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1. Introduction and Preliminaries. Multiplier operators are frequently
used in group algebras, especially in Fourier analysis. Various type of multipliers
are investigated by Figa-Talamanca, Gaudry, Brainerd and Edwards, and Rieffel
ect., see [8], [9], [10], [2] and [11] etc.

In this paper, our purpose is to characterize the multipliers of AP”(G)-algebras
1=p=2 as a dual space 4,(G)* of A,G) which we will define later, and hence
A,(G)* is isometrically isomorphic to the space of bounded regular measures if G is
non-compact, locally compact abelian group. If G is an infinite compact abelian group,
then A, (G)* 1= p =2 is isometrically isomorphic to the space of pseudomeasures,
i.e. the dual space of the Fourier algebra A(G). In section 3, we investigate also
the multiplier spaces of L?'NLPY(G) for 1<p,, py<<ocand L'NLPG) for 1<p<<oo,
The isomorphism theorem of A?(G)-algebras is proved in section 4. Finally we
consider the continuous linear mapping of LYG) into A?(G) in which we characterize
the space of operators from LYG) into A?(G) with the function space A”(G) for
1<p=2.

Before the discussions, the author wishes to thank Prof. M. Fukamiya for his
many valuable suggestions and encouragements.

Let G be a locally compact abelian group and G its character group. dx and

dZ denote the normalized Haar measures of G and G respectively. The space
A?(G) denotes the subset of LYG) consisting of those functions f whose Fourier

transforms f belong to L”(GA). We supply A?(G) with norm

(1.1) I1£12 = max (|£]» 1| £1,)

which is equivalent to the norm: | f];+ |/, for e A%G). It is easy to see that
A?G), 1=p< o is a dense ideal in LYG) and forms a semi-simple commutative
Banach algebra with the norm | ||» under convolution (see Larsen, Liu and Wang
[9]). Since f is a bounded continuous function in L"(é\), fe L’((/}'\) for p=r, we
see that the AP(G) forms an ascending chain of dense ideals with respect to the
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index p, 1=p<c in LYG). We use the following general notations
C.G): The continuous functions with compact support in G,

Cy(G): The continuous functions vanishing at infinity on G,
M(G): Bounded Radon measures on G.

Let E=C\(G)x L"(E;). Then E* = M(G)x L”(@) for 1/p+1/g=1, 1<p<oo,
Denote

H, =The closure in E of {(f, —f}; fe A{G)},
H} = The subset in E¥* such that if (¢, 7)€ E¥, then af—-rf =0 for (A —F)
<H,

where f denotes the reflexive function of f: z— fl—x) and f the Fourier
transform of f, and let

K, = The quotient space E/H,= C|G)V g L%G).
The elements of K, are denoted by {g, h} and supplied with the norm
I{g, B} = inf {lg'| + X5 {9’ K} = {g, B} mod H}.
Then, if 1<p=2, 1/p+1/q=1, we have (see Liu and Rooij [7])
(1.2) K} = (E/H)* = A?(G) and K} = Hj.
As p=1, denote H.,=The closure of {(f; —f); fe A G)} in CyG)x Cy(G) then
(1.3) K% = (CG) x C(G)/H..)* = AYG).

A”G) may be considered to be a closed linear subspace of E* = M(G) x L?(G),

the dual space of E=CyG)x LYG), the norm [f]|* is identical with the norm
| £l Moreover, we can show the following

LEMMA 1.1. For fe A*G), 1=p=2 and g<C,, we have

(1.4 11 = suplfxg(0)+ [ -5 a2

Il te.0)1 =1

where {g, h} denotes the elements of K,= E/H,, gec Cy|G), he LYG).
ProOOF. For fe A?G) 1=p=2 and g < C,(G)CLG), we see that fe L(G)

NCG)c LAG), § € LY{G)NCy(G) and fxg € Cy(G), the Parseval’s formula is applicable
so that
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J. 7@iaanz = [ Azt = Frol0).
G ]

Consider the linear functional of the form

N\

Fif) = [ feloteds + || f@hanz = oo, )

for any g, he C/G) and (7, k)< C(G)x LYG). Since (> k)= (B> §) mod H,,

W@ A = (B §)I = inf (gl + |&l)
and

14, )= el §) = —5-(649: §)+ AR, R).

