ROTATION OF PLANE QUASICONFORMAL MAPPINGS ${ }^{(1)}$

G. D. Anderson and M. K. Vamanamurthy

(Received Jan. 16, 1971)

1. Introduction. 1.1. Summary of results. The main purpose of this paper is to exhibit several quasiconformal mappings in space obtained by rotating important plane quasiconformal mappings. It is well known that, in general, such mappings need not be quasiconformal in space, even if the plane mapping is conformal. As a simple example, $w=f(z)=z^{2}$ maps the half plane $\operatorname{Re} z>0$ conformally onto the w-plane minus the ray $\operatorname{Re} w \leqq 0, \operatorname{Im} w=0$, while the space mapping F obtained by rotating f about the real axis fails to be quasiconformal because the dilatation $K(F)=\sup _{(\operatorname{Re} z>0)}|z| /(\operatorname{Re} z)$ is infinite. A simple sufficient condition is herein provided ($\S 1.3$) that a space mapping obtained by rotation from a plane quasiconformal mapping be quasiconformal, and in each of our rotation theorems this condition is shown to hold. In one case we show that the space mapping is even extremal, given a certain very natural assumption.

Next, by a configuration is meant a plane domain Ω bounded by m disjoint Jordan curves with n_{1} distinguished interior points and n_{2} distinguished boundary points. When Ω is simply-connected (i. e., $m=1$), there are three types of configuration with exactly one conformal invariant (Cf. [1], p. 88), namely, those having (i) four distinguished boundary points $a_{1}, a_{2}, a_{3}, a_{4}\left(n_{1}=0, n_{2}=4\right)$, (ii) two distinguished interior points $a_{1}, a_{2}\left(n_{1}=2, n_{2}=0\right)$, and (iii) one interior point a_{1} and two boundary points a_{2}, a_{3} distinguished ($n_{1}=1, n_{2}=2$). Conformal invariants in these cases are, respectively, (i) modulus of the quadrilateral $\Omega\left(a_{1}, a_{2}, a_{3}, a_{4}\right)$, (ii) hyperbolic distance between a_{1} and a_{2} with respect to Ω, (iii) harmonic measure of one of the boundary $\operatorname{arcs} a_{2} a_{3}$ at a_{1} with respect to Ω. Now suppose Ω is a half plane, and consider two configurations of the same type. In each case we show that if the extremal quasiconformal mapping of least dilatation of the first configuration onto the second is rotated about the boundary line, then the resulting space mapping is quasiconformal.

We begin by studying f_{0} of smallest dilatation which takes \bar{R}^{2} onto itself with $f_{0}\left(a_{j}\right)=b_{j}, j=1,2,3,4$, where a_{j} and b_{j} are a preassigned pair of positively ordered quadruples of points on the real axis. For a particular choice of the a_{j} and b_{j} this

[^0]mapping reduces to the extremal distor'ion mapping which shows that the linear distortion estimates of Hersch and Pfluger ([11], Cf. [15]) are best possible. The possibility of rotating the extremal distortion mapping to obtain a quasiconformal mapping in space was first suggested by a statement without proof in a paper of Syčev [19]. We show that rotation of this mapping yields, in fact, an extremal space mapping. The proof of this result makes no use of the properties of elliptic functions-in fact, only the Riemann Mapping Theorem and the Schwarz Lemma are needed. In § 2 we observe that the rotated mapping gives some information concerning estimates of linear distortion in space ${ }^{(2)}$. As a corollary of our first theorem we_derive an interesting monotone property for the moduli of Grötzsch rings.

In § 3 we consider the extremal mapping of a half plane with two distinguished interior points onto another such configuration. After finding the dilatation of the space mapping obtained by rotation about the boundary line, we employ the quasiconformality of this mapping to derive inequalities for harmonic measure.

