έTVjfc or αTVfc Π &Wfc = 0 for any a, b^G, and the finite open covering
{aWk}a*G.k*A of X is a refinement of {C7t} with the o r d e r ^ n + 1. Therefore it
follows dim X ^ d i m X/G.

2) If X has the second countability axiom, then X is a separable metric space,
and we shall prove dim X/G ^ dim X, using the induction with respect to the
order of G.

i ) Assume that G has no non-trivial subgroups of G.
X^ = {χ€ X\ax — x for all a € G} is closed in X/G, and each element of G
operates on 7 = X—XG, thus Y/G is an open subset of X/G.

For any y zY9 there is an open set U of Y containing y, which is homeomorphic

to its image U by the canonical mapping Y —> Y/G.
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Therefore we have dim Y/G = dim Y ^ dim X. Since by the assumption of
G, it follows X/G = XGuY/G, we have dim X/G ̂  dim X.

ii) When G has non-trivial normal subgroup S, then each element of Γ = G/S
operates on X/S and we have X/G = X/S/Γ. By the induction it follows dim
X/G ^ dim X.

iii) Assume that G has a non-trivial non-normal subgroup S.

Each element of the normalizer N(S) of S in G operates on Xs. If we put

X's = \J XoSg'\ then it is closed in X, and each element of G operates in Xs,
QtG

thus X's/G is closed in X/G. Since XS/N(S) is compact, and the natural mapping
XS/N(S) —> X's/G is continuous and bijective, this mapping is homeomorphic, thus
we have dim XS/N(S) = dim X'8/G. Since N(S)^G, it follows d i m X ^ d i m

XS/N(S) by the induction, thus dim X^dim X8/G. If we put F=XG\J \{JX's\

where S ranges over non-trivial subgroups of G, then Y = X—F is open and as i)
we have dim Y/G :g dim X. Since X/G is equal to F/GuY/G, it follows dim
X/G ^ dim X

LEMMA 2. Z/££ X be a compact Hausdorjf space, G a compact group
with dim G = 0, (G, X) α tranformation group. Then dim X ^ dim X/G.

PROOF. Assume dim X^n, then there is a finite open covering {C/J of X
such that all refinements of {£/J have the order^n-\-l. When for any xeX, we
select a member Ut of {J7t} containing x, then there is an open neighborhood 0x of
unit element in G, and Vx of x in X such that 0̂  Va. C [7t.
Since G is 0-dimensional, there is an open closed normal subgroup Hx of G such
that HxGθx. Thus {Ha. Va.}x6X is an open covering of X, therefore we can
select a finite open covering {H^V^^j of X from members of [HX VX] which
is a refinement of {Ut}. Since H = y ^ ί^ is an open normal subgroup of

iΛ

G, Γ = G/H is a finite group and we have X/G = X/H/Γ. By Lemma 1, it
follows dim X/G ̂  dim X/H.
Thus it is sufficient to prove dim X/ί/^dim X. Let φ be the canonical
mapping of X to X/H, V ^ ^ H ^ ) , then {V,-} is a finite open covering of X/H,
and we have φ~ι(V'i) = H " ^ . Now if {W }̂ is any refinement of {VI} with the
order^n, and we put φ~1(WJ) = Wp then {Wj} is a finite open covering of X
with the order ^ w, and a refinement of {[/J. It contradicts to the assumption of
{Ut}. Thus we have dim X/H^n, that is, dim X/Jί^dim X.

2. On the case of compact Lie groups. In this section, we shall assume
that G is a compact Lie group. In the beginning we shall give some notions
introduced by G. Segal in [ 3 ].
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Let G° be the identity connected component of a compact Lie group G, then
G/G° = Γ is a finite group. C is called a cyclic group of G if C is the closure of
a subgroup generated by a non-unit element of G. Then a cyclic group C is the
product of a finite cyclic group and a torus.

DEFINITION. A subgroup S of G is a Cartan subgroup if it is cyclic and of
finite index in its normalizer N(S). The finite group N(S)/S is called the Weyl
group of 5, and is denoted by Ws.

