Tôhoku Math. Journ. 23(1971), 641-662.

ON THE MULTIPLIERS OF $A^{p}(G)$ -ALGEBRAS

HANG-CHIN LAI

(Received Jan. 28, 1970; Revised Sept. 9, 1971)

1. Introduction and Preliminaries. Multiplier operators are frequently used in group algebras, especially in Fourier analysis. Various type of multipliers are investigated by Figà-Talamanca, Gaudry, Brainerd and Edwards, and Rieffel ect., see [8], [9], [10], [2] and [11] etc.

In this paper, our purpose is to characterize the multipliers of $A^{p}(G)$ -algebras $1 \leq p \leq 2$ as a dual space $A_{p}(G)^{*}$ of $A_{p}(G)$ which we will define later, and hence $A_{p}(G)^{*}$ is isometrically isomorphic to the space of bounded regular measures if G is non-compact, locally compact abelian group. If G is an infinite compact abelian group, then $A_{p}(G)^{*}$ $1 \leq p \leq 2$ is isometrically isomorphic to the space of pseudomeasures, i. e. the dual space of the Fourier algebra A(G). In section 3, we investigate also the multiplier spaces of $L^{p_{1}} \cap L^{p_{1}}(G)$ for $1 < p_{1}$, $p_{2} < \infty$ and $L^{1} \cap L^{p}(G)$ for $1 . The isomorphism theorem of <math>A^{p}(G)$ -algebras is proved in section 4. Finally we consider the continuous linear mapping of $L^{1}(G)$ into $A^{p}(G)$ in which we characterize the space of operators from $L^{1}(G)$ into $A^{p}(G)$ with the function space $A^{p}(G)$ for 1 .

Before the discussions, the author wishes to thank Prof. M. Fukamiya for his many valuable suggestions and encouragements.

Let G be a locally compact abelian group and \hat{G} its character group. dx and $d\hat{x}$ denote the normalized Haar measures of G and \hat{G} respectively. The space $A^{p}(G)$ denotes the subset of $L^{1}(G)$ consisting of those functions f whose Fourier transforms \hat{f} belong to $L^{p}(\hat{G})$. We supply $A^{p}(G)$ with norm

(1.1)
$$\|f\|^p = \max(\|f\|_1, \|\hat{f}\|_p)$$

which is equivalent to the norm: $||f||_1 + ||\hat{f}||_p$ for $f \in A^p(G)$. It is easy to see that $A^p(G)$, $1 \leq p < \infty$ is a dense ideal in $L^1(G)$ and forms a semi-simple commutative Banach algebra with the norm $|| ||^p$ under convolution (see Larsen, Liu and Wang [9]). Since \hat{f} is a bounded continuous function in $L^p(\hat{G})$, $\hat{f} \in L^r(\hat{G})$ for $p \leq r$, we see that the $A^p(G)$ forms an ascending chain of dense ideals with respect to the

This research was supported by the Mathematical Research Center, National Science Council, Taiwan, CHINA

index $p, 1 \leq p < \infty$ in $L^1(G)$. We use the following general notations $C_c(G)$: The continuous functions with compact support in G, $C_0(G)$: The continuous functions vanishing at infinity on G, M(G): Bounded Radon measures on G.

Let $E = C_0(G) \times L^q(\widehat{G})$. Then $E^* = M(G) \times L^p(\widehat{G})$ for 1/p + 1/q = 1, 1 .Denote

$$\begin{split} H_q &= \text{The closure in } E \text{ of } \{(f, -\hat{f}); f \in A^1(G)\}, \\ H_q^0 &= \text{The subset in } E^* \text{ such that if } (\sigma, \tau) \in E^*, \text{ then } \sigma \tilde{f} - \tau \hat{f} = 0 \text{ for } (\tilde{f}, -\hat{f}) \\ &\in H_q, \end{split}$$

where \tilde{f} denotes the reflexive function of $f: x \to f(-x)$ and \hat{f} the Fourier transform of f, and let

 K_q = The quotient space $E/H_q = C_0(G) \vee_{Hq} L^q(G)$.

The elements of K_q are denoted by $\{g, h\}$ and supplied with the norm

 $\|\{g, h\}\| = \inf \{\|g'\| + \|h'\|_q; \{g', h'\} = \{g, h\} \mod H_q\}.$

Then, if 1 , <math>1/p + 1/q = 1, we have (see Liu and Rooij [7])

(1.2)
$$K_q^* = (E/H_q)^* \cong A^p(G) \text{ and } K_q^* = H_q^0$$

As p=1, denote H_{∞} = The closure of $\{(\tilde{f}, -\hat{f}); f \in A^{1}(G)\}$ in $C_{0}(G) \times C_{0}(\hat{G})$ then

(1.3)
$$K^*_{\infty} = (C_0(G) \times C_0(\widehat{G})/H_{\infty})^* \cong A^1(G).$$

 $A^{p}(G)$ may be considered to be a closed linear subspace of $E^{*} = M(G) \times L^{p}(\widehat{G})$, the dual space of $E = C_{0}(G) \times L^{q}(\widehat{G})$, the norm $||f||^{p}$ is identical with the norm $||f||_{E^{*}}$. Moreover, we can show the following

LEMMA 1.1. For $f \in A^{p}(G)$, $1 \leq p \leq 2$ and $g \in C_{c}$, we have

(1.4)
$$||f||^{p} = \sup_{\||g,\hat{g}_{1}\|| \le 1} \left| f * g(0) + \int_{\hat{g}} \hat{f} \cdot \hat{g} \, d\hat{x} \right|$$

where $\{g, h\}$ denotes the elements of $K_q = E/H_q$, $g \in C_0(G)$, $h \in L^q(\widehat{G})$.

PROOF. For $f \in A^p(G)$ $1 \leq p \leq 2$ and $g \in C_c(G) \subset L^2(G)$, we see that $\hat{f} \in L(\hat{G}) \cap C_0(\hat{G}) \subset L^2(\hat{G})$, $\hat{g} \in L^2(\hat{G}) \cap C_0(\hat{G})$ and $f * g \in C_0(G)$, the Parseval's formula is applicable so that

$$\int_{\hat{\sigma}} \hat{f}(\hat{x}) \hat{g}(\hat{x}) d\hat{x} = \int_{\sigma} f(x) \tilde{g}(x) dx = f * g(0) \,.$$

Consider the linear functional of the form

$$F(f) = \int_{\mathfrak{G}} f(x)\tilde{g}(x)dx + \int_{\hat{\mathfrak{G}}} \hat{f}(\hat{x})\hat{h}(\hat{x})d\hat{x} = t_f(\tilde{g}, \hat{h})$$

 $\text{for any } g, \ h \in C_c(G) \ \text{and} \ (\widetilde{g}, \ \widehat{h}) \in C_0(G) \times L^q(\widehat{G}). \quad \text{Since} \ (\widetilde{g}, \ \widehat{h}) = (\widetilde{h}, \ \widehat{g}) \ \text{mod} \ H_q,$

$$\|(\tilde{g}, \hat{h})\| = \|(\tilde{h}, \hat{g})\| = \inf (\|g\|_{\infty} + \|\hat{h}\|_{q})$$

and

$$t_f(\widetilde{g}, \ \widehat{h}) = t_f(\widetilde{h}, \ \widehat{g}) = \frac{1}{2} (t_f(\widetilde{g}, \ \widehat{g}) + t_f(\widetilde{h}, \ \widehat{h}))$$