By (1.2) and (1. 3),
117 = sup |2/, k)| = sup |2/, 9)|

@R I1s1 (R0 I s1
= sup ltf(g» h)|
@i =1 &=

= sup
~n D
@R 11=11Go) 1=

1 -~ 1 7 A
e, B+ 2 §)
= sup

I )
H@R =110 st 2 2

= sup |29, 9)].

Il @o) |l =1

Therefore
sup  |td§ 9)l = swp |G, B)| = |f|°. Q.E.D.

Il @0y Il =1 @Ry s
DEFINITION 1.2. A multiplier T of A°G) means a continuous linear
operator on AXG) which commutes with translation operator p, for every x€G
where p, is defined by p.fly)=fly—x). In this paper we denote by M(AP)
the set of all multipliers T of A”(G).

The following proposition is immediate.

PROPOSITION 1.3. A mapping T from A*G) into itself is a multiplier of
A?G) if and only if T satisfies the following condition

(1.5) T(fxg) = Tfxg = f*Tg for any f, g< A?(G).
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(cf. Larsen [15]).

2. The multipliers of A”(G). By the preparation in previous section, we can
define the space A,(G) for 1<p=2 to be the set of all functions #(x) such that

8

u=, f#9:5 f1€ AYG), 9, Co= {geCys {9, 9} € K}

i=1

[}

and Z”fi”"”gt” < oo, where |g;ll = 1{g:, 9:}|. (note that C/c(\G) is dense in L%G)

i=1
and C,(G) is dense in Cy(G).)
Define u— [lull, by

21) Nl = mf{i AP lgds u= 3 fxg. in A4G)

i=1

the infimum being taken over all functions f; € A?(G), g, € C, for the representation
of u. Since Z ”fi”p”gt” < oo,
i=1

Zf *g,
i=m

el é Z Hfi””gill —0 Whel’l m, n—» 00,
i=m

we see that = ) fi*g, is a uniformly continuous function on G, and the norm

1=1
Mzl , is stronger than the uniform norm. It can be shown that the space A,(G)
is a dense subspace of Cy(G)"” and so we may consider the dual space A,(G)* which
contains the space of bounded Radon measures. The following proposition is not
hard to prove (cf. Gaudry [2]).

PROPOSITION 2.1. The space A,(G) is a dense linear subspace of C\G)
and is a Banach space with respect to the norm || |||, and thus the topology
so defined is stronger than the uniform topology and also stronger than the
topology induced from A*(G).

THEOREM 2.2. The multiplier space M(A?) for 1< p=2 is isometrically
isomorphic to the topological dual A, (G)* of A,G).

1> Since Cc is L!-dense in AP, it suffices to show that {fxg: f, g<C.}is uniformly dense in C°.
The algebra of continuous functions on G generated by {f*g; f, g<Cc} is a self-adjoint

subalgebra of C, and separates points of G, thus it is uniformly dense in C¢(G) by Stone-
Weierstrass theorem.
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PROOF. Suppose that T" € M(A”) and define the linear functional x on A,(G) by

wu) = <f Tf(x gix)dx+f Tfi x)dx)

—z(Tffegi )+ [ hi@ 245 az)

i=]

for u= 3 f*g, in A,G) with f, < A%G), g, < C{(G) and z 17 9.l < oo. This

=1

u is well-defined. To show this, it suffices to show that if u= Z f#9,=0,

and }: I£:ll7 1lg:l <oo then plu)= 0.

Let {e.} be an approximate identity of A?G) (cf. Lai [3]) and let A, = Tea
then

hxf —Tf  in AP(G)norm for fe A*G)

and we have, for fe A?G) and g € C,(G),

lhafsgl. = [ lexTfla)l g0~ 2| da
= lei Il lgle (e SC).