PROPOSITION 1. Each element g of G is contained in a Cartan subgroup
S.

PROPOSITION 2. The projection

{Cartan subgroups of G] —> [cyclic subgroups of Γ}

induces a bijection of conjugacy classe.

Let S be a Cartan subgroup of G and S* the set consisting of elements g £ S
such that gS° generates S/S°, S*/Ws the orbit space of S* by Ws. Then the
following holds:

PROPOSITION 3. If G is the space consisting of conjugacy classes of G,
and Γ is that of Γ, then in the projection G —»Γ, the inverese image of a
conjugacy class Ύ is homeomorphic to S*/Ws, where S is a Cartan subgroup
of G with a generator in 7.

See G. Segal [ 3 ] for proofs of Propositions 1, 2, and 3,

PROPOSITION 4. Let G be as above, T a maximal torus of G. Then

we have dim G = dim T.

PROOF. We have G = \J S*/Ws where S ranges over non-conjugate Cartan

subgroups of G. By Lemma 1, it follows dim iS^/W^=dim i5^=dim S°, thus

dim G is equal to the largest of dim S°, that is, dim G = dim T.
Now we shall refer to the character ring of a compact Lie group G. Firstly

let G be an n-dimensional torus. Then the character ring RIG*] of G is

isomorphic with C[XΊ, X2> •••» Xn> (-XΆ* --Xw)""1]' therefore dim G is equal to
the trascendental degree of R[G*] over C.

PROPOSITION 5. Let R[G*] be the character ring of a compact Lie
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group G, <R[G*]; C> the transcendental degree of R[G*] over C, T a
maximal torus of G. Then we have <R[G*]; C> = dim T.

PROOF. Let φ be the canonical mapping of R[G*] to the direct product ring

Π i?[*Sf^] where S ranges over non-conjugate Cartan subgroups of G. By Proposition
s

1, φ is injective, therefore we have <R[G*]; C > ^ < Π R[S*]'> C > = m a x < 2 ί [ S * ] ;

C> = <R[T*]; C > = dim T. Now we shall prove < Λ [ G * ] ; C > ^ d i m T. Let %
be a character element of R[G*], D a representation of G with degree n associated
with %, where the restricition Dτ of D to T is diagonal. If M=Cn is the
standard G-module, then the ^-exterior power AkM is a G-module. If ξlf ξ2>

 Λ"^n

are characteristic roots of Dτ> then the character sk of the representation of T by
AkM, is the &-th symmetric function of ξ19 | 2 , •••, ξn, thus, ξιt ξ2, •••, ξn are
roots of the following equation;

Xn - sxX
n-1 + . . . + ( - l)nsn = 0 .

Let R[G*]T be the algebra consisting of restrictions of elements of R[G*] to T,
then s19 s2, , sn belong to R[G*]T.

Thus, since R[T*] is an integral domain and any character element of R[T*]
is prolonged to a character element of R[G*]> R[T*] is algebraic over R[G*]T.
Therefore we have<i?[G^J; C>^<R[G*]T; C> = <R[T*]; C> = d i m T.

Thus,we obtain the main theorem for a compact Lie group.

THEOREM 1. Let G be a compact Lie group. Then we have dim G

= <R[G*]; C>.

3. On the case of compact topological groups. In this section, let G
be a compact topological group. Then it is well known that G is the projective
limit of compact Lie groups;

G = lim Gα, a € Λ . (a)

where Ga are compact Lie groups, the index set Λ is an ordered set, and for any

finite elements ax> cc2, , cίn of Λ there is an element aeA such that cc^a

for i = 1, 2, , n. Let G, Ga be the spaces consisting of conjugacy classes of G,

Gay respectively. Then it is clear that G is the projective limit of Ga induced by

(a);

G= lim Gα, azA. (b)

Let fa, G—>Ga be the continuous mapping induced by the homomorphism fa;

G-*Ga and put V =• {χ£ G\fa(x) € Va for some open set Va of Gα}, then the
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aggregate {V} is an open bases of G.