By (1.2) and (1.3),

$$\begin{split} \|f\|^{p} &= \sup_{\substack{||\langle \widehat{a}, \widehat{h} \rangle || \leq 1}} |t_{f}(\widetilde{g}, \widetilde{h})| = \sup_{||\langle \widehat{h}, \widehat{g} \rangle || \leq 1} |t_{f}(\widetilde{h}, \widehat{g})| \\ &= \sup_{||\langle \widehat{a}, \widehat{h} \rangle || = ||\langle \widehat{h}, \widehat{g} \rangle || \leq 1} \\ &= \sup_{||\langle \widehat{a}, \widehat{h} \rangle || = ||\langle \widehat{h}, \widehat{g} \rangle || \leq 1} \left| \frac{1}{2} (t_{f}(\widetilde{g}, \widehat{h}) + t_{f}(\widetilde{h}, \widehat{g})) \right| \\ &= \sup_{||\langle \widehat{a}, \widehat{h} \rangle || = ||\langle \widehat{h}, \widehat{g} \rangle || \leq 1} \left| t_{f} \left(\left(\frac{g+h}{2} \right) \widetilde{,} \left(\frac{g+h}{2} \right) \widetilde{,} \right) \right| \\ &\leq \sup_{||\langle \widehat{a}, \widehat{g} \rangle || \leq 1} |t_{f}(\widetilde{g}, \widehat{g})| . \end{split}$$

Therefore

$$\sup_{\||\widehat{(g, \hat{g})}|| \leq 1} |t_f(\widetilde{g}, \hat{g})| = \sup_{\||\widehat{(g, \hat{h})}\|| \leq 1} |t_f(\widetilde{g}, \hat{h})| = \|f\|^p. \quad Q. E. D.$$

DEFINITION 1.2. A multiplier T of $A^{p}(G)$ means a continuous linear operator on $A^{p}(G)$ which commutes with translation operator ρ_{x} for every $x \in G$ where ρ_{x} is defined by $\rho_{x}f(y) = f(y-x)$. In this paper we denote by $M(A^{p})$ the set of all multipliers T of $A^{p}(G)$.

The following proposition is immediate.

PROPOSITION 1.3. A mapping T from $A^{p}(G)$ into itself is a multiplier of $A^{p}(G)$ if and only if T satisfies the following condition

(1.5)
$$T(f*g) = Tf*g = f*Tg \quad \text{for any } f, g \in A^p(G).$$

H.C.LAI

(cf. Larsen [15]).

2. The multipliers of $A^{p}(G)$. By the preparation in previous section, we can define the space $A_{p}(G)$ for 1 to be the set of all functions <math>u(x) such that

$$u = \sum_{i=1}^{\infty} f_i * g_i; \ f_i \in A^p(G), \ g_i \in C_q = \{g \in C_c; \ \{g, \hat{g}\} \in K_q\}$$

and $\sum_{i=1}^{\infty} ||f_i||^p ||g_i|| < \infty$, where $||g_i|| = ||\{g_i, \hat{g}_i\}||$. (note that $\widehat{C_c(G)}$ is dense in $L^q(G)$ and $C_c(G)$ is dense in $C_0(G)$.)

Define $u \longrightarrow ||| u |||_{p}$ by

(2.1)
$$||| u |||_{p} = \inf \left\{ \sum_{i=1}^{\infty} ||f_{i}||^{p} ||g_{i}||; u = \sum_{i=1}^{\infty} f_{i} * g_{i} \text{ in } A_{p}(G) \right\}$$

the infimum being taken over all functions $f_i \in A^p(G)$, $g_i \in C_q$ for the representation of u. Since $\sum_{i=1}^{\infty} ||f_i||^p ||g_i|| < \infty$,

$$\left\|\sum_{i=m}^{n} f_{i} \star g_{i}\right\|_{\infty} \leq \sum_{i=m}^{n} \|f_{i}\|^{p} g_{i}\| \longrightarrow 0 \text{ when } m, n \longrightarrow \infty,$$

we see that $u = \sum_{i=1}^{\infty} f_i * g_i$ is a uniformly continuous function on G, and the norm $\|\|u\|\|_p$ is stronger than the uniform norm. It can be shown that the space $A_p(G)$ is a dense subspace of $C_0(G)^{1}$ and so we may consider the dual space $A_p(G)^*$ which contains the space of bounded Radon measures. The following proposition is not hard to prove (cf. Gaudry [2]).

PROPOSITION 2.1. The space $A_p(G)$ is a dense linear subspace of $C_0(G)$ and is a Banach space with respect to the norm $\|\|\|\|_p$, and thus the topology so defined is stronger than the uniform topology and also stronger than the topology induced from $A^p(G)$.

THEOREM 2.2. The multiplier space $M(A^p)$ for $1 is isometrically isomorphic to the topological dual <math>A_p(G)^*$ of $A_p(G)$.

¹⁾ Since C_c is L^1 -dense in A^p , it suffices to show that $\{f*g: f, g \in C_c\}$ is uniformly dense in C^0 . The algebra of continuous functions on G generated by $\{f*g: f, g \in C_c\}$ is a self-adjoint subalgebra of C_0 and separates points of G, thus it is uniformly dense in $C_0(G)$ by Stone-Weierstrass theorem.

PROOF. Suppose that $T \in M(A^p)$ and define the linear functional μ on $A_p(G)$ by

$$\mu(u) = \sum_{i=1}^{\infty} \left(\int_{\sigma} Tf_i(x) \, \tilde{g}_i(x) \, dx + \int_{\hat{G}} \hat{Tf}_i(\hat{x}) \, \hat{g}_i(\hat{x}) \, d\hat{x} \right)$$
$$= \sum_{i=1}^{\infty} \left(Tf_i * g_i(0) + \int_{\hat{G}} \hat{Tf}_i(\hat{x}) \, \hat{g}_i(\hat{x}) \, d\hat{x} \right)$$

for $u = \sum_{i=1}^{\infty} f_i * g_i$ in $A_p(G)$ with $f_i \in A^p(G)$, $g_i \in C_c(G)$ and $\sum_{i=1}^{\infty} ||f_i||^p ||g_i|| < \infty$. This μ is well-defined. To show this, it suffices to show that if $u = \sum_{i=1}^{\infty} f_i * g_i = 0$, and $\sum_{i=1}^{\infty} \|f_i\|^p \|g_i\| < \infty$ then $\mu(u) = 0$. Let $\{e_a\}$ be an approximate identity of $A^p(G)$ (cf. Lai [3]) and let $h_a = Te_a$,

then

$$h_{\alpha} * f \longrightarrow Tf$$
 in $A^{p}(G)$ -norm for $f \in A^{p}(G)$,

and we have, for $f \in A^{p}(G)$ and $g \in C_{c}(G)$,

$$\|h_{a} * f * g\|_{\infty} \leq \int_{g} |e_{a} * Tf(x)| |g(-x)| dx$$
$$\leq \|e_{a}\|_{1} \|Tf\|_{1} \|g\|_{\infty} \quad (\|e_{a}\|_{1} \leq C)$$

By the assumption, the series $u = \sum_{i=1}^{\infty} f_i * g_i$ is uniformly convergent on G and $u = \sum_{i=1}^{\infty} f_i * g_i = 0$, we have

$$h_{\alpha} * u = \sum_{i=1}^{\infty} h_{\alpha} * f_i * g_i = 0.$$

But it is easy to see that

$$\lim_{\alpha} \sum_{i=1}^{\infty} h_{\alpha} * f_{i} * g_{i}(0) = \sum_{i=1}^{\infty} T f_{i} * g_{i}(0) = 0.$$

On the other hand, if $f \in A^p(G)$, $g \in C_c(G)$, we have $\hat{f} \in C_0 \cap L^2(\hat{G})$ and $\hat{g} \in C_0$ $\cap L^2(\widehat{G})$, so by Parseval's formula,

$$\int_{\hat{G}} \hat{f}(\widehat{x}) \, \hat{g}(\widehat{x}) d\widehat{x} = f * g(0),$$

hence we obtain, under the same assumption,

$$\sum_{i=1}^{\infty}\int_{\hat{g}} \widehat{Tf}_i(\hat{x}) \, \hat{g}_i(\hat{x}) \, d\hat{x} = \sum_{i=1}^{\infty} Tf_i * g_i(0) = 0 \, .$$

Thus $\mu(u) = 0$ and μ is well-defined.

