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1. Introduction and Preliminaries. Multiplier operators are frequently

used in group algebras, especially in Fourier analysis. Various type of multipliers

are investigated by Figa-Talamanca, Gaudry, Brainerd and Edwards, and Rieffel

ect., see [8], [9], [10], [2] and [11] etc.

In this paper, our purpose is to characterize the multipliers of Ap(G)-algebras

l^p^2 as a dual space AP{G)* of AP(G) which we will define later, and hence

AP(G)* is isometrically isomorphic to the space of bounded regular measures if G is

non-compact, locally compact abelian group. If G is an infinite compact abelian group,

then AP(G)* l^p^2 is isometrically isomorphic to the space of pseudomeasures,

i. e. the dual space of the Fourier algebra A(G). In section 3, we investigate also

the multiplier spaces of LPιnLPi{G) for Kpv ^>2<ooand LιC\Lp[G) for Kp<oo.

The isomorphism theorem of Ap(G)-algebras is proved in section 4. Finally we

consider the continuous linear mapping of Lι[G) into AP[G) in which we characterize

the space of operators from Lι(G) into AP(G) with the function space AP{G) for

Before the discussions, the author wishes to thank Prof. M. Fukamiya for his

many valuable suggestions and encouragements.

Let G be a locally compact abelian group and G its character group, dx and

dx denote the normalized Haar measures of G and G respectively. The space

AP(G) denotes the subset of Lι[G) consisting of those functions f whose Fourier

transforms / belong to LP(G). We supply AP(G) with norm

(l l) | | / r = max (II/UP | | / U

which is equivalent to the norm: l | / l | i + | | / | | p ίorfz AP(G). It is easy to see that

AP[G), l^S/><°o is a dense ideal in Lι{G) and forms a semi-simple commutative

Banach algebra with the norm || | |p under convolution (see Larsen, Liu and Wang

[9]). Since / is a bounded continuous function in LP{G), J € Lr\G) for p^r, we
see that the AP(G) forms an ascending chain of dense ideals with respect to the
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index p, lt^P<°° in Lι[G). We use the following general notations
CC(G): The continuous functions with compact support in G,
Co(G): The continuous functions vanishing at infinity on G,
M[G): Bounded Radon measures on G.

Let £ = Co(G)xL«(G). Then £* = M{G)xLp(G) for l/p+l/q = l, l<p<<χ>.
Denote

HQ = The closure in E of {(/, - / ) / e A^G)},

H* = The subset in £ * such that if (σ, τ)zE*, then σf-τf=0 for (/ί - / )

where / denotes the reflexive function of / : x-+f( —x) and / the Fourier
transform of/, and let

Kq = The quotient space E/Hq = C0[G) V *qL
q(G).

The elements of Xα are denoted by {g, h] and supplied with the norm

\\{g, A} || = inf {||<7'|| + ||Λ'||β; {<Λ A'} = [g, h] mod Hβ}.

Then, if Kp^2, l/p+l/q=h we have (see Liu and Rooij [7])

(1.2) K* = l£/H"β)* S Ap(G) and K* = H J .

As ί = l , denote H ^ ^ T h e closure of {(/, - / ) ; / € AX(G)} in C0(G)xC0(G) then

(1. 3) X* = (Co(G) x Co((j)/HJf* s AKG).

AP(G) may be considered to be a closed linear subspace of E* = M{G) xLp(G),
the dual space of £ = C0(G) x Lα(G), the norm | |/| |p is identical with the norm
\\f\\&. Moreover, we can show the following

LEMMA 1.1. ForfeAp(G), l^p^2 and gzCc, we have

(1. 4) D/p = sup /»0(O) + jAf-g dx

where {g, h] denotes the elements of KQ = E/Hq, g € C0(G), A € LQ(G).

PROOF. For fzAp(G) l^ρ^2 and g<= Cc(G)cL2(G), we see that fzL(G)
nC0(G)cL2(G), g € L2(G)nC0(G) and / * # € QG), the ParsevaPs formula is applicable
so that
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f hx)9[x)dx = f A*Mx)dx =/*<7(0).