By the assumption, the series u=)_ f*g, is uniformly convergent on G and
oo 1=1

u=Y_ f*g,=0, we have
i=1

hovu= 3 hasfg, = 0.
i=1
But it is easy to see that

lim 3 hatfixgd0) = 3 Tfxg{0)= 0.

a i=]

On the other hand, if f¢ A%G), g € CiG), we have feCoNL¥G)and §eC,
ﬂL’((A;), so by Parseval’s formula,

[, 7@ ai@1az = egl0),

hence we obtain, under the same assumption,
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Zf T, dx—ZTf,*gi =0.
i=1

Thus pu) = 0 and p is well-defined.
The mapping T°— p is evidently injective, we will show that it is an
isometry. By Lemma 1.1,

| )| = z ITFI? g < T z TATAR

it follows that
|wlee)| = TN Nl .

Therefore
[l =T .

On the other hand, it follows from (1.2) and Lemma 1.1 that
IT) = sup |TS)?
=

= sup |uf*g)|
ARSI

= sup |p(f*g)| = |pl .

11 f*a111p=1

Hence ||T'|| = [ ul.

Finally, we want to show that 7" — p is surjective.

Suppose that pe A, (G)* and for an arbitrary fixed f € A?G), define the linear
functional

g — ufrg)=tg) for geClG).
Thus |#g)] = |u) |A17 |lgll, {g) may be extended to an element of K,*, and hence

t defines a unique (element) function, say 7f, in the dual space A?(G) of K,=E/H,,
it follows from (1,2) that

Tegl0) + [ TRb)9lb) i = ulf0) = o).
Since p is a bounded linear functional on A,(G),

9]l = |ulf*g)l
= lplh f*gll, = Ul AP g1

and since ¢ defines Tf; by (1.2) l|¢l| = | Z7f]|?, we see that
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I7A)? = lpl 1 A7

this implies that |7 = |u|. Hence T is a bounded linear operator on A?(G).
Actually it is a multiplier of A?(G); for if y€ G and f< A*G), g < C,(G), we have

Tlpufigl0)+ [ Toif-0dz = pipufvo)
= pfrpug)

= Tfipugl0) + [ TRE) frite) di

= p/Tfxg(0)+ | pTAR) (%) d2
[~

whence p,(Tf)= T(pyf) for any fe A’G), i.e. T commutes with translation, by
definition 1.2, T e M(A?). Q.E.D.

REMARK 2.3. For AYG), we define the space A,(G) consisting of all the
functions z of the form

u= ;f,*gt with f, € AYG), g, ¢ {9 € C,(G); {g,9} € K..}
such that
; £ gl <oo,

where |g,| =inf {lg/l«+1§/ = {959/} = {909} € K.}. Here K.. is defined
in section 1. The norm of A,(G) is defined by the same way like as A,G), for
1<p=2. Then by (1. 3) we have the following

COROLLARY 2.4. The space M(A') is isometrically isomorphic to the
dual space A(G)* of A(G).

DISCUSSION 2.5. The above characterizations for multipliers of A?(G), 1=p
=2 are representing different function spaces which depend on the group of
compact or non-compact.

1°. The case of non-compact group G.
Let pe A, G)* be arbitrarily and take fe A?(G). Define

g — ulfrg)=2T,fxg(0)=tg) for all geC,CC,.
Then
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1249 = 2| T, f*9(0)] = 2| T, A1 gl
= 2(T.0 117 I glles

and T, is a multiplier of A?(G) into LYG). Hence when G is non-compact, it can
be shown by the same argument of Figa-Talamanca and Gaudry [14; Theorem 3.1]
that there exists v € M(G) such that

vef =T, f for all fe A?G)
and |»|] = ||T,l| = l|p||. Therefore we have

COROLLARY 2.6. Let G be a mnon-compact, locally compact abelian
group. Then for 1=p=2,

Let A(G) be the space of functions which are the Fourier transforms of
functions in LY{G). A(G) forms a Banach algebra, called the Fourier algebra, under
pointwise product with the same norm of LYG). It is precisely the convolution of
two functions in L¥G). We denote by P(G) the space of bounded linear functionals
of A(G), each element of P(G) is called a pseudo-measure on G.

2°, The case of infinite compact group.