The mapping $T \rightarrow \mu$ is evidently injective, we will show that it is an isometry. By Lemma 1.1,

$$|\mu(u)| \leq \sum_{i=1}^{\infty} ||Tf_i||^p ||g_i|| \leq ||T|| \sum_{i=1}^{\infty} ||f_i||^p ||g_i||,$$

it follows that

$$|\mu(u)| \leq ||T|| |||u|||_{p}$$

Therefore

 $\|\boldsymbol{\mu}\| \leq \|T\|.$

On the other hand, it follows from (1.2) and Lemma 1.1 that

$$\|T\| = \sup_{\|\|f\|\|_{p \le 1}} \|Tf\|^{p}$$

= $\sup_{\|\|f\|\|_{p \le 1}} |\mu(f*g)|$
 $\leq \sup_{\|\|f\|_{p \le 1}} |\mu(f*g)| \le \|\mu\|$

Hence $||T|| = ||\mu||$.

Finally, we want to show that $T \rightarrow \mu$ is surjective.

Suppose that $\mu \in A_p(G)^*$ and for an arbitrary fixed $f \in A^p(G)$, define the linear functional

$$g \to \mu(f * g) = t(g) \quad \text{for } g \in C_c(G).$$

Thus $|t(g)| \leq ||\mu|| ||f||^p ||g||$, t(g) may be extended to an element of K_q^* , and hence t defines a unique (element) function, say Tf, in the dual space $A^p(G)$ of $K_q = E/H_q$, it follows from (1, 2) that

$$Tf*g(0) + \int_{\hat{g}} \widehat{Tf}(\hat{x}) g(\hat{x}) d\hat{x} = \mu(f*g) = t(g).$$

Since μ is a bounded linear functional on $A_p(G)$,

$$|t(g)| = |\mu(f*g)|$$

$$\leq ||\mu|| |||f*g|||_{p} \leq ||\mu|| ||f||^{p} ||g||$$

and since t defines Tf, by $(1, 2) ||t|| = ||Tf||^p$, we see that

 $||Tf||^{p} \leq ||\mu|| ||f||^{p},$

this implies that $||T|| \leq ||\mu||$. Hence T is a bounded linear operator on $A^{p}(G)$. Actually it is a multiplier of $A^{p}(G)$; for if $y \in G$ and $f \in A^{p}(G)$, $g \in C_{c}(G)$, we have

$$T(\rho_{\nu}f)*g(0) + \int_{\hat{g}} \widehat{T\rho_{\nu}f} \cdot \hat{g} dx = \mu(\rho_{\nu}f*g)$$
$$= \mu(f*\rho_{\nu}g)$$
$$= Tf*\rho_{\nu}g(0) + \int_{\hat{g}} \widehat{Tf}(\hat{x}) \widehat{\rho_{\nu}g}(\hat{x}) d\hat{x}$$
$$= \rho_{\nu}Tf*g(0) + \int_{\hat{g}} \widehat{\rho_{\nu}Tf}(\hat{x}) \hat{g}(\hat{x}) d\hat{x}$$

whence $\rho_{\nu}(Tf) = T(\rho_{\nu}f)$ for any $f \in A^{\nu}(G)$, i.e. T commutes with translation, by definition 1.2, $T \in M(A^{\nu})$. Q.E.D.

REMARK 2.3. For $A^{1}(G)$, we define the space $A_{1}(G)$ consisting of all the functions u of the form

$$u = \sum_{i=1}^{\infty} f_i * g_i \text{ with } f_i \in A^1(G), \ g_i \in \{g \in C_c(G); \ \{g, \hat{g}\} \in K_\infty\}$$

such that

$$\sum_{i=1}^{\infty} \|f_i\|^1 \|g_i\| \! < \! \infty,$$

where $||g_i|| = \inf \{||g_i'||_{\infty} + ||\hat{g}_i'||_{\infty}; \{g_i', \hat{g}_i'\} = \{g_i, \hat{g}_i\} \in K_{\infty}\}$. Here K_{∞} is defined in section 1. The norm of $A_1(G)$ is defined by the same way like as $A_p(G)$, for 1 . Then by (1.3) we have the following

COROLLARY 2.4. The space $M(A^1)$ is isometrically isomorphic to the dual space $A_1(G)^*$ of $A_1(G)$.

DISCUSSION 2.5. The above characterizations for multipliers of $A^{p}(G)$, $1 \leq p \leq 2$ are representing different function spaces which depend on the group of compact or non-compact.

1°. The case of non-compact group G. Let $\mu \in A_p(G)^*$ be arbitrarily and take $f \in A^p(G)$. Define

$$g \to \mu(f * g) = 2T_{\mu}f * g(0) = t_f(g)$$
 for all $g \in C_q \subset C_0$.

Then

$$\begin{aligned} |t_f(g)| &= 2 |T_{\mu}f * g(0)| \leq 2 ||T_{\mu}f||_1 ||g||_{\infty} \\ &\leq 2 ||T_{\mu}|| ||f||^p ||g||_{\infty}, \end{aligned}$$

and T_{μ} is a multiplier of $A^{\nu}(G)$ into $L^{1}(G)$. Hence when G is non-compact, it can be shown by the same argument of Figà-Talamanca and Gaudry [14; Theorem 3.1] that there exists $\nu \in M(G)$ such that

$$\nu * f = T_{\mu} f \qquad \text{for all } f \in A^p(G)$$

and $\|\mathbf{v}\| = \|T_{\mu}\| = \|\mu\|$. Therefore we have

COROLLARY 2.6. Let G be a non-compact, locally compact abelian group. Then for $1 \le p \le 2$,

$$A_p(G)^* \cong M(G)$$
.

Let A(G) be the space of functions which are the Fourier transforms of functions in $L^1(\hat{G})$. A(G) forms a Banach algebra, called the Fourier algebra, under pointwise product with the same norm of $L^1(\hat{G})$. It is precisely the convolution of two functions in $L^2(G)$. We denote by P(G) the space of bounded linear functionals of A(G), each element of P(G) is called a pseudo-measure on G.

2º. The case of infinite compact group.