Consider the linear functional of the form

F\f) = [ Ax)V[x)dx + ί f(x)kx)dx = tf(g, Λ)

for any g, h e CC{G) and (g, h) & C0{G) x L"(G). Since (Jr, A) = {h, g) mod H β ,

and

A ~ Λ j [ A ^ A

*/(#> Λ) = tf{h, g) = —(tf(g, g) + tf(h, h)).

By (1. 2) and (1. 3),

= sup \tf(g,h)\ = sup

= sup \tf(g,h)\
|| (fi,Ag) || =£1

sup
II (0,A) || = II (A.cr) II £ ]

sup

^ sup
II io,a)\\

Therefore

supΛ Itf{g> g)I = sup It,(g, h)\ = \\f\\". Q. E. D.
II (0,0) 11^1 | | (ff.Λ) | | ^ 1

DEFINITION 1. 2. A multiplier T of AP[G) means a continuous linear
operator on AP(G) which commutes with translation operator px for every xzG
where ρx is defined by pxΛy)=zΆy—χ)' In ^ s paper we denote by M{AP)
the set of all multipliers T of AP{G).

The following proposition is immediate.

PROPOSITION 1. 3. A mapping T from AP(G) into itself is a multiplier of
AP(G) if and only if T satisfies the following condition

(1.5) Ί\f*g) = Tf*g = f*Tg for any / , g € AP{G).
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(cf. Larsen [15]).

2. The multipliers of AP(G). By the preparation in previous section, we can

define the space AP(G) for Kp^2 to be the set of all functions u[x) such that

«=Σ/><7*; fi*Ap(G), gt*Cq= [gzCc; {g,g}zKQ}

oo

a n d £ l ! / J % i l l < ° ° . where ||<7j = \{gv^}\. (note that CJ^G) is dense in L%G)
ί=l

and CC{G) is dense in C0{G).)
Define u > \\\u\\\p b y

(2.1) Illttlllp = infix; I!/JΊ<7J|; u = Σ,fi*&i in AP(G)\

the infimum being taken over all functions fi e AP[G), gt £ Cq for the representation

of u. Since Σ | |/ 4 | | * | |0 t | |<oo,

^ Σ ll/il|pΛl| ^ 0 when m, n

we see that u = Σ jfy^t ^s a uniformly continuous function on G, and the norm
1 = 1

III u HI p is stronger than the uniform norm. It can be shown that the space AP(G)

is a dense subspace of C0(G)Ό and so we may consider the dual space AP[G)* which

contains the space of bounded Radon measures. The following proposition is not

hard to prove (cf. Gaudry [ 2 ]).

PROPOSITION 2.1. The space AP(G) is a dense linear subspace of C0(G)

and is a Banach space with respect to the norm ||| ||| p, and thus the topology

so defined is stronger than the uniform topology and also stronger than the

topology induced from AP[G).

THEOREM 2.2. The multiplier space M(AP) for Kp^2 is isometrically

ίsomorphίc to the topological dual AP(G)* of AP(G).

x* Since Cc is ZΛdense in Ap, it suffices to show that {/*#: /, g*Cc} is uniformly dense in C°.
The algebra of continuous functions on G generated by {/*#; /, g*Cc} is a self-ad joint
subalgebra of Co and separates points of G, thus it is uniformly dense in C0(G) by Stone-
Weierstrass theorem.
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PROOF. Suppose that T z M(AP) and define the linear functional μ on AP(G) by

Tfi[x\gi{x)dx+

= Σ (τfpgA0) + f Tflx) dlx) dχ\

for tt = ΣS<*0i i n ^p(G) with / , ^ Ap(G), flr, € CC(G) and £ | | / fp ||^f|| < oo. This

/i is well-defined. To show this, it suffices to show that if « = ^2fi*fft=O9

and i : II/JI* ||flrt|| < oo then M(w) = 0.

Let {ea} be an approximate identity of AP(G) (cf. Lai [ 3 ]) and let ha = Teβ,
then

λβ*/ 7 / in Ap(G)-norm for / € AP(G),

and we have, for /<= AP(G) and ^ € CC(G),

^ ik lli IIT/IK II^IU ( I 4 ^ C ) .
oo

By the assumption, the series u=Σfi*&ί 1S uniformly convergent on G and

u=Σfi*gi = 0, we have

K*U= Σ ha*fi*gt = 0 .