If G is an infinite compact abelian group, then A?(G)CL¥G) 1=p=2. Let
p< A, (G)* be arbitrarily, there corresponds a multiplier 7", € M(A?) such that

W fxg) = 2T, fxg(0) for fe A?(G) and g C,CL*.

Define
W frg) = <= mfrg) = Tufxg(0).
Then
|vl.frg)] = Tﬂx)g(—x)dxl
] f ToR@) ok)di|  (Parseval’s identity)

@ is a bounded continuous function on G (cf. Wang [13],
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= 1T | f+g1 ae

since ||@lle = |7l (cf. Wang [13]). Since A?(G*C,(G) is dense in A(G), v may be
defined on all of A(G) such that

Iollaey = 1Tul = lplaye -

Hence v is a pseudo-measure in P(G).

For fe A?G), g € C(G), we have
Fxg = 2 [Lf¥lg = k) + (felg + )]

where h varies in AYG). Since

I £*(g — B)laey = || flg — Ay

=11 £l,ltg — Yl
and
149 + Dllawy = | F11, g + R),

=1 £1,0g + Al

if the Haar measure of G is taken to be 1, where 1/p+1/q¢ =1, we have

1590w = 1 FIAg + Bl + g — A1)

Similarly, for A replaced by %, we have

1591 aer = 51 Flulllg + Bl + g = AYlL).
Then
1£%0)ae = =1 Flulllg + El + (g — APl)
+(lg + ke + g — AT
By taking the infimum over &< AYG) so that
99} =g+ho—h mod H,

where g= o0 if p=1 and g=p/(p—1) if 1< p=2, we obtain
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1£%9aer = 5~ IA1? gl
Now if u= 3. fig, with 3 17 gl < oo, then for any 7,
i=1 i=1

o = Z [ f%:) aer

i=1

Zf *G
i=1

=T IAIP g < o,
i=1
and so

llull,m;) =

vo [

el .

Hence for any v ¢ P(G),

)| S ool aor = 5 Iolaco 2.

and

ohaser = 5= Il

Thus for any » € P(G) there corresponds a unique p<€ A (G)* such that

20 fxg) = plf*g) = 2T, f*9(0)
and
“VHA(G) = UﬂHA,(G).

Therefore we have the following

COROLLARY 2.7. Let G be an infinite compact abelian group. Then for
1=p=2, there is an isometric isomorphism mapping A, (G)* onto the space
P(G) of the pseudo-measures.

3. The multipliers of D"»*(G)=L"(G)N L*(G), 1< py, p» < oo. We supply
the norm of D*?{(G)= L*(G)N L*{(G) by

(3.1) 1A A = max (1f150 115).

Then D?-#(G) is a Banach space (not necessary an algebra if G is not compact) with
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respect to the norm [ f]|,.
Let

Saa = {9(2)9(x) = gilx) + g(x) and (g g») € L™(G) X L*G)} .
We supply it with the norm
(3.2) lglly = inf {9, s, + 192 [l for g = g/ +g,
with (g4, g,)e L% x L%},

then S,, 4, is a Banach space. It is known that D*»?* and S,,,, are reflexive and
(see Liu and Wang [6: Theorem 4])

(8.3) Sk p=DP»?(G) (l < p1> Po << 00, 1,1 =1::=1, 2).
b g

Since LYG) is a Banach algebra under convolution, D”»?* becomes a left
LYG)-module when elements of LYG) act on D" by convolution on the left.

Define the space D,, ,(G) to be the set of all functions #{z) of the form

8

u= J*g.5 fie D™ p’(G)’ g; € CC(G)CSQI-‘II

¢

[
-

with > IIfilla 1g:lly < oo, (C. is dense in S,,,,,) and define u — || ||| ;. ,, by
=1

(3.4) N2l 55 = inf{ 2 I FilIANG s 2= 3 fixg, in DM.}
i=1

i=1

the infimum being taken over all the representations for « in D, ,,. Evidently,
Mzl ppe is @ norm of D, ,(G).

It is easy to see that D, ,(G) is a dense linear subspace of CyG) and the
same like as proposition 2.1, we have the following

PROPOSITION 3.1. The space D,, ,(G) is a dense linear subspace of GCyG)
and is a Banach space with respect to the new norm || | ,.,, and the topology
so defined is not weaker than the uniform norm topology.