If G is an infinite compact abelian group, then $A^{p}(G) \subset L^{2}(G)$ $1 \leq p \leq 2$. Let $\mu \in A_{p}(G)^{*}$ be arbitrarily, there corresponds a multiplier $T_{\mu} \in M(A^{p})$ such that

$$\mu(f*g) = 2T_{\mu}f*g(0) \quad \text{for } f \in A^p(G) \text{ and } g \in C_q \subset L^2.$$

Define

$$u(f*g) = \frac{1}{2} \mu(f*g) = T_{\mu}f*g(0).$$

Then

$$\begin{aligned} |v(f*g)| &= \left| \int_{g} Tf(x) g(-x) dx \right| \\ &= \left| \int_{\hat{\sigma}} \widehat{T_{\mu}f}(\hat{x}) \hat{g}(\hat{x}) d\hat{x} \right| \quad \text{(Parseval's identity)} \\ &= \left| \int_{\hat{d}} \varphi(\hat{x}) \hat{f}(\hat{x}) \hat{g}(\hat{x}) d\hat{x} \right|, \end{aligned}$$

 φ is a bounded continuous function on \hat{G} (cf. Wang [13],

 $\leq \|T_{\mu}\| \|f \ast g\|_{\mathcal{A}(G)}$

since $\|\varphi\|_{\infty} \leq \|T_{\mu}\|$ (cf. Wang [13]). Since $A^{\nu}(G) * C_q(G)$ is dense in A(G), ν may be defined on all of A(G) such that

$$\|\nu\|_{A(G)} \leq \|T_{\mu}\| = \|\mu\|_{A_{p}(G)}.$$

Hence ν is a pseudo-measure in P(G). For $f \in A^{p}(G)$, $g \in C_{q}(G)$, we have

$$f*g = \frac{1}{2} \left[(f*(g-h)) + (f*(g+h)) \right]$$

where h varies in $A^{1}(G)$. Since

$$\|f^*(g-h)\|_{A(G)} = \|\hat{f}(g-h)^*\|_1$$

 $\leq \|\hat{f}\|_p \|(g-h)^*\|_q$

and

if the Haar measure of G is taken to be 1, where 1/p+1/q=1, we have

$$\|f * g\|_{A(G)} \leq \frac{1}{2} \|\hat{f}\|_{p} (\|g + h\|_{\infty} + \|(g - h)^{*}\|_{q}).$$

Similarly, for h replaced by \tilde{h} , we have

$$\|f * g\|_{A(G)} \leq \frac{1}{2} \|\hat{f}\|_{p} (\|g + \tilde{h}\|_{\infty} + \|(g - \tilde{h})^{\sim}\|_{q}).$$

Then

$$\|f * g\|_{A(G)} \leq rac{1}{4} \|\hat{f}\|_p [(\|g + \widetilde{h}\|_{\infty} + \|(g - h)^{\sim}\|_q) + (\|g + h\|_{\infty} + \|(g - \widetilde{h})^{\sim}\|_q)].$$

By taking the infimum over $h \in A^1(G)$ so that

 $\{g, \hat{g}\} = \{g + \tilde{h}, \hat{g} - \hat{h}\} \mod H_q$

where $q = \infty$ if p = 1 and q = p/(p-1) if 1 , we obtain

650

$$\|f * g\|_{A(G)} \leq \frac{1}{2} \|f\|^p \|g\|.$$

Now if
$$u = \sum_{i=1}^{\infty} f_i * g_i$$
 with $\sum_{i=1}^{\infty} ||f_i||^p ||g_i|| < \infty$, then for any n ,
$$\left\| \left| \sum_{i=1}^{n} f_i * g_i \right| \right|_{\mathcal{A}(G)} \le \sum_{i=1}^{n} ||f_i * g_i||_{\mathcal{A}(G)}$$
$$\le \frac{1}{2} \sum_{i=1}^{\infty} ||f_i||^p ||g_i|| < \infty,$$

and so

$$||u||_{A(G)} \leq \frac{1}{2} |||u|||_{p}.$$

Hence for any $\nu \in P(G)$,

$$|v(u)| \leq ||v||_{A(G)} ||u||_{A(G)} \leq \frac{1}{2} ||v||_{A(G)} |||u|||_{p}.$$

and

$$\|\mathbf{v}\|_{A_{\mathbf{p}}(G)} \leq \frac{1}{2} \|\mathbf{v}\|_{A(G)}$$
.

Thus for any $\nu \in P(G)$ there corresponds a unique $\mu \in A_{\nu}(G)^*$ such that

 $2\nu(f*g) = \mu(f*g) = 2T_{\nu}f*g(0)$

and

 $\|\nu\|_{A(G)} = \|\mu\|_{A_{\bullet}}(G).$

Therefore we have the following

COROLLARY 2.7. Let G be an infinite compact abelian group. Then for $1 \leq p \leq 2$, there is an isometric isomorphism mapping $A_p(G)^*$ onto the space P(G) of the pseudo-measures.

3. The multipliers of $D^{p_1, p_2}(G) = L^{p_1}(G) \cap L^{p_2}(G)$, $1 < p_1, p_2 < \infty$. We supply the norm of $D^{p_1, p_2}(G) = L^{p_1}(G) \cap L^{p_2}(G)$ by

$$\|f\|_{\wedge} = \max \left(\|f\|_{p_1}, \|f\|_{p_2} \right).$$

Then $D^{p_1, p_2}(G)$ is a Banach space (not necessary an algebra if G is not compact) with

respect to the norm $||f||_{\wedge}$.

Let

$$S_{q_1,q_2} = \{g(x) | g(x) = g_1(x) + g_2(x) \text{ and } (g_1, g_2) \in L^{q_1}(G) \times L^{q_2}(G) \}.$$

We supply it with the norm

(3.2)
$$||g||_{\vee} = \inf \{ ||g_1'||_{q_1} + ||g_2'||_{q_2} \text{ for } g = g_1' + g_2'$$

with $(g_1', g_2') \in L^{q_1} \times L^{q_2} \},$

then S_{q_1,q_2} is a Banach space. It is known that D^{p_1,p_2} and S_{q_1,q_2} are reflexive and (see Liu and Wang [6: Theorem 4])

(3.3)
$$S_{p_1,p_2}^* \cong D^{p_1,p_2}(G) \qquad \left(1 < p_1, p_2 < \infty, \frac{1}{p_i} + \frac{1}{q_i} = 1 \quad i = 1, 2\right).$$

Since $L^{1}(G)$ is a Banach algebra under convolution, $D^{p_{1}, p_{2}}$ becomes a left $L^{1}(G)$ -module when elements of $L^{1}(G)$ act on $D^{p_{1}, p_{2}}$ by convolution on the left.

Define the space $D_{p_1,p_2}(G)$ to be the set of all functions u(x) of the form

$$u = \sum_{i=1}^{\infty} f_i * g_i; f_i \in D^{p_i, p_i}(G), g_i \in C_c(G) \subset S_{q_i, q_i}$$

with $\sum_{i=1}^{\infty} \|f_i\|_{\wedge} \|g_i\|_{\vee} < \infty$, $(C_c \text{ is dense in } S_{q_1,q_2})$ and define $u \to \|\|u\|\|_{p_1,p_2}$ by

(3.4)
$$||| u |||_{p_i, p_s} = \inf \left\{ \sum_{i=1}^{\infty} ||f_i||_{\wedge} ||g_i||_{\vee}; u = \sum_{i=1}^{\infty} f_i * g_i \text{ in } D_{p_i, p_s} \right\}$$

the infimum being taken over all the representations for u in D_{p_1, p_2} . Evidently, $||| u |||_{p_1, p_2}$ is a norm of $D_{p_1, p_2}(G)$.