But it is easy to see that

lim Σ, A.*/,*04(O) = Σ TfMtf}) = 0.Σ
i

On the other hand, if/e=Ap(G), gzCc(G), we have fzC0Γ)L2(G) and g<zC0

Γ\L2(G), so by ParsevaPs formula,

fj(x)g(£)dx=f*g(0),

hence we obtain, under the same assumption,
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Σ ί πmgmdx = ΣT/MM = o.
i=lJG »=1i=lJG

Thus μlμ) = 0 and μ is well-defined.
The mapping T—>μ is evidently injective, we will show that it is an

isometry. By Lemma 1.1,

I/ MI = § Σ TOU' \\9i\\ ^ IITij £
ί = l

it follows that

Therefore

On the other hand, it follows from (1. 2) and Lemma 1.1 that

= sup ||T/r

= sup I / ( /
II / l l p ^ l , II P i !

^ sup
l\\ f*O\\

Hence | |T | | = \\n\\.

Finally, we want to show that T —> μ is surjective.
Suppose that μ^Ap{Gf and for an arbitrary fixed / € AP(G), define the linear

functional

9-+μ(f*9) = fa) ίor gzCc(G).

Thus |*(#)| ^ 11/χ-IJ | | / | | p | | # | | , t{g) may be extended to an element of KQ*> and hence
t defines a unique (element) function, say Tf, in the dual space AP{G) of Kq = E/Hq,

it follows from (1,2) that

Tf*g(0) + f Tj\x)g{x)dx = μtf*g) = t(g).

Since /x is a bounded linear functional on AP(G),

\t(g)\ = \μtf*g)\

and since t defines Tf, by (1. 2) ||*|| = ||7yi|p, we see that
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\\Tf\\p^\\μ\\

this implies that ||7Ί| ^ ||/*||. Hence T is a bounded linear operator on AP(G).
Actually it is a multiplier of AP(G); for if yzG andfzAp(G), g£Cc(G), we have

δdx = μ(p*f*g)

= df*pvff)

whence pv(Tf) = T(ρyf) for any/^Ap(G), i.e. T commutes with translation, by
definition 1. 2, T € M(AP). Q. E. D.

REMARK 2. 3. For Aι{G), we define the space AΛ[G) consisting of all the
functions u of the form

u = Σ fi*9i with /, € A^G), ^ € {̂  € CC(G); {̂ , g]

such that

Σ ll/iH1 HflΊll<«>.
i

where \\g.\\ = inf { I | Λ Ί U + I | ^ , Ί J .; {#/>&'} = {^ ^} € 2C}. Here I C is denned
in section 1. The norm of AX(G) is defined by the same way like as AP(G)9 for

>^2. Then by (1.3) we have the following

COROLLARY 2.4. The space M{Aι) is isσmetrically isσmorphic to the
dual space A^G)* of

DISCUSSION 2.5. The above characterizations for multipliers of AP(G), l^p
^ 2 are representing different function spaces which depend on the group of
compact or non-compact.

1°. The case of non-compact group G.
Let μςAp(G)* be arbitrarily and take/<= AP(G). Define

9 -> μLf*9) = ZΓJ*9(0) = tf(g) for all g*CqcCo.

Then
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\tA9)\ = 2\Tμf*g(0)\ ^

l|/H<7lU

\\g\U

and Tμ is a multiplier of AP(G) into Lι(G). Hence when G is non-compact, it can
be shown by the same argument of Figa-Talamanca and Gaudry [14; Theorem 3.1]
that there exists v € M(G) such that

v*f=Tμf forall/€A*(G)

and \\v\\ = \\Tμ\\ = \\μ\\. Therefore we have

COROLLARY 2.6. Let G be a non-compact, locally compact abelian
group. Then far 1 ̂  p ̂  2,

Let A(G) be the space of functions which are the Fourier transforms of

functions in Lι[G). A(G) forms a Banach algebra, called the Fourier algebra, under

pointwise product with the same norm of Lι[G). It is precisely the convolution of

two functions in L2(G). We denote by P(G) the space of bounded linear functional

of A(G), each element of P(G) is called a pseudo-measure on G.