We say that a multiplier T" of D”?(G) means a bounded linear operator on
D+ ?{G) which commutes with translation operators and denote the multiplier space
of D*?{G) by M(D").
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THEOREM 3.2. Let G be a locally compact abelian group. The multiplier

space M(D™*) is isometrically isomorphic to D, ,(G)¥, the conjugate space of
Dm. D:(G)'

ProOOF. For any T € M(Dr*?), define
(3.5) uu) = ; Tf*90)

for u=>_ fxg, n D, ,. wu is well-defined, i.e. p(u) is independent of the
i=1
particular representation of # chosen. To show this it suffices to show that if

u=3 fxg,=0in D, ,(G) and 3 I lguly < o, then 3= Tfxg(0)=0.
i=1 i=1 i=1

Let {e.} be an approximate identity for L)G) with |e.],=1. Since L'«+L*(G)
= L?G)(1< p< ), e*f e D?»? for all fe DP»?* and

leatf —fla—>0
for the limit taking over the index @. Then

| Tleaxf g 0) — T ixg(0)] > IT'| leatfs —filla Ig:lly —> 05

we have

lin’l T(ef1xg0) = Tfxg40).

Since u = Z f*g,=0 and the convergence of the series Z fi*g, is uniform,

i=1
we see that

> Tleafol-) = T [ pTleafd-)ad5) dy

i=1

= = [ Todeatd -1 al5) &

oo

Z (eaxfi%g;)(+)

o

lI

and then for any large integer N,
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~

%740 ‘

=1 i=1

2

+ 2|7 Z (VAN A

1=N+1

S Tfg 0 — S Tlewf o )]

Z (eatf3}xg )’

653

the right hand side of this last inequality can be made arbitrarily small by taking a
sufficiently large positive integer N, and then passing to the limit with respect to

a. Therefore we conclude that

z Tfg40) = 0.

It is obvious that the mapping T'—pg is injective(one to one).

is an isometry. Indeed,

= i Y ANEAD
=T 2:_:, I£3lla lgilly

implies that
L) | = |71 Wl 5o,s -

Hence |pl| =TI .
On the other hand,

17| = Sup ITf*g( I =sup |plfrg)l = lul.

l 110l Ip1s pa=1

(see (3.3)). Therefore

17 = 1.

Finally we show that the mapping T—pu is surjective (onto).

Suppose that p€ D,, ,,(G)* and fe D**?(G), define

g — W fxg)=1tg) on C(G)CSy.,-

We show that it

By Hahn Banach theorem, the bounded linear functional ¢ can be extended to S, ,,
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and
[ Sxg)|l = llpll | £IAllgy for fe DPr, geS,,,,.

It follows from (3. 3) that there is a unique 7f € D?"?* such that
Tfxg(0) = W f*g) = tg) for g € C(G)C Sqy.a0

and |T#|,= gl |/I». Hence T is a continuous linear operator on Dr»?:, It
remains to show this bounded operator T is actually a multiplier on D*"?%G).
Indeed, for any fe D%, ge S, ,» and ac G, we see that p,fe D"? and p.g
€ Sg.q Then

T(paf )%g(0) = plpafxg) = p fpag)
= Tf*p.g(0) = p,Tf*9(0)

holds for arbitrary function g in S, ,,, we have

Tpaf = PanE Drvrr = SP*J.Qz

for every fe D*»?G). Hence Tp,= p,I. This shows that T e M{D?+?),
Q.E.D.
REMARK 3.3. When G is compact abelian group, then D*»?(G)= L’(G), r
=max (P p») is a commutative Banach algebra under convolution. In this case,
the multiplier problem reduces to the case of general Lebesgue spaces L'(G)(1<r
<o) (see [81], [9] and also [13]). The characterization of D,, ,(G)* is depending
on the index 7, 1<r < oo. Since M(L")= M(L") for 1/r+1/r =1, the multiplier
space of L'(G) for 1 <7< 2 and for 2<<r< oo are the same. Thus we divide it
in the following two cases
(i) r=2. We refer to Corollary 2.7 that D, ,(G)*= P(G).
(i) 2<r<oo. In this case L'CcL*CL! and for g C(G)CS,.op0 9=0119:
with norm

lgllv = inf (Igullo,+lg2la) = llgll-

since |9, glle.=llgll,»> the infimum norm can be chosen so that g, or g,=0.
We will show that

D,, (G — P(G)

is continuous.