It is easy to see that $D_{p_1, p_2}(G)$ is a dense linear subspace of $C_0(G)$ and the same like as proposition 2.1, we have the following

PROPOSITION 3.1. The space $D_{p_1,p_2}(G)$ is a dense linear subspace of $C_0(G)$ and is a Banach space with respect to the new norm $\|\| \|\|_{p_1,p_2}$ and the topology so defined is not weaker than the uniform norm topology.

We say that a multiplier T of $D^{p_1, p_2}(G)$ means a bounded linear operator on $D^{p_1, p_2}(G)$ which commutes with translation operators and denote the multiplier space of $D^{p_1, p_2}(G)$ by $M(D^{p_1, p_2})$.

THEOREM 3.2. Let G be a locally compact abelian group. The multiplier space $M(D^{p_1, p_2})$ is isometrically isomorphic to $D_{p_1, p_2}(G)^*$, the conjugate space of $D_{p_1, p_2}(G)$.

PROOF. For any $T \in M(D^{p_1, p_2})$, define

(3.5)
$$\mu(u) = \sum_{i=1}^{\infty} Tf_i^* g_i(0)$$

for $u = \sum_{i=1}^{\infty} f_i * g_i$ in D_{p_1, p_2} . μ is well-defined, i.e. $\mu(u)$ is independent of the particular representation of u chosen. To show this it suffices to show that if $u = \sum_{i=1}^{\infty} f_i * g_i = 0$ in $D_{p_1, p_2}(G)$ and $\sum_{i=1}^{\infty} ||f_i||_{\wedge} ||g_i||_{\vee} < \infty$, then $\sum_{i=1}^{\infty} Tf * g_i(0) = 0$.

Let $\{e_{\alpha}\}$ be an approximate identity for $L^{1}(G)$ with $||e_{\alpha}||_{1} = 1$. Since $L^{1} * L^{p}(G) = L^{p}(G)(1 , <math>e_{\alpha} * f \in D^{p_{1}, p_{1}}$ for all $f \in D^{p_{1}, p}$ and

$$\|e_{\alpha}*f-f\|_{\wedge}\longrightarrow 0$$

for the limit taking over the index α . Then

$$|T(e_{\mathfrak{a}} * f_{\mathfrak{i}}) * g_{\mathfrak{i}}(0) - Tf_{\mathfrak{i}} * g_{\mathfrak{i}}(0)| > ||T|| ||e_{\mathfrak{a}} * f_{\mathfrak{i}} - f_{\mathfrak{i}}||_{\wedge} ||g_{\mathfrak{i}}||_{\vee} \longrightarrow 0,$$

we have

$$\lim_{\alpha \to 0} T(e_{\alpha} * f_i) * g_i(0) = Tf_i * g_i(0).$$

Since $u = \sum_{i=1}^{\infty} f_i * g_i = 0$ and the convergence of the series $\sum_{i=1}^{\infty} f_i * g_i$ is uniform, we see that

$$\sum_{i=1}^{\infty} T(e_{a} * f_{i}) * g_{i}(\cdot) = \sum_{i=1}^{\infty} \int \rho_{y} T(e_{a} * f_{i})(\cdot) g_{i}(y) dy$$
$$= \sum_{i=1}^{\infty} \int T \rho_{y}(e_{a} * f_{i})(\cdot) g_{i}(y) dy$$
$$= \sum_{i=1}^{\infty} T(e_{a} * f_{i} * g_{i})(\cdot)$$
$$= T \left(e_{a} * \sum_{i=1}^{\infty} (e_{a} * g_{i}) \right)(\cdot) = 0.$$

and then for any large integer N,

$$\left|\sum_{i=1}^{\infty} Tf_i * g_i(0)\right| = \left|\sum_{i=1}^{\infty} Tf_i * g_i(0) - \sum_{i=1}^{\infty} T(e_a * f_i) * g_i(0)\right|$$
$$\leq \left|\sum_{i=1}^{N} Tf_i * g_i(0) - \sum_{i=1}^{N} T(e_a * f_i) * g_i(0)\right|$$
$$+ 2\|T\|\sum_{i=N+1}^{\infty} \|f_i\|_{\wedge} \|g_i\|_{\vee}$$

the right hand side of this last inequality can be made arbitrarily small by taking a sufficiently large positive integer N, and then passing to the limit with respect to α . Therefore we conclude that

$$\sum_{i=1}^{\infty} Tf_i * g_i(0) = 0.$$

It is obvious that the mapping $T \rightarrow \mu$ is injective(one to one). We show that it is an isometry. Indeed,

$$|\mu(u)| \leq \sum_{i=1}^{\infty} |Tf_i * g_i(0)|$$
$$\leq \sum_{i=1}^{\infty} |Tf_i||_{\wedge} ||g_i||_{\vee}$$
$$\leq ||T|| \sum_{i=1}^{\infty} ||f_i||_{\wedge} ||g_i||_{\vee}$$

implies that

$$|\mu(u)| \leq ||T|| |||u|||_{p_1,p_2}.$$

Hence $\|\mu\| \leq T\|$.

On the other hand,

$$\|T\| = \sup_{\substack{\|f_i\| \ge 1\\ g \| \| > 1}} |Tf * g(0)| \le \sup_{\||f^*g|\|_{p_1, p_2} \le 1} |\mu(f * g)| \le \|\mu\|.$$

(see (3.3)). Therefore

$$||T|| = ||\mu||.$$

Finally we show that the mapping $T \rightarrow \mu$ is surjective (onto). Suppose that $\mu \in D_{p_1, p_2}(G)^*$ and $f \in D^{p_1, p_2}(G)$, define

$$g \longrightarrow \mu(f * g) = t(g)$$
 on $C_c(G) \subset S_{q_1,q_2}$.

By Hahn Banach theorem, the bounded linear functional t can be extended to S_{q_1,q_2}

H.C.LAI

and

$$|\mu(f*g)| \leq \|\mu\| \|f\|_{\wedge} \|g_{\vee} \text{ for } f \in D^{p_1, p_2}, \ g \in S_{q_1, q_2}$$

It follows from (3.3) that there is a unique $Tf \in D^{p_1, p_2}$ such that

$$Tf * g(0) = \mu(f * g) = t(g) \quad \text{for } g \in C_c(G) \subset S_{q_1, q_2},$$

and $||Tf||_{\wedge} \leq ||\mu|| ||f||_{\wedge}$. Hence T is a continuous linear operator on D^{p_1, p_2} . It remains to show this bounded operator T is actually a multiplier on $D^{p_1, p_2}(G)$. Indeed, for any $f \in D^{p_1, p_2}$, $g \in S_{q_1, q_2}$, and $a \in G$, we see that $\rho_a f \in D^{p_1, p_2}$ and $\rho_a g \in S_{q_1, q_2}$. Then

$$T(\rho_a f) * g(0) = \mu(\rho_a f * g) = \mu(f * \rho_a g)$$
$$= Tf * \rho_a g(0) = \rho_a Tf * g(0)$$

holds for arbitrary function g in S_{q_1,q_2} , we have

$$T\rho_a f = \rho_a T f \in D^{p_1, p_2} \cong S^*_{p_1, q_2}$$

for every $f \in D^{p_1, p_2}(G)$. Hence $T\rho_a = \rho_a T$. This shows that $T \in M(D^{p_1, p_2})$. O, E, D,