2°. The case of infinite compact group.
If G is an infinite compact abelian group, then A p(G)cL 2(G) l^ρ^2. Let

μ € AP(G)* be arbitrarily, there corresponds a multiplier Tμ z M(AP) such that

Define

μ(f*g) = 2Tμf*g(0) for / € AP{G) and g s Q c U

λf*9) = 4 " μ(f*9) =

Then

\v\f*9)\ = f Tf[x)g{-x)dx
G

TJ(χ)g(χ)dx (ParsevaPs identity)

φ is a bounded continuous function on G (cf. Wang [13],
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^ \\Tμ\\

since H^IU^IITnll (cf. Wang [13]). Since A»{G)*Cq(G) is dense in A{G), v may be
denned on all of A(G) such that

IMU, ^ I|T,|| = \\μ\\A,m.

Hence v is a pseudo-measure in P{G).
For / € A"(G), g e QG), we have

f*9 = " | - [(/*(^ " h)) + (f*(9 + h))]

where h varies in Aι[G). Since

and

if the Haar measure of G is taken to be 1, where l/p+l/q = 1, we have

U*9\AW ^~-WfU\\9 + All. + ll(̂

Similarly, for h replaced by Λ, we have

Then

^ \ \\fU\9

^ ~WfUWff + Xll- + llto -

+ (l|0 + All. + l|(0-AΓU1.

By taking the infimum over h € Aι[G) so that

[9>g] = {9 + h,g-h} modHq

where q— oo if /> = 1 and q=p/(p—l) if l</> = 2, we obtain
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Now if u— Σf%*9i w ^ h Σ \fΛp Wffi\\<oo> Λen for any n,

and so

Hence for any v z P(G),

and

Î IUp(ff) ^ - g - \\V\\AW -

Thus for any v £ P(G) there corresponds a unique μ € Ap(G)* such that

Mf*g) = /4/*#) = zΓrf*ίr[θ)

and

Therefore we have the following

COROLLARY 2. 7. Lei G δ^ an infinite compact abelian group. Then for
Ifg/>5g2, there is an isometric isomorphism mapping AP{G)* onto the space
P[G) of the pseudo-measures.

3. The multipliers of DPl'piG)=LpiG)nLpiG)) l<ρv p*< °°. We supply
the norm of Z?» Pι(G) = LpiG)dLpiG) by

(3.1)

Then DPuPi(G) is a Banach space (not necessary an algebra if G is not compact) with
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respect to the norm | | / | | Λ .

Let

SquQt = {g(χ) Ig(χ) = glχ) + glχ) and (gv g2) <= LqiG) x LQiG)}.

We supply it with the norm

(3.2) Utfllv = inf {lli&'l],, + ||<72%, for g = gi'+g2'

with {gί,gt')eLiiίxL* ) ,

then SQl,q, is a Baπach space. It is known that DVιVl and SQl,q, are reflexive and
(see Liu and Wang [6: Theorem 4])

(3. 3) ) ^ - + -i- = l = l, 2V

Since L\G) is a Banach algebra under convolution, DPuPi becomes a left

L^GJ-module when elements of Lλ[G) act on £Fι'p* by convolution on the left.

Define the space DPuP2(G) to be the set of all functions u{x) of the form

ft ^ β P l ' P ί (G), ^ € C c (G)c5 β l i α §

w i t h Σ ll/JU | | ^ i l | v < o o > (C c is dense in SQuQt) and define M - > | | | M | | | P l f J > t by
t = l

(3.4) IlkllU^, = i n f ( έ I|/IIIΛIIΛI|V; U = ΣfMi in D
PuP

the infimum being taken over all the representations for u in DPuPi. Evidently,

HI u HI PuP2 is a n o r m of DPuPt(G).

It is easy to see that DPuPt(G) is a dense linear subspace of C0(G) and the

same like as proposition 2.1, we have the following

PROPOSITION 3.1. The space DPuPt(G) is a dense linear subspace of C0(G)

and is a Banach space with respect to the new nσrm\\\ \\PuP% and the topology

so defined is not weaker than the uniform norm topology.

We say that a multiplier T of DVuV%{G) means a bounded linear operator on

ΣPU P2(G) which commutes with translation operators and denote the multiplier space

of Dp*'piG) by M(Z>" P ί ).
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THEOREM 3. 2. Let G be a locally compact abelian group. The multiplier
space M(DPltPt) is isσmetrically isomorphic to DPuPi{G)*> the conjugate space of

DPlίPί(G).