For pue D,, ,(G)*, there is a multiplier 7", € M{D?*?) such that

W fxg) = T,f+g(0) for any fe D*?(G) and g € C(G)C S,,.,..
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Define » by
W f3g)=p f3g) = Tufsgl0)  feDP» = L'CL* and g C(G)C L?.
Then
MW=LEMMﬂMx
= IT,) 1f39 ).

Since D,, ,,(G) is dense in A(G), v defines on all of A(G) such that

2] aey = 1 Tull = || pll2ps,ps

and hence v is a pseudomeasure.

Note that for any »< P(G), and £< L'(G), g < C(G) L™(G),
| fxg)| = 1 f*g)] = |vllae 111l 19].

but the right hand side does not necessarily dominated by vl e /1. 9], since
lgll:>1gl, in general. Hence we can not obtain |l oy, », = Cl|v] 4. Consequently,
we obtain (cf. Larsen [15: Theorem 4. 3. 2])

COROLLARY 3.4. Let G be a compact abelian group. Then for 1<p,
# 25 p, << oo, there is a continuous algebra isomorphism from D, ,(G)* into
P(G), the space of pseudomeasures.

Using the argument, mutatis mutandis, like as Theorem 3, 2, we can characterize

the multipliers of LYG)NL?G)(1<p<<oo). We give the norm of D?(G)= L!
NL*G) by

(3.6) A = max (|f10 1)

Then D?(G) is a Banach algebra under convolution and is a dense ideal of LYG).
In particular if p=2, D¥G)= L'NLYG)= A%G). Let

S, = {9(x)|g9(x) = gi(x) + gs(x) with (g1, s) € Gy X LAG)}
and the norm is defined by
(3.7) lgl = inf {|g ]l + |g:'lq for g = g + g5'5 (915 9:) € Co X L% .

It is known that (see Liu and Wang [6: Theorem 5])
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1 1
8 S = D 00y 4 - = 1).
(3.8) . (G) (1<p< Ry 1)

Define the space D,(G) to be the set of all functions #(x) of the form:

U= ifi*gi; fier(G)> giECc(G)CSq with jz lllfi i ”gu” < oo,

The space D,(G) will be endowed the norm

(3.9) leelly = inf 3 3 5L gl w = 3. fixg, in D,,(G)},

=1

the infimum being taken over all f; € D?(G) and g, < C(G)C.S, for the representation
of # in D,(G). By the same argument of Theorem 3.2, we have the following

THEOREM 3.5. The multiplier space M(D?) is isometrically isomorphic to
D,G)*, the dual space of D,G).

REMARK 3.6. If G is a non-compact locally compact abelian group, then
by the argument, mutatis mutandis, like as Corollary 2.6 and Figa-Talamanca
and Gaudry [14: Theorem 3. 2], we can derive that

D,(G)* = M(G).

4. Isomorphisms of A?(G)-algebras. From [14: Theorem 3.1}, it is
obvious that for any multiplier 7" € M(A?), there is a unique bounded measure
p € M(G) such that

Tf = pxt for every f e A”G)

provided that G is non-compact locally compact abelian group. Using this repre-
sentation, we have the following

THEOREM 4.1. Let G, and G, be locally compact abelian groups and
be an algebraic isomorphism of AP(G,) onto A*(G,) 1=p <<oo. Suppose that one
of G, and G, is connected, then v induces a homeomorphic isomorphism T carrying
G, onto G,. Furthermore, ¥f(x) = Ci(x) flrx) for fe<ApG,) where Zx) is a
JSixed character on G, and C a constant depending only on the choice of Haar
measure in G,.

We note that the maximal ideal space of AP(G) can be identified with the
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character group G (see Larsen, Liu and Wang [5: Theorem 4]). Since the isomor-
phism ¥ of A?(G,) onto AP(G,) maps the maximal ideals of A?G,) onto the

maximal ideals of A?(G,), ¥ induces to a homeomorphism carrying G, onto G,.