REMARK 3.3. When G is compact abelian group, then $D^{p_1, p_2}(G) = L^r(G)$, $r = \max(p_1, p_2)$, is a commutative Banach algebra under convolution. In this case, the multiplier problem reduces to the case of general Lebesgue spaces $L^r(G)(1 < r < \infty)$ (see [8], [9] and also [13]). The characterization of $D_{p_1, p_2}(G)^*$ is depending on the index r, $1 < r < \infty$. Since $M(L^r) = M(L^{r'})$ for 1/r + 1/r' = 1, the multiplier space of $L^r(G)$ for 1 < r < 2 and for $2 < r < \infty$ are the same. Thus we divide it in the following two cases

- (i) r=2. We refer to Corollary 2.7 that $D_{p_1, p_2}(G)^* \cong P(G)$.
- (ii) $2 < r < \infty$. In this case $L^r \subset L^2 \subset L^1$ and for $g \in C(G) \subset S_{q_1,q_2}$, $g = g_1 + g_2$ with norm

$$||g||_{\vee} = \inf (||g_1||_{q_1} + ||g_2||_{q_2}) = ||g||_{r'}$$

since $||g||_{q_1}$, $||g||_{q_2} \ge ||g||_{r'}$, the infimum norm can be chosen so that g_1 or $g_2 = 0$. We will show that

$$D_{p_1, p_2}(G)^* \longrightarrow P(G)$$

is continuous.

For $\mu \in D_{p_1, p_2}(G)^*$, there is a multiplier $T_{\mu} \in M(D^{p_1, p_2})$ such that

$$\mu(f * g) = T_{\mu}f * g(0) \quad \text{for any } f \in D^{p_1, p_4}(G) \text{ and } g \in C(G) \subset S_{q_1, q_4}.$$

Define ν by

 $\nu(f*g) = \mu(f*g) = T_{\mu}f*g(0) \qquad f \in D^{p_1, p_2} = L^{\tau} \subset L^2 \text{ and } g \in C(G) \subset L^2.$

Then

$$egin{aligned} egin{aligned} egin{aligne} egin{aligned} egin{aligned} egin{aligned} egin$$

Since $D_{p_1, p_2}(G)$ is dense in A(G), ν defines on all of A(G) such that

$$\|\boldsymbol{\nu}\|_{A(G)} \leq \|T_{\mu}\| = \|\mu\|_{D_{p_1,p_2}}$$

and hence ν is a pseudomeasure.

Note that for any $\nu \in P(G)$, and $f \in L^{r}(G)$, $g \in C(G) \subset L^{r'}(G)$,

$$|\mu(f * g)| = |\nu(f * g)| \leq \|\nu\|_{A(G)} \|f\|_r \|g\|_2$$

but the right hand side does not necessarily dominated by $\|\nu\|_{A(G)} \|f\|_r \|g\|_{r'}$ since $\|g\|_2 > \|g\|_{r'}$ in general. Hence we can not obtain $\|\mu\|_{Dp_1,p_1} \leq C \|\nu\|_{A(G)}$. Consequently, we obtain (cf. Larsen [15: Theorem 4.3.2])

COROLLARY 3.4. Let G be a compact abelian group. Then for $1 < p_1 \neq 2 \neq p_2 < \infty$, there is a continuous algebra isomorphism from $D_{p_1,p_2}(G)^*$ into P(G), the space of pseudomeasures.

Using the argument, mutatis mutandis, like as Theorem 3.2, we can characterize the multipliers of $L^{1}(G) \cap L^{p}(G) (1 . We give the norm of <math>D^{p}(G) = L^{1} \cap L^{p}(G)$ by

$$(3.6) |||f||| = \max (||f||_1, f||_p).$$

Then $D^p(G)$ is a Banach algebra under convolution and is a dense ideal of $L^1(G)$. In particular if p = 2, $D^2(G) = L^1 \cap L^2(G) = A^2(G)$. Let

$$S_q = \{g(x) | g(x) = g_1(x) + g_2(x) \text{ with } (g_1, g_2) \in C_0 \times L^q(G) \}$$

and the norm is defined by

$$(3.7) ||g|| = \inf \{ ||g_1'||_{\infty} + ||g_2'||_q \text{ for } g = g_1' + g_2', (g_1', g_2') \in C_0 \times L^q \}.$$

It is known that (see Liu and Wang [6: Theorem 5])

(3.8)
$$S_q^* \cong D^p(G) \qquad \left(1$$

Define the space $D_{u}(G)$ to be the set of all functions u(x) of the form:

$$u = \sum_{i=1}^{\infty} f_i^* g_i; \ f_i \in D^p(G), \ g_i \in C_c(G) \subset S_q \ \text{with} \ \sum_{i=1}^{\infty} \ |||f_i||| \ ||g_i|| < \infty$$

The space $D_p(G)$ will be endowed the norm

(3.9)
$$||| u |||_{p} = \inf \left\{ \sum_{i=1}^{\infty} |||f_{i}||| ||g_{i}||; u = \sum_{i=1}^{\infty} f_{i} * g_{i} \text{ in } D_{p}(G) \right\},$$

the infimum being taken over all $f_i \in D^p(G)$ and $g_i \in C_c(G) \subset S_q$ for the representation of u in $D_p(G)$. By the same argument of Theorem 3.2, we have the following

THEOREM 3.5. The multiplier space $M(D^p)$ is isometrically isomorphic to $D_p(G)^*$, the dual space of $D_p(G)$.

REMARK 3.6. If G is a non-compact locally compact abelian group, then by the argument, mutatis mutandis, like as Corollary 2.6 and Figà-Talamanca and Gaudry [14: Theorem 3.2], we can derive that

$$D_p(G)^* \cong M(G)$$
.

4. Isomorphisms of $A^{p}(G)$ -algebras. From [14: Theorem 3.1], it is obvious that for any multiplier $T \in M(A^{p})$, there is a unique bounded measure $\mu \in M(G)$ such that

$$Tf = \mu * f$$
 for every $f \in A^p(G)$

provided that G is non-compact locally compact abelian group. Using this representation, we have the following

THEOREM 4.1. Let G_1 and G_2 be locally compact abelian groups and ψ be an algebraic isomorphism of $A^p(G_1)$ onto $A^p(G_2)$ $1 \leq p < \infty$. Suppose that one of \hat{G}_1 and \hat{G}_2 is connected, then ψ induces a homeomorphic isomorphism τ carrying G_2 onto G_1 . Furthermore, $\psi f(x) = C\hat{x}(x) f(\tau x)$ for $f \in A_P(G_1)$ where $\hat{x}(x)$ is a fixed character on G_2 and C a constant depending only on the choice of Haar measure in G_2 .

We note that the maximal ideal space of $A^{p}(G)$ can be identified with the

character group \hat{G} (see Larsen, Liu and Wang [5: Theorem 4]). Since the isomorphism ψ of $A^{p}(G_{1})$ onto $A^{p}(G_{2})$ maps the maximal ideals of $A^{p}(G_{1})$ onto the maximal ideals of $A^{p}(G_{2})$, ψ induces to a homeomorphism carrying \hat{G}_{1} onto \hat{G}_{2} . Therefore if one of \hat{G}_{1} and \hat{G}_{2} is connected then both of \hat{G}_{1} and \hat{G}_{2} are connected. Hence G_{1} and G_{2} are non-compact and then the result of [14] is applicable.