PROOF. For any TzM(Dp*'pή, define

(3.5) φi)=Σ,Tf

for u=Σfi*9i m Dpi.pr ** 1S well-defined, i.e. μ(u) is independent of the
4 = 1

particular representation of u chosen. To show this it suffices to show that if

« = Σ,fi*ffi = 0 in D»,JG) and Σ, H/ I|ΛII^,IIV<~» then ±, Tf*gJfl) = 0.
ί = l 4=1 4=1

Let {ea} be an approximate identity for U(G) with Hê ljx = 1. Since V*L*(G)
= Lp(G)(l<p<oo), ea*fzDPl>Pi for all.A £>Pl p " and

for the limit taking over the index a. Then

\T\exfipglfSi-TU9m > \\T\\

we have

lim Γ(« .# Λ (0) =
a

oo

Since u = ^Z / i ^ i = 0 and the convergence of the series Σ fi*ffι i s uniform,
i=l i=i

we see that

Σ,T(ea*fi)*gi( )=Σ,fpvT(eΛft)(')ffi(y) dy

= Σ,[τPy(ea*fi)( )gi(y)dy
4 = 1 J

and then for any large integer N,



ON THE MULTIPLIERS OF A?(G) -ALGEBRAS 653

ΣTffi9lS»-ΣΊV
N N

2IIΠI

the right hand side of this last inequality can be made arbitrarily small by taking a

sufficiently large positive integer JV, and then passing to the limit with respect to

a. Therefore we conclude that

Στ/i*Wθ) = o.

It is obvious that the mapping T—>μ is injective(one to one). We show that it

is an isometry. Indeed,

\μh*)\^Σ iτ/t ^o)|

implies that

Hence \\μ\\^T\\.
On the other hand,

^ ιmι Σ ii/iii
A = l

\M\^\\T\\ Ilium,,.,,.

= sup
I I / I I S

^suP\μ(f*g)\^\\μ\\.

(see (3. 3)). Therefore

= \\μ\\.

Finally we show that the mapping T—>μ is surjective (onto).

Suppose that μtDPlιP2(G)* andfzDPι'piG), define

9 — - μ(f*g) = Ag) on C c ( G ) c 5 β l i β i .

By Hahn Banach theorem, the bounded linear functional t can be extended to SQuQt
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and

\μLf*g)\ ^ \\μ\\ 11/11 ΛII^V for/* £>*••», g*SMΛ.

It follows from (3.3) that there is a unique TfzDPuPi such that

Tf*g[0) = μ(f*g) = t(g) for g z Ce(G)cSQuQΛ,

and \\Tf\\A^ \\μ\\ | | / | | Λ . Hence T is a continuous linear operator on DPuP\ It
remains to show this bounded operator T is actually a multiplier on Dpl pt(G).

Indeed, for any / € £>Pl Pi, g £ SQuQt, and α € G, we see that ρafzΏPx>Pl and />α#
€5 β l l β l . Then

T(Paf)*g(0) = ιtPaf*g) = μ(f*pag)

= Tf*Pag(0) = paTf*g(0)

holds for arbitrary function g in 5β l i f f l, we have

for every /<= D»**iG\ Hence Tp α = p α T. This shows that T

Q. E. D.

REMARK 3. 3. When G is compact abelian group, then DPh P2(G) = Lr(G), r
= max (pvp2)> is a commutative Banach algebra under convolution. In this case,
the multiplier problem reduces to the case of general Lebesgue spaces Z / ( G ) ( l < r
<oo) (see [ 8 ] , [ 9 ] and also [13]). The characterization of DPuPt(G)* is depending
on the index r, l < r < oo. Since M[Lr) = M{Lr') for 1 / r + l / r ' = 1, the multiplier
space of LT(G) for 1 < r < 2 and for 2 < r < oo are the same. Thus we divide it
in the following two cases

(i) r=2. We refer to Corollary 2. 7 that DPu PΛ(G)* = P(G).

(ii) 2 < r < o o . In this case UdUdL1 and for g zC(G)aSqu(lt, g = gx+g2

with norm

since l|<7l|gi> ll^llα,^ l|̂ llr'» the infimum norm can be chosen so that gx or g2 = 0.
We will show that

is continuous.
For μ*DPuPt(G)*9 there is a multiplier TμzM{DPι'Pi) such that

^ ) = TJ*g[0) for any / € DP l ^(G) and g z C(G)<zSquQt.