Finally, in §4, we study the extremal mapping f_{0} of a half plane with one distinguished interior point and two distinguished boundary points onto another configuration of this type. We show that the space mapping F_{0} obtained by rotation about the boundary line is $K\left(f_{0}\right)^{3}$-quasiconformal.
1.2. Definitions and notation. Suppose that f is a diffeomorphism of an n-space domain Ω_{1} onto Ω_{2}. Then for $P \in \Omega_{1}$ the differential $d f=d f(P)$ is affine and maps the unit ball onto an ellipsoid E. The lengths of the n semiaxes of E are called the stretchings of f at P. Let $L_{n}=L_{n}(P)$ and $l_{n}=l_{n}(P)$ denote the maximum and minimum stretchings of f at P. Then we define the dilatation of f by

$$
\begin{equation*}
K(f)=\sup _{P \in \mathbb{Q}_{1}} \frac{L_{n}(P)}{l_{n}(P)} \tag{1}
\end{equation*}
$$

If this dilatation is finite we say that f is a differentiable quasiconformal mapping of Ω_{1} onto Ω_{2}. If $K(f) \leqq K<\infty$, then we say that f is a differentiable K-quasiconformal mapping of Ω_{1} onto Ω_{2}.

This definition may be generalized in the following way to include an arbitrary homeomorphism f of Ω_{1} onto Ω_{2}. If f is differentiable with Jacobian $J>0$ a.e. in Ω_{1} and if f is absolutely continuous on lines (Cf. [9]), then we define $K(f)$ by taking the essential supremum in (1); otherwise we let $K(f)=\infty$. If this dilatation, as redefined, is finite, the mapping is said to be quasiconformal, and if $K(f) \leqq K<\infty$ it is called K-quasiconformal. The quasiconformal mappings

[^1]considered in this paper will be differentiable except at a finite number of points or on a finite number of smooth curves.

Next, we shall find it convenient in some of our proofs to make use of the hyperbolic density [17]. Suppose that G is a simply-connected domain in the z-plane, $z=x+i y$, with nondegenerate boundary, and that $w=g(z), w=u+i v$, is a conformal mapping of G onto the half plane $v>0$. Then the hyperbolic density of G is defined by

$$
\begin{equation*}
\rho(z)=\rho(z, G)=\frac{\left|g^{\prime}(z)\right|}{2 v}, \tag{2}
\end{equation*}
$$

and the density ρ is independent of the conformal mapping g. The hyperbolic density satisfies the transformation law

$$
\begin{equation*}
\rho(z, G)=\rho\left(w, G^{\prime}\left|\frac{d w}{d z}\right|\right. \tag{3}
\end{equation*}
$$

if $w=w(z)$ is a conformal mapping of G onto G^{\prime}. If G_{1} and G_{2} are two simplyconnected domains with nondegenerate boundaries such that $G_{1}<G_{2}$ (i. e., G_{1} is a proper subset of G_{2}), then it follows by the Schwarz Lemma that

$$
\begin{equation*}
\rho\left(z, G_{1}\right)>\rho\left(z, G_{2}\right) \text { for } z \in G_{1} \tag{4}
\end{equation*}
$$

If G is such a domain and if a_{1} and a_{2} are points in G, then the hyperbolic distance from a_{1} to a_{2}, with respect to G, is

$$
h=h\left(a_{1}, a_{2}\right)=\inf _{\gamma} \int_{\gamma} \rho(z)|d z|
$$

where the infimum is taken over all arcs joining a_{1} and a_{2} in G.
Finally, let G be a Jordan domain and γ a boundary arc. By the harmonic measure of γ at z with respect to G is meant the unique function $\omega=\omega(\gamma, z)$ which is bounded and harmonic in G, and which has boundary values 1 at all interior points of $\boldsymbol{\gamma}$, and 0 at all points which are interior to the complementary arc.

1. 3. Rotation of plane mappings. Suppose that G_{1} and G_{2} are domains in the $x_{1} y_{1}$ - and $x_{2} y_{2}$-planes which are symmetric with respect to the x_{1} - and x_{2}-axes, respectively. Let $x_{2}+i y_{2}=f\left(x_{1}+i y_{1}\right)$ be a differentiable K-quasiconformal mapping of G_{1} onto G_{2} such that $f\left(x_{1}-i y_{1}\right)=\overline{f\left(x_{1}+i y_{1}\right)}$ for each point $x_{1}+i y_{1} \in G_{1}$. We may assume that $y_{2}>0$ for $y_{1}>0$. Let $P=x_{1}+i y_{1}, y_{1} \geqslant 0$, be a point in G_{1}, and let $L_{2}=L_{2}(P)$ and $l_{2}=l_{2}(P)$ be the maximum and minimum stretchings
of f at P. Then $L_{2} / l_{2} \leqq K$.
Next, let Ω_{1} and Ω_{2} be the domains in space obtained by rotating G_{1} and G_{2} about the x_{1} - and x_{2}-axes, respectively, and let $\left(r, \theta, x_{1}\right)$ and $\left(s, \phi, x_{2}\right)$ be cylindrical coordinates about the x_{1} - and x_{2}-axes, respectively. Then the mapping given by $F\left(r, \theta, x_{1}\right)=\left(s, \phi, x_{2}\right)$, where