First we show the following lemma which will be useful in the proof of theorem.

LEMMA 4.2. Let $\mu \in M(G)$. If $\mu * f = 0$ for all $f \in A^p(G)$, then $\mu = 0$.

PROOF. Suppose that K is any compact set in \hat{G} , then there exists $k \in L^1(G)$ such that $\hat{k} = 1$ on K and \hat{k} has compact support in \hat{G} , we see that $k \in A^p(G)$. Therefore for $\mu \in M(G)$,

$$\mu * k = 0$$
 implies $\hat{\mu} \cdot k = 0$.

That is $\hat{\mu}(\hat{x}) = 0$ for all $\hat{x} \in K$. Since K is an arbitrary compact set in \hat{G} , this implies $\hat{\mu}(\hat{x}) = 0$ for all $\hat{x} \in \hat{G}$. Hence $\mu = 0$, by uniqueness theorem. Q. E. D.

PROOF OF THEOREM 4.1. Take $u \in M(G_2)$. For any $f \in A^p(G)$, we define an operator T on $A^p(G_1)$ by

(4.1)
$$Tf = \psi^{-1}(u*\psi f)$$
.

It is well-defined since $A^{p}(G)$ is an ideal of M(G). Since the algebras $A^{p}(G_{1})$ and $A^{p}(G_{2})$ are semi-simple and commutative, ψ is bicontinuous (cf. Rudin [16: 4.1]) Hence T is a bounded operator on $A^{p}(G_{1})$ and

$$egin{aligned} T(f*g) &= \psi^{-1}(u*\psi(f*g)) \ &= \psi^{-1}(u*\psi f)*g \ &= Tf*g, \end{aligned}$$

T is a multiplier of $A^{p}(G_{1})$. By assumption, one of \hat{G}_{1} and \hat{G}_{2} is connected so both \hat{G}_{1} and \hat{G}_{2} are connected. Therefore G_{1} and G_{2} are non-compact, and there exists uniquely a μ in $M(G_{1})$ such that

(4.2)
$$\mu * f = Tf = \psi^{-1}(u*\psi f).$$

This μ is uniquely determined by u, we can define a mapping Φ of $M(G_2)$ into $M(G_1)$ by

(4.3)
$$\Phi u^* f = \Psi^{-1}(u^* \Psi f).$$

We shall show that Φ is an isomorphism of $M(G_2)$ onto $M(G_1)$.

Let $u, v \in M(G_2)$ and f be any element in $A^p(G_1)$. It follows from (4.3) that

$$\Phi(u*v)*f = \Psi^{-1}((u*v)*\Psi f)$$

= $\Psi^{-1}(u*\Psi(\Psi^{-1}(v*\Psi f)))$
= $\Phi u*\Psi^{-1}(v*\Psi f)$
= $(\Phi u*\Phi v)*f$.

Since f is arbitrary in $A^{p}(G_{1})$, by Lemma 4.2,

$$(4.4) \qquad \Phi'_{u} u v v = \Phi u v \Phi v$$

while the linearity of Φ is obvious, Φ is a homomorphism.

For any $\mu \in M(G_1)$, define an operator S on $A^p(G_2)$ by

$$(4.5) Sg = \psi(\mu * \Psi^{-1}g)$$

for any g in $A^{p}(G_{2})$. Then the same arguments as we have done before show that S is a multiplier of $A^{p}(G_{2})$. Hence there exists $u \in M(G_{2})$ such that

$$u*g=Sg=\Psi(\mu*\psi^{-1}g)$$
 $\psi^{-1}(u*g)=\mu*\psi^{-1}g$.

or

Since ψ is an onto isomorphism, we have

$$\psi^{-1}(u*\psi f) = \mu*f$$

for any $f \in A^{p}(G_{1})$. And so by (4.3), $\Phi u = \mu$. This shows that Φ is an onto map. If $\Phi u = 0$, then $\psi^{-1}(u * \psi f) = 0$. Hence $u * \psi f = 0$, which implies u = 0 (see Lemma 4.2) proving the one-to-one property of Φ . Therefore Φ is an isomorphism of $M(G_{2})$ onto $M(G_{1})$. Since both algebras $M(G_{1})$ and $M(G_{2})$ are semi-simple and commutative, Φ is bicontinuous. Now for function $g \in A^{p}(G_{2})$,

$$\Phi g * f = \psi^{-1}(g * \psi f) = \psi^{-1}(g) * f$$

for any $f \in A^p(G_1)$. Hence $\Phi g = \psi^{-1}g$ (Lemma 4.2) proving that $\Phi|_{A^p(G_2)} = \psi^{-1}$. Since the algebra $A^p(G_2)$ is dense in $L^1(G_2)$, $\Phi|_{L^1(G_2)}$ becomes an isomorphism of

 $L^{1}(G_{2})$ onto $L^{1}(G_{1})$ (see Rudin [16], Theorem 4.6.4). Then the result of Beurling and Helson is applicable (cf. Rudin [16: 4.7.2]) and hence the theorem is complete. Q. E. D.

REMARK. It is remarkable that the proof of Theorem 4.1 can be taken over for a general theorem on any dense subalgebras of $L^{1}(G)$ as following

THEOREM 4.3. Let G be a locally compact abelian group and S(G) be a Banach subalgebra of $L^1(G)$ with respect to some norm and it is a dense ideal of $L^1(G)$ and the maximal ideal space is identified with \hat{G} . Suppose that the multipliers of S(G) can be characterized by the bounded measures. Then the algebraic isomorphism Φ of $S(G_1)$ onto $S(G_2)$ can be reduced to a topological isomorphism τ carrying G_2 onto G_1 provided one of \hat{G}_1 and \hat{G}_2 is connected. Furthermore,

$$\Phi f(x) = C\hat{x}(x)f(\tau x) \quad \text{for} \quad f \in S(G_1)$$

where \hat{x} is a fixed character on G_2 and C a constant depending only on the choice of the Haar measure in G_2 .

By [14: Theorem 3, 2] and the above theorem, it is immediately that

COROLLARY 4.4. Let G_1 and G_2 be locally compact abelian groups and Φ be an algebraic isomorphism of $D^p(G_1)$ onto $D^p(G_2)$ $(1 , then <math>G_1$ and G_2 are topological isomorphic provided that one of \hat{G}_1 and \hat{G}_2 is connected.

5. Additional remark for the continuous linear mappings from $L^{1}(G)$ to $A^{p}(G)$. Let A be a normed algebra and B be an A-module normed linear space. Consider the normed linear space M(A, B) of all continuous linear mappings $T: A \rightarrow B$ that have the property

T(a*x) = a*Tx for all $a, x \in A$.

Evidently M(A, A) is the space of all multipliers of A, and since for any $b \in B$,

 $a \longrightarrow a * b \in B$ for all $a \in A$,

the space M(A, B) contains all of B.

Concerning the class M(A, B), there are many characterizations which are known. For examples,

H.C.LAI

- (5.1) $M(L^{1}(G), L^{1}(G)) \cong M(G);$
- (5.2) $M(L^{1}(G), L^{p}(G)) \cong L^{p}(G) \quad 1$
- (5.3) $M(A^{p}(G), L^{1}(G)) \cong M(A^{p}(G), A^{p}(G)) \qquad 1 \leq p < \infty$

 $\cong M(G)$ if G is non-compact abelian.