ON THE MULTIPLIERS OF AP(G)-ALGEBRAS 655

Define v by

λf*9)=h(f*9) = TJ*g(0) / e D»-» = Z/cL2 and <7 € C(G)cL2.

Then

λf*9)\ =

Since DPuPt(G) is dense in A(G), i> defines on all of A(G) such that

and hence v is a pseudomeasure.

Note that for any pzP(G), and fzLr(G), g € C(G)cL r '(G),

l/4/*<7)l = N/*ί/)l ^ IHUw IL/II, ll^ll,

but the right hand side does not necessarily dominated by l|i>IU«?) l|/l|r \g\r» since
II91)2>II9IIr' in general. Hence we can not obtain \\μ\\ΌPuViί=kC\\v\\A{G). Consequently,
we obtain (cf. Larsen [15: Theorem 4. 3. 2])

COROLLARY 3. 4. Let G be a compact abelian group. Then for
Φ 2 Φ p2 < °° > there is a continuous algebra isomorphism from DPu P2(G)^ into
P{G)y the space of pseudomeasures.

Using the argument, mutatis mutandis, like as Theorem 3. 2, we can characterize

the multipliers of L\G) Π LP(G) ( 1 < p < oo). We give the norm of Dv(G) = Lι

ΠLP(G) by

(3.6) Ill/Ill = max (11/11:,/IU).

Then DP(G) is a Banach algebra under convolution and is a dense ideal of Lι(G).
In particular if p = 2, D2(G) = L 1 Π L2(G) = A2(G). Let

SQ = {g[χ)\g{χ) = gix) + g*(χ) with ( Λ , 9 ι ) € Co x

and the norm is defined by

(3. 7) ||<7l| = inf { | |Λ ' |L + |)^ 2 Ί| α for <7 = Λ ' + ̂ Λ (gί, g*') € Co x

It is known that (see Liu and Wang [6: Theorem 5])
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(3.8) S* < / > < o o , L + =

Define the space DP(G) to be the set of all functions u(x) of the form:

u = Σ fi*fft ft e βp(G), <74 € C.(G)cSβ with £ HI/, III | | ^ | | < c
4 = 1 ί = l

The space DP(G) will be endowed the norm

(3. 9) HI« HI p = inf { £ |||/t ||| ||<7j|; « = Σ / , * ^ in DP(G)\,
J

the infimum being taken over all fi <Ξ DP(G) and gi £ CC(G) c 5 g for the representation
of u in DP[G). By the same argument of Theorem 3. 2, we have the following

THEOREM 3. 5. The multiplier space M{DP) is isometric ally isomorphic to

DP(G)*> the dual space of DP{G).

REMARK 3. 6. If G is a non-compact locally compact abelian group, then

by the argument) mutatis mutandis, like as Corollary 2. 6 and Figά-Talamanca

and Gaudry [14: Theorem 3. 2], we can derive that

4. Isomorphisms of Ap(G!)-algebras. From [14: Theorem 3.1], it is
obvious that for any multiplier T € M{AP), there is a unique bounded measure
μzM{G) such that

Tf = μ*t for every / € AP{G)

provided that G is non-compact locally compact abelian group. Using this repre-
sentation, we have the following

THEOREM 4.1. Let Gx and G2 be locally compact abelian groups and ψ

be an algebraic isomorphism of Ap[Gί) onto AP(G2) l^p<C°°. Suppose that one

of Gx and G2 is connected, then ψ induces a homeomorphic isomorphism T carrying

G2 onto Gi. Furthermore, ψf(x) = Cx(x) f[rx) for f € AP[Gι) where x[x) is a

fixed character on G2 and C a constant depending only on the choice of Haar

measure in G2.

We note that the maximal ideal space of AP[G) can be identified with the
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character group G (see Larsen, Liu and Wang [5: Theorem 4]). Since the isomor-

phism ψ of Ap(Gi) onto AP{G2) maps the maximal ideals of Ap{Gλ) onto the

maximal ideals of AP(G2)> ψ induces to a homeomorphism carrying Gi onto G2.