$$
x_{2}+i s=f\left(x_{1}+i r\right), \phi=\theta,
$$

is a diffeomorphism of Ω_{1} onto Ω_{2}.
Now let P be a point in Ω_{1}. By symmetry we may assume that P lies in G_{1} and that $P=x_{1}+i y_{1}, y_{1} \geqslant 0$. The maximum and minimum stretchings of F at P are given by

$$
\left\{\begin{array}{l}
L_{3}=\max \left(L_{2}, y_{2} / y_{1}\right), l_{3}=\min \left(l_{2}, y_{2} / y_{1}\right) \text { for } y_{1}>0 \tag{5}\\
L_{3}=L_{2} \text { and } l_{3}=l_{2} \text { for } y_{1}=0
\end{array}\right.
$$

Thus a sufficient condition for F to be a differentiable quasiconformal mapping is that there exist $m \leqq 1 \leqq M$ such that

$$
\begin{equation*}
m l_{2} \leqq y_{2} / y_{1} \leqq M L_{2} \text { for } y_{1}>0 \tag{6}
\end{equation*}
$$

in which case

$$
\begin{equation*}
K(f) \leqq K(F) \leqq \frac{M}{m} K(f) \tag{7}
\end{equation*}
$$

Finally, suppose that $m=1=M$ in (6). Then it follows from (7) that $K(F)=K(f)$. If we make the natural assumption that an extremal mapping of Ω_{1} onto Ω_{2} must take a plane section of Ω_{1} containing the real axis onto a plane section of Ω_{2} containing the real axis, then by (5) we may conclude that F is extremal. This is the case in Theorem 1 of this paper.
2. Rotation of the extremal distortion mapping. For $j=1,2,3,4$, let a_{j} and b_{j} denote a pair of positively ordered quadruples of points on the real axis in \bar{R}^{2}. Let $H_{1}=H\left(a_{1}, a_{2}, a_{3}, a_{4}\right)$ and $H_{2}=H\left(b_{1}, b_{2}, b_{3}, b_{4}\right)$ be the quadrilaterals formed by the upper half plane H with the vertices a_{j} and b_{j}, respectively. If f is any quasiconformal mapping of H_{1} onto H_{2} with vertices corresponding, then $\bmod H_{2} \leqq K(f) \bmod H_{1}\left(\right.$ See [15]). If we take $K=\left(\bmod H_{2}\right) /\left(\bmod H_{1}\right)$, then there exists a unique extremal mapping f_{0} of \bar{R}^{2} onto itself such that $f_{0}\left(a_{j}\right)=b_{j}, j$ $=1,2,3,4$, and $K\left(f_{0}\right)=K$.

We now briefly describe f_{0}. First, by performing preliminary Möbius transfor-
mations of \bar{R}^{2} onto itself we may assume that the given pair of quadruples are 0 , $k_{1}, 1 / k_{1}, \infty$ and $0, k_{2}, 1 / k_{2}, \infty$. Since $K(f)=K\left(f^{-1}\right)$ we may assume that $0<k_{1}$ $\leqq k_{2}<1$. If $k_{1}=k_{2}$ there will be nothing to prove; hence we take $0<k_{1}<k_{2}<1$. Then for $j=1,2$, let $z_{j}=x_{j}+i y_{j}$ and $w_{j}=u_{j}+i v_{j}$, and let

$$
K_{j}=K\left(k_{j}\right), K_{j}^{\prime}=K^{\prime}\left(k_{j}\right)=K\left(k_{j}^{\prime}\right),
$$

where, for $0<k<1, K(k)$ and $K^{\prime}(k)$ are the complete elliptic integrals ${ }^{(3)}$ defined by

$$
\begin{align*}
& K=K(k)=\int_{0}^{1}\left[\left(1-t^{2}\right)\left(1-k^{2} t^{2}\right)\right]^{-\frac{1}{2}} d t, \tag{8}\\
& K^{\prime}=K^{\prime}(k)=K\left(k^{\prime}\right), k^{\prime}=\left(1-k^{2}\right)^{-}
\end{align*}
$$