Therefore if one of G, and G, is connected then both of G, and G, are connected.
Hence G, and G, are non-compact and then the result of [14] is applicable.

First we show the following lemma which will be useful in the proof of
theorem.

LEMMA 4.2. Let pe M(G). If paf =0 for all fe A"G), then p=0.

PROOF. Suppose that K is any compact set in G, then there exists ke LYG)

such that =1 on K and % has compact support in G, we see that ke A?G).
Therefore for pe< M(G),

pxk =0  implies ik =0.

That is A(2)=0 for all £ K. Since K is an arbitrary compact set in G, this

AfA

implies £(Z)=0 for all %« G, Hence # =0, by uniqueness theorem., Q.E.D.

PROOF OF THEOREM 4.1. Take u € M(G,). For any f < A?(G), we define an
operator T on A?(G,) by

(4.1) Tf = ¥ Yweif).

It is well-defined since A?(G) is an ideal of M(G). Since the algebras A”(G;) and
AP(G,) are semi-simple and commutative, ¥ is bicontinuous (cf. Rudin [16: 4.1])
Hence T is a bounded operator on A?*(G,) and

T(fxg) = ¥ uxd{ f>9))
= Y Huxf fxg
= Tfxg,
T is a multiplier of A?(G,). By assumption, one of G, and G, is connected so both

G, and G, are connected. Therefore G, and G, are non-compact, and there exists
uniquely a u in M(G,) such that

(4.2) wrf = Tf = ¥~ uelrf).

This w is uniquely determined by u, we can define a mapping ® of M(G,) into
M(G,) by
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(4.3) Qurf = U uxTf).

We shall show that @ is an isomorphism of M(G,) onto M(G),).
Let u, ve M(G,) and f be any element in A?G,). It follows from (4.3) that

Duxvlf = VY (wuropx ¥ f)
= W {ux W (P~ {oxVf)))
= Gur P ¥ f)
= (DuxDo)rf .
Since f is arbitrary in A?(G,), by Lemma 4.2,
(4.4) Dluxv) = Guxdv

while the linearity of ® is obvious, ® is a homomorphism.
For any < M(G,), define an operator S on A?(G,) by

(4.5) Sg = Vux¥'g)

for any g in A?(G,). Then the same arguments as we have done before show that
S is a multiplier of A®(G,). Hence there exists u € M(G,) such that

uxg = Sg = V(uxy'g)
or

Y urg) = pxplg .

Since Y is an onto isomorphism, we have

(4.6) Y s f) = prf

for any fe€ A?(G,). And so by (4.3), ®u= p. This shows that ® is an onto map.
If ®u=0, then ¥ uxy:f )= 0. Hence ux{y f =0, which implies # =0 (see Lemma
4.2) proving the one-to-one property of ®. Therefore ® is an isomorphism of
M(G,) onto M(G,). Since both algebras M(G,) and M(G,) are semi-simple and

commutative, ® is bicontinuous. Now for function g € A*(G,),

Dgxf = Y gxyf) = ¥ gxf

for any fe A?(G,). Hence ®g =+v"'g (Lemma 4.2) proving that ®|re, =Y
Since the algebra A®(G,) is dense in LYG,), ®|ue, becomes an isomorphism of
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LYG,) onto LYG,) (see Rudin [16], Theorem 4. 6. 4). Then the result of Beurling

and Helson is applicable (cf. Rudin [16: 4. 7. 2]) and hence the theorem is complete.
Q.E.D.

REMARK. It is remarkable that the proof of Theorem 4.1 can be taken over
for a general theorem on any dense subalgebras of LYG) as following

THEOREM 4.3. Let G be a locally compact abelian group and S(G) be a
Banach subalgebra of L\G/J with respect to some norm and it is a dense ideal

of LYG) and the maximal ideal space is identified with G. Suppose that the
multipliers of S(G) can be characterized by the bounded measures. Then the
algebraic isomorphism ® of S(G,) onto S(G,) can be reduced to a topological

isomorphism v carrying G, onto G, provided one of G, and G, is connected.
Furthermore,

Oflx) = Cx(x)f () for fe SG))

where % is a fixed character on G, and C a constant depending only on the
choice of the Haar measure in G,.