LEMMA 3. Let G be a compact group and G = lim Gα, az Λ. Then we

obtain dim G^max dim Gα.
αe Λ

PROOF. Let {Vt} be a finite covering cosisting of members of open bases of

G. Then there is an element β of Λ such that x belongs to Vt if and only if xβ

belongs to Vβ)ί where xβ, Vβίl are images of x, Vt by fβ respectively. Now assume

max dim Gαr§^>, then there is a finite open covering \U)] with the order fg/>+l
a<zΛ

which is a refinemet of {Vβ,ι}. Thus, putting fβ

1{U'j) = Uj, [Uj] is a refinement

°f {Vi} with the order^p+1. Therefore we obtain dim G^p, i. e., dim G^max

dim Gα.

LEMMA 4. Let G, Gα, <2 € Λ be as in Lemma 3. Then we have dim

G^dim Gα.

PROOF. Let G° be the identity connected component of G. Then each

element of a finite group Γ=G/G° operates on the space G° consisting of conjugacy

classes of G°, and the orbit space G°/Γ of G° by Γ is a closed subset of G. By

Lemma 2, we have the following;

dim G ̂  dim G°/Γ ^ dim G°. (a)

On the other hand, it is well known that G° is isomorphic with (SxH)/Z where
S is a simply connected semi-simple Lie group, H a connected abelian group, SxH
the direct product, Z a finite subgroup of the center of SxH, and HπZ= {e}.
Thus G° is homemorphic with the orbit space (SxH)/Z of SxH by Z. If T
is a maximal torus of S, and Wr = iViS(T)/T the Weyl group of S with respect to
T, then each element w of W operates on TxH as w(£, A) = (tεtf, A) for each
element (t, h)zTxH. Thus SxH is homemorphic with the orbit space (TxH)/W
of TxH by W. Using Lemma 2, we get the following;

dim G°^dϊm(TxH). (b)

If/>/*are homomorphisms such that / : SxH-+G0,/«: G^Ga, then Ta=fa(TxH)
is a maximal torus of Gα, and we get dim (TxH)^ dim Tβ. Thus by Proposition
3, we have the following:

dim (T xH)^ dim Ga. (c)
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Therefore by (a), (b), (c), it follows

dim Ggrdim Ga, for azA.

On the other, hand we see easily that the character ring R[G*] is isomorphic with

the injective limit of the character rings R[G£], cczA, thus we get <R[G*];

C> = max <R[G*]; C > . Therefore using Theorem 1, and Lemma 4, we obtain
αe Λ

the following main theorem for compact groups:

THEOREM 2. Let G be a compact group, G the space consisting of

conjugacy classes of G. Then the dimension of G is equal to the transcendental

degree of the character ring R[G*] of G over C.

The author wants to express his heartily thanks to Dr. S. Takahashi, who

gave me valuable suggestions about the author's investigation. Though for the

sake of completeness, we have preserved the original proofs, Lemma 1, 2 and 3 are

already known, as indicated in Notes 1) and 2).

N O T E S .

1) Let X be compact Hausdorff space, G a compact group with dim G = 0,

(G, X) a transformation group, then the canonical map X—>X/G is closed and

open. Therefore the first assertion of Lemma 1 and Lemma 2 follow from the

Hurwicz-Wallman's theorem: Let f be a closed mapping of a normal space X onto

a non-empty paracompact Hausdorff space Y, then dim X ^ s u p dim j f^ί j^ + Ind
2/eΓ

Y, where Ind Y is the large inductive dimension of Y. Especially with an

additional condition sup dim f~ι(y) = 0, dim Xrgdim Y holds (cf. K. Nagami [ 2 ] ,

p. 123-130).

Furthermore, the second assertion of Lemma 1 is already known in K. Nagami

[ 2 ] p. 97.

2) As for Lemma 3, see K.Nagami [ 2 ] p. 162.
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