Next, let $z_{j}=g_{j}\left(w_{j}\right)$ map the rectangle $R_{j}: \quad 0<u_{j}<K_{j}, 0<v_{j}<K_{j}^{\prime}$ conformally onto the quadrilateral H_{j} with vertices corresponding ${ }^{(4)}$. Finally, the affine mapping

$$
u_{2}+i v_{2}=\varphi\left(u_{1}+i v_{1}\right)=\frac{K_{2}}{K_{1}} u_{1}+i \frac{K_{2}^{\prime}}{K_{1}^{\prime}} v_{1}
$$

carries R_{1} onto R_{2}. Then $f_{0}=g_{2} \circ \varphi \circ g_{1}{ }^{-1}$ is the required extremal mapping, after being extended by reflection in the real axis. This mapping is differentiable at all points of \bar{R}^{2} but $a_{j}, j=1,2,3,4$.

To calculate the dilatation of f_{0}, let P_{1} be any point in the upper half plane Im $z_{1}>0$, and let $P_{2}=f_{0}\left(P_{1}\right), Q_{1}=g_{1}^{-1}\left(P_{1}\right)$, and $Q_{2}=g_{2}^{-1}\left(P_{2}\right)$. The maximum and minimum stretchings $L_{2}\left(P_{1}\right)$ and $l_{2}\left(P_{1}\right)$ of f_{0} at P_{1} are

$$
\begin{equation*}
L_{2}=\frac{K_{2}}{K_{1}} \frac{\left|g_{2}^{\prime}\left(Q_{2}\right)\right|}{\left|g_{1}^{\prime}\left(Q_{1}\right)\right|}, l_{2}=\frac{K_{2}^{\prime}}{K_{1}^{\prime}} \frac{\left|g_{2}^{\prime}\left(Q_{2}\right)\right|}{\left|g_{1}^{\prime}\left(Q_{1}\right)\right|}, \tag{9}
\end{equation*}
$$

whence, because of symmetry and the removability of analytic arcs for quasiconformal mappings [15],

$$
\begin{equation*}
K=K\left(f_{0}\right)=\frac{L_{2}}{l_{2}}=\frac{K_{1}^{\prime} K_{2}}{K_{1} K_{2}^{\prime}} . \tag{10}
\end{equation*}
$$

[^2]Next, for $0<k<1$, let $R(G, n, k)$ denote the Grötzsch ring in \bar{R}^{n} whose boundary components are the segment $[0, k]$ of the x_{1}-axis and the sphere S^{n-1}. Let

$$
\begin{equation*}
m(n, k)=\bmod R(G, n, k) . \tag{11}
\end{equation*}
$$

It is well known [15] that

$$
\begin{equation*}
m(2, k)=\frac{\pi K^{\prime}(k)}{2 K(k)} \tag{12}
\end{equation*}
$$

where $K(k)$ and $K^{\prime}(k)$ are the elliptic integrals defined in (8). If $n=2$, then by (10) and (11) obviously $K=m\left(2, k_{1}\right) / m\left(2, k_{2}\right)$. Then f_{0} is the extremal distortion mapping of $R\left(G, 2, k_{1}\right)$ onto $R\left(G, 2, k_{2}\right)$. That is,

$$
\max \left\{|f(z)|:|z|=k_{1}\right\} \leqq k_{2}
$$

where f is any K-quasiconformal mapping of the unit disk onto itself with $f(0)=0$, and f_{0} is the unique mapping of this class such that $f_{0}\left(k_{1}, 0\right)=\left(k_{2}, 0\right)$ and $K\left(f_{0}\right)$ $=K($ See [15]).

In order to prove that the space mapping F_{0} obtained by rotating f_{0} about the real axis is also quasiconformal, we shall employ the following lemma, which is an application of the Schwarz Lemma.