Therefore if one of Gi and G2 is connected then both of Gλ and G2 are connected.

Hence d and G2 are non-compact and then the result of [14] is applicable.

First we show the following lemma which will be useful in the proof of
theorem.

LEMMA 4. 2. Let μ € M{G\. If μ*f = 0 for all ft AP(G), then μ=0.

PROOF. Suppose that K is any compact set in G, then there exists k € Lι{G)

such that k = 1 on K and k has compact support in G, we see that k e AV[G).

Therefore for μ <= M{G),
A

= 0 implies μ k = 0 .

That is yu.(i;) = 0 for all x € K. Since K is an arbitrary compact set in G, this

implies μ(x)=0 for all xeG. Hence μ = 0, by uniqueness theorem. Q. E. D.

PROOF OF THEOREM 4.1. Take uzM{G2). For any / € AP(G), we define an
operator T on Ap(Gi) by

(4.1) Tf=ri(u*tf).

It is well-defined since AP{G) is an ideal of M{G). Since the algebras AP{G1) and
AP(G2) are semi-simple and commutative, ψ" is bicontinuous (cf. Rudin [16: 4.1])
Hence T is a bounded operator on Ap(Gi) and

Ί\f*g) = rι{

= Tf*g,

T is a multiplier of Ap(Gi). By assumption, one of Gi and G2 is connected so both

Gi and G2 are connected. Therefore Gλ and G2 are non-compact, and there exists

uniquely a μ in M(Gχ) such that

(4.2) ^/=T/=f"V^/l.

This /t is uniquely determined by ft, we can define a mapping Φ of M(G2) into

d by
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(4.3)

We shall show that Φ is an isomorphism of M(G2) onto Λf(Gi).

Let u, vzM(G2) a n d / b e any element in A^d). It follows from (4.3) that

Since / is arbitrary in AP(G1), by Lemma 4. 2,

(4. 4) Φ[u*v) =

while the linearity of Φ is obvious, Φ is a homomorphism.

For any μ e Λf(Gi), define an operator S on AP(G2) by

(4.5) Sg = Tftμtψ-W

for any <7 in AP(G2). Then the same arguments as we have done before show that
S is a multiplier of AP(G2). Hence there exists u € M(G2) such that

«*0 = Sg =
or

Since ψ is an onto isomorphism, we have

(4.6) * "

for a n y / € Ap(Gi). And so by (4. 3), Φw = //•. This shows that Φ is an onto map.
If Φu = 0, then ψ "*1(«*'ψf./) = 0. Hence u#ψf= 0, which implies u = 0 (see Lemma
4.2) proving the one-to-one property of Φ. Therefore Φ is an isomorphism of
M(G2) onto AfίGJ. Since both algebras Λf(Gi) and M(G2) are semi-simple and
commutative, Φ is bicontinuous. Now for function g € AP(G2),

for any /<= Ap(Gi). Hence Φg = ψ~1g (Lemma 4.2) proving that φ\Ap{βt) =ψ~1.

Since the algebra AP{G2) is dense in Lι[G2), Φ| i i ( f f | ) becomes an isomorphism of
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L\G2) onto L 1 ^ ) (see Rudin [16], Theorem 4. 6. 4). Then the result of Beurling
and Helson is applicable (cf. Rudin [16: 4. 7. 2]) and hence the theorem is complete.

Q. E. D.

REMARK. It is remarkable that the proof of Theorem 4.1 can be taken over
for a general theorem on any dense subalgebras of Lι[G) as following

THEOREM 4. 3. Let G be a locally compact abelian group and S{G) be a

Banach sub algebra of L\G) with respect to some norm and it is a dense ideal

of Lι{G) and the maximal ideal space is identified with G. Suppose that the

multipliers of S{G) can be characterized by the bounded measures. Then the

algebraic isomorphism Φ of S[Gχj onto S{G2) can be reduced to a topological

isomorphism r carrying G2 onto d provided one of Gι and G2 is connected.

Furthermore,

Φf(x) = Cx(x)f(τx) for fzSid)

where x is a fixed character on G2 and C a constant depending only on the

choice of the Haar measure in G2.