By [14: Theorem 3, 2] and the above theorem, it is immediately that

COROLLARY 4.4. Let G, and G, be locally compact abelian groups and
D be an algebraic isomorphism of DP(G,) onto D*(G,) (1<<p<< o), then G, and

G, are topological isomorphic provided that one of G, and G, is connected.

5. Additional remark for the continuous linear mappings from LY(G)
to A?(G). Let A be a normed algebra and B be an A-module normed linear space.
Consider the normed linear space M(A,B) of all continuous linear mappings 7 :
A—B that have the property

T(axx) = axTx for all a, z€ A.
Evidently M(A, A) is the space of all multipliers of A, and since for any € B,
a—>a*beB for all a€ A,

the space M(A, B) contains all of B.

Concerning the class M(A, B), there are many characterizations which are
known. For examples,
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G);
. LYG)=L/G) 1<p<oo;
(5. 3) M(A?G), L'G)) = MA*(G), A?(G) 1=p<

= M(G) if G is non-compact abelian.
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Liu and Rooij [ 7] proved the following

LEMMA 5.1. Let A be a normed algebra with bounded approximate
identity {e.} with lea=1 and B a normed right A-module such that
xre, = x for all xe B, where limit being taken over a. Then there is a
natural isometry

(5. 4) MA, B)=FB

where B’ denotes the dual space of B.

Since the Lebesgue space L?(G) is reflexive 1 <p<<co, (5.2) follows directly
from this lemma.

Using this lemma, Liu and Rooij [7: Proposition 2. 9] show that
(5.5) M(L\G), AYG) = AVG).
We ask that whether the space M(LYG), AP(G)) of operators for p>1 can be
characterized as a function space. There is a slight extension of {5.5) to the case

of 1<p=2 That states as following

PROPOSITION 5.2. Let G be a locally compact abelian group. The
algebra A*(G) is an LNG)module under convolution and

(5.6) M(LYG), AP(G) = A*(G) for 1<p=2.

The proof of this theorem can be proved likewise, mutatis mutandis, as that
for Proposition 2.9 in Liu and Rooij [7]. The only task is to show that the

space LYG) (so does CoG)V mL%G)) is also LYG)module where 1/p+1/¢=1,
1<p=2. Now we sketch simply the proof as follows.
PROOF OF PROPOSITION 5.2. Since A?(G) is an ideal of LY{G) and

| f%hl? = 11, AP for fe LY{G) and h e A?(G),

A?(G) is LG)-module. We will use Lemma 5.1 to show the identity ( 5. 6).
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Let {e.} be an approximate identity for L{G) such that Je.|;=1 for all a.

It is clear that Gy(G) is a normed module over LY(G). For LYG), we define

fAg=F-g for fe LYG) and g < LYG).
Then we have
(5.7) Ifagle= 179l =1/ lgle.
On the other hand,
(5. 8) lim (e, Ag)=lim &g =g  for all g L%G).
Indeed, for 1< p=2, the Fourier transforms [3(G) is dense in L&) and

&k —h|, < |lexh—h|,—> 0  for all he L?G)

ie. lim&h=1liméxh="h for all he L?G)

a a

implies that (5. 8) holds. Hence LYG) is an LY(G)-module by (5.7) and (5. 8).
Next we show that H,, the closure of {(A, ~}z)| he AVG)} in CO(G)XL"(é),

is an LYG)-module, it is immediately that
frlh, —h) = ((Fxh)", —fah)
= ((f*h)"s — (F*h))e H,.

Consequently, Co(G)V 5 L%G) is LYG)-module and

A

lim e, *u = u for all u e Cy(G)V g LG).

Therefore
MLYG), (C{G)V nLY(G))*) = (Co(G)V nLY(G))* = A*(G)
or

ML{G), A*(G) = A"G) for1<p=2. Q.E.D.

REMARK. For p>2. the characterization of M(LYG), A?(G)) is an open
question.
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