Lemma 1. For $j=1,2$, let R_{j} be the 'rectangle $0<u_{j}<p_{j}, 0<v_{j}<q_{j}$, where $0<p_{1} \leqq p_{2}<\infty, 0<q_{2} \leqq q_{1}<\infty$, and let

$$
w_{2}=u_{2}+i v_{2}=\phi\left(w_{1}\right)=\frac{p_{2}}{p_{1}} u_{1}+i \frac{q_{2}}{q_{1}} v_{1}
$$

be the natural affine mapping of R_{1} onto R_{2}. If $Q_{1} \in R_{1}$ and $Q_{2}=\varphi\left(Q_{1}\right) \in R_{2}$, and if $\rho\left(Q_{j}, R_{j}\right)$ is the hyperbolic density of R_{j} at Q_{j}, then

$$
\begin{equation*}
\frac{p_{1}}{p_{2}} \leqq \frac{\rho\left(Q_{2}, R_{2}\right)}{\rho\left(Q_{1}, R_{1}\right)} \leqq \frac{q_{1}}{q_{2}} \tag{13}
\end{equation*}
$$

with equality if and only if R_{1} and R_{2} are similar.
Proof. We prove only the left side of (13), the right side being proved similarly. Because of the transformation law (3), the equality is obvious when the rectangles are similar. Otherwise, because of (3), it is sufficient to prove the
lemma under the assumption that $p_{1}=p_{2}=1$ and $0<q_{2}<q_{1}<\infty$. Then the left side of (13) reduces to

$$
\begin{equation*}
\rho\left(Q_{1}, R_{1}\right)<\rho\left(Q_{2}, R_{2}\right) . \tag{14}
\end{equation*}
$$

To prove (14), identify the w_{1} - and w_{2}-planes so that the corresponding axes coincide. Then clearly $R_{2}<R_{1}$ and Q_{1} lies vertically above Q_{2}. Since

$$
\left|Q_{1}-Q_{2}\right|=v_{1}\left(1-\frac{q_{2}}{q_{1}}\right)<q_{1}\left(1-\frac{q_{2}}{q_{1}}\right)=q_{1}-q_{2}
$$

it is clear that $R_{2}{ }^{\prime}<R_{1}$, where $R_{2}{ }^{\prime}$ denotes the translate of R_{2} by an amount $\left|Q_{1}-Q_{2}\right|$. Hence by the Schwarz Lemma in terms of hyperbolic densities (4), we have

$$
\rho\left(Q_{1}, R_{1}\right)<\rho\left(Q_{1}, R_{2}^{\prime}\right)=\rho\left(Q_{2}, R_{2}\right) .
$$

We now prove that the space mapping F_{0} is quasiconformal. Under the assumption stated at the end of $\S 1.3$ it is extremal.

ThEOREM 1. For $j=1,2,3,4$, let a_{j} and b_{s} be a pair of positively ordered quadruples of points on the real axis in \bar{R}^{2}. Let f_{0} be the extremal mapping of least dilatation from \bar{R}^{2} onto itself with $f_{0}\left(a_{j}\right)=b_{j}$, and let $K\left(f_{0}\right)=K$. If F_{0} is the mapping of \bar{R}^{3} onto itself obtained by rotating f_{0} about the real axis in \bar{R}^{2}, then F_{0} is an extremal quasiconformal mapping of \bar{R}^{3} onto itself with $K\left(F_{0}\right)=K$.

Proof. As already remarked, we may assume that the given pair of quadruples are $0, k_{1}, 1 / k_{1}, \infty$ and $0, k_{2}, 1 / k_{2}, \infty$, with $0<k_{1}<k_{2}<1$. Since the mappings obtained by rotating the preliminary Möbius transformations about the real axis are again Möbius in space, this normalization does not affect the dilatations of the space mapping F_{0}.

Now let P_{1} be any point in $\bar{R}^{3}-\left\{0, k_{1}, 1 / k_{1}, \infty\right\}$. By symmetry we may assume that $P_{1}=\left(x_{1}, y_{1}, 0\right), y_{1} \geqq 0$. The three strecthings of F_{0} at P_{1} are easily seen to be

$$
\left\{\begin{array}{l}
L_{2}, l_{2}, y_{2} / y_{1} \text { for } y_{1}>0 \\
L_{2}, l_{2}, l_{2} \text { for } y_{1}=0 ; 0<x_{1}<k_{1} \text { or } x_{1}>1 / k_{1} \\
L_{2}, L_{2}, l_{2} \text { for } y_{1}=0 ; x_{1}<0 \text { or } k_{1}<x_{1}<1 / k_{1}
\end{array}\right.
$$