Liu and Rooij [7] proved the following

LEMMA 5.1. Let A be a normed algebra with bounded approximate identity $\{e_{\alpha}\}$ with $||e_{\alpha}||_{A} \leq 1$ and B a normed right A-module such that $x * e_{\alpha} \rightarrow x$ for all $x \in B$, where limit being taken over α . Then there is a natural isometry

$$(5.4) M(A, B') \cong B'$$

where B denotes the dual space of B.

Since the Lebesgue space $L^{p}(G)$ is reflexive 1 , (5.2) follows directly from this lemma.

Using this lemma, Liu and Rooij [7: Proposition 2.9] show that

$$(5.5) M(L^1(G), A^1(G)) \cong A^1(G).$$

We ask that whether the space $M(L^1(G), A^p(G))$ of operators for p>1 can be characterized as a function space. There is a slight extension of (5.5) to the case of 1 . That states as following

PROPOSITION 5.2. Let G be a locally compact abelian group. The algebra $A^{p}(G)$ is an $L^{1}(G)$ -module under convolution and

(5.6)
$$M(L^1(G), A^p(G)) \cong A^p(G)$$
 for $1 .$

The proof of this theorem can be proved likewise, mutatis mutandis, as that for Proposition 2.9 in Liu and Rooij [7]. The only task is to show that the space $L^q(\hat{G})$ (so does $C_0(G) \vee_{Hq} L^q(\hat{G})$) is also $L^1(G)$ -module where 1/p+1/q=1, 1 . Now we sketch simply the proof as follows.

PROOF OF PROPOSITION 5.2. Since $A^{p}(G)$ is an ideal of $L^{1}(G)$ and

 $||f*h||^p \leq ||f||_1 ||h||^p$ for $f \in L^1(G)$ and $h \in A^p(G)$,

 $A^{p}(G)$ is $L^{1}(G)$ -module. We will use Lemma 5.1 to show the identity (5.6).

Let $\{e_{\alpha}\}$ be an approximate identity for $L^{1}(G)$ such that $||e_{\alpha}||_{1} \leq 1$ for all α . It is clear that $C_{0}(G)$ is a normed module over $L^{1}(G)$. For $L^{q}(\widehat{G})$, we define

$$f riangle g = \widehat{f} \cdot g$$
 for $f \in L^1(G)$ and $g \in L^q(\widehat{G})$.

Then we have

(5.7)
$$\|f \bigtriangleup g\|_q = \|\hat{f} \cdot g\|_q \le \|f\|_1 \|g\|_q$$

On the other hand,

(5.8)
$$\lim_{\alpha} (e_{\alpha} \bigtriangleup g) = \lim_{\alpha} \hat{e}_{\alpha} \cdot g = g \quad \text{for all } g \in L^{q}(\widehat{G}).$$

Indeed, for $1 , the Fourier transforms <math>\widehat{L}^p(G)$ is dense in $L^q(\widehat{G})$ and

$$\|\hat{\hat{e}}_{\alpha}\hat{h} - \hat{h}\|_{q} \leq \|\tilde{e}_{\alpha} \star h - h\|_{p} \longrightarrow 0 \quad \text{for all } h \in L^{p}(G)$$

i.e. $\lim_{\alpha} \hat{\tilde{e}}_{\alpha} \hat{h} = \lim_{\alpha} \hat{\tilde{e}}_{\alpha} \hat{*} h = \hat{h}$ for all $h \in L^{p}(G)$,

implies that (5.8) holds. Hence $L^{q}(\widehat{G})$ is an $L^{1}(G)$ -module by (5.7) and (5.8).

Next we show that H_q , the closure of $\{(\tilde{h}, -\hat{h}) \mid h \in A^1(G)\}$ in $C_0(G) \times L^q(\hat{G})$, is an $L^1(G)$ -module, it is immediately that

$$\begin{split} f*(\widetilde{h}, \ -\widehat{h}) &= ((\widetilde{f}*h)^{\widetilde{}}, \ -f\Delta\widehat{h}) \\ &= ((\widetilde{f}*h)^{\widetilde{}}, \ -(\widetilde{f}*h)^{\ast}) \in H_q \,. \end{split}$$

Consequently, $C_0(G) \vee_{Hq} L^q(\widehat{G})$ is $L^1(G)$ -module and

$$\lim_{\alpha} e_{\alpha} * u = u \quad \text{for all } u \in C_0(G) \vee_{Hq} L^q(\widehat{G}).$$

Therefore

$$M(L^1(G), (C_0(G) \lor {}_{Hq}L^q(G))^*) \cong (C_0(G) \lor {}_{Hq}L^q(\widehat{G}))^* \cong A^p(G)$$

or

$$M(L^1(G), A^p(G)) \cong A^p(G) \quad \text{for } 1$$

REMARK. For p > 2. the characterization of $M(L^1(G), A^p(G))$ is an open question.

REFERENCES

 B. BRAINERD AND R. E. EDWARDS, Linear opeators which commute with translations I, J. Austr. Math. Soc., 6(1966), 289-327.

- [2] G. I. GAUDRY, Quasimeasures and operators commuting with convolution, and multipliers of type (p, q), Pacific J. Math., 18(1966), 461-476 and 477-488.
- [3] H. C. LAI, On some properties of $A^p(G)$ -algebras, Proc. Jap. Acad., 45(1969), 572–576.
- [4] H. C. LAI. On the category of $L^1 \cap L^p(G)$ in $A^q(G)$, Proc. Iap. Acad., 45(1969), 577-581.
- [5] R. LARSEN, T. S. LIU AND J. K. WANG, On the functions with Fourier transforms in L^p, Michigan Math. J., 11(1964), 369-378.
- [6] T. S. LIU AND J. K. WANG, Sums and intersections of Lebesgue spaces, Math. Scand, 23(1968), 241-251.
- [7] T. S. LIU AND A. VAN ROOIJ, Sums and intersections of normed linear spaces. Math. Nach., 42(1969), 29-42.
- [8] A. FIGA-TALAMANCA, Translation invariant operators in L^p, Duke Math. J., 32(1965), 495-501.
- [9] A. FIGÀ-TALAMANCA, Multipliers of p-integrable functions, Bull. Amer. Math. Soc., 70(1964), 666–669.
- [10] A. FIGA-TALAMANCA AND G. I. GAUDRY, Density and representation theorems for multipliers of type (p, q), J. Austr. Math. Soc., 7(1967), 1-6.
- [11] M. A. RIEFFEL, Multipliers and tensor products of L^p spaces of locally compact groups, Studia Math., 33(1969), 71–82.
- [12] R. S. STRICHARTZ, Isomorphisms of group algebras, Proc. Amer. Math. Soc., 17(1966), 858–862.
- [13] J.K. WANG, Multipliers of commutative Banach algebras, Pacific J. Math., 11(1961), 1131-1149.
- [14] A. FIGA-TALAMANCA AND G. I. GAUDRY, Multipliers and sets of uniqueness of L^p, Michigan Math. J., 17(1970), 179–191.
- [15] R. LARSEN, The multiplier problem, Lecture Note in Mathematics, 105, Springer 1969.
- [16] W. RUDIN, "Fourier Analysis on Groups", Interscience Publishers, New York 1962.

MATHEMATICAL INSTITUTE TÔHOKU UNIVERSITY SENDAI, JAPAN AND INST.TUTE OF MATHEMATICS NATIONAL TSING HUA UNIVERSITY TAIWAN, REPUBLIC OF CHINA