By [14: Theorem 3, 2] and the above theorem, it is immediately that

COROLLARY 4. 4. Let Gx and G2 be locally compact abelian groups and

Φ be an algebraic isomorphism of Dp(Gi) onto DP(G2) (l<p<oo), then d and

G2 are topological isomorphic provided that one of Gλ and G2 is connected.

5. Additional remark for the continuous linear mappings from Lι(G)
to AP(G). Let A be a normed algebra and B be an A-moduIe normed linear space.
Consider the normed linear space M(A, B) of all continuous linear mappings T:
A-+B that have the property

T{a*x) = a*Tx for all a, xeA.

Evidently M(A, A) is the space of all multipliers of A, and since for any b € B,

a > a*b £ B for all a € A,

the space M(A, B) contains all of B.

Concerning the class M[A,B), there are many characterizations which are
known. For examples,
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(5.1) M[L\G),

(5.2) M[L\G), LP(G)) = LP[G) l<p<oo;

(5. 3) M{AP(G), Lι(G)) = M{AP(G), AP(G)) l^p<oo

if G is non-compact abelian.

Liu and Rooij [ 7 ] proved the following

LEMMA 5.1. Let A be a normed algebra with bounded approximate
identity [ea] with \\ea\\A rg 1 and B a normed right A-module such that
χ*ea —> x for all xe B, where limit being taken over a. Then there is a
natural isometry

(5.4) M(A, B')ς^B

where B denotes the dual space of B.

Since the Lebesgue space LV[G) is reflexive Kp <°o, (5.2) follows directly
from this lemma.

Using this lemma, Liu and Rooij [7: Proposition 2. 9] show that

(5.5) M(L\G\ Aι(G))^Aι(G).

We ask that whether the space M{Lι{G)> AP(G)) of operators for p>l can be
characterized as a function space. There is a slight extension of (5. 5) to the case
of Kp^2. That states as following

PROPOSITION 5.2. Let G be a locally compact abelian group. The
algebra AP(G) is an Lx[G)-module under convolution and

(5. 6) M{L\G\ Ap[G)) ̂  A*>(G) for 1 < p ^ 2.

The proof of this theorem can be proved likewise, mutatis mutandis, as that
for Proposition 2. 9 in Liu and Rooij [ 7 ]. The only task is to show that the

space LQ{G) (so does C0{G)WmLQ{G)) is also Z^GJ-module where l/ρ+l/q=l,
K p ̂  2. Now we sketch simply the proof as follows.

PROOF OF PROPOSITION 5.2. Since AP{G) is an ideal of L\G) and

||/*Λ||* ^ II/IK \\h\\p for fe V{G) and h € AP(G),

AP[G) is LHG -̂module. We will use Lemma 5.1 to show the identity ( 5. 6).
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Let {ea} bean approximate identity for Lι[G) such that l|ej)i^51 for all a.

It is clear that CQ{G) is a normed module over Lι[G). For Lq(G), we define

fAg=T-g ίoτf*Lι(G) and g € LQ(G).

Then we have

(5.7) l |/Δ^I|β=l|> ^l | β ^ | |Λ Wffl.

On the other hand,

(5. 8) lim [ea Δ g) = lίm 2* g = # for all # € Lβ(G).
α α

Indeed, for l < / > ^ 2 , the Fourier transforms LP(G) is dense in Z/9(G) and

\\ejι -h\\Q^ \\ea*h - h\\v 0 for all h € LP(G)

i. e. lim eji = lim e"α̂ Λ = h for all Λ € LP(G),
a a

implies that (5. 8) holds. Hence LQ{G) is an L1(G)-module by (5. 7) and (5. 8).

Next we show that Hg, the closure of {(A, -A) | hzAι[G)} in C0{G)xLq{G),

is an L^GJ-module, it is immediately that

Mh, -A) = ((/*AΓ, -/ΔΛ)

= ((7*AΠ -(?*hT)*Hq

Consequently, C0(G)\/mLQ(G) is //(Q-module and

lim ea*u = u for all u € CQ{G)\JmLQ{G).

Therefore

M ^ G ) , (Co(G)Vi*L«(G))*) ^ (Co(G) V^Lg(G))^ ^ A^(G)

or

M(L\G), Ap(G)) ^ Ap(G) for 1 < p ^ 2 . Q. E. D.

R E M A R K . For ρ>2. the characterization of M{L\G), AP{G)) is an open

question.
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