and it will follow that $L_{3}=L_{2}$ and $l_{3}=l_{2}$ at P_{1} if

$$
l_{2}<\frac{y_{2}}{y_{1}}<L_{2} \text { for } y_{1}>0
$$

But this follows immediately from Lemma 1 , in view of (2) and (9).
From (9) and (10) it now follows that $L_{3} / l_{3}=K$ at each point of \bar{R}^{3} $-\left\{0, k_{1}, 1 / k_{1}, \infty\right\}$. We conclude that F_{0} is a differentiable quasiconformal mapping of $\bar{R}^{3}-\left\{0, k_{1}, 1 / k_{1}, \infty\right\}$ onto $\bar{R}^{3}-\left\{0, k_{2}, 1 / k_{2}, \infty\right\}$ with $K\left(F_{0}\right)=K$, and, by removing the singularities, that F_{0} is a (generalized) quasiconformal mapping of \bar{R}^{3} onto itself with the same dilatation ${ }^{(5)}$. Under the assumption at the end of $\S 1.3$ we may conclude that F_{0} is extremal.

REMARK. Suppose that f is a K-quasiconformal mapping of the unit ball onto itself with $f(0)=0$. Then it is known ([7], [12], Cf. [18]) that

$$
\begin{equation*}
|f(P)| \leqq c^{1-1 / K}|P|^{1 / K} \text { for }|P|<1 \tag{15}
\end{equation*}
$$

where c is a constant, $4 \leqq c \leqq 4 \cdot 2^{1 / 2} e^{\pi / 4}$. Now the mapping F_{0} in Theorem 1 is a K-quasiconformal mapping of the unit ball onto itself with $F_{0}(0)=0$ and $F_{0}\left(k_{1}, 0,0\right)$ $=\left(k_{2}, 0,0\right)$. Since, as stated in [15],

$$
\lim _{k_{1} \rightarrow 0} \frac{k_{2}}{k_{1}^{1 / K}}=4^{1-1 / K}
$$

it follows that the constant c in (15) cannot be replaced by a number less than 4 .
Next, let $m(n, k)$ be as in (11). The following result on the monotoneity of $m(3, k) / m(2, k)$ is an immediate consequence of Theorem 1 .

Corollary 1. For $0<k<1, m(3, k) / m(2, k)$ is a monotone increasing function of k.

Proof. Let $0<k_{1}<k_{2}<1$ and $K=m\left(2, k_{1}\right) / m\left(2, k_{2}\right)$. Then $1<K<\infty$. Let f_{0} and F_{0} be the corresponding mappings in Theorem 1 . Since F_{0} is K-quasiconformal and maps the Grötzsch ring $R\left(G, 3, k_{1}\right)$ onto the ring $R\left(G, 3, k_{2}\right)$, it follows from [8] (Cf. also (41) in [3]) that

$$
m\left(3, k_{1}\right) \leqq K m\left(3, k_{2}\right)
$$

whence

[^3]$$
m\left(3, k_{1}\right) / m\left(2, k_{1}\right) \leqq m\left(3, k_{2}\right) / m\left(2, k_{2}\right)
$$
as asserted.
3. Rotation of the extremal mapping for the case of two interior points. For $j=1,2$ let a_{j} and b_{j} be two points in the half plane $\operatorname{Re} z_{j}>0$. If f is any quasiconformal mapping of $\operatorname{Re} z_{1}>0$ onto $\operatorname{Re} z_{2}>0$ with $f\left(a_{1}\right)=a_{2}$ and $f\left(b_{1}\right)=b_{2}$, then $\mu\left(e^{-2 h_{1}}\right) \leqq K(f) \mu\left(e^{-2 h_{2}}\right)$, where $h_{j}=h\left(a_{j}, b_{j}\right)$ denotes the hyperbolic distance between a_{j} and b_{j} with respect to the half plane $\operatorname{Re} z_{j}>0$, and $\mu(k)$ $=m(2, k)$ as in (12) (See [13]). If we set $K=\mu\left(e^{-2 h h_{1}}\right) / \mu\left(e^{-2 h_{2}}\right)$, then there exists a unique extremal mapping f_{0} of this class satisfying $K\left(f_{0}\right)=K$.

We briefly describe f_{0}. First, by performing preliminary Möbius transformations of \bar{R}^{2} onto itself we may assume that the given pairs of points are $k_{1}^{1 / 2}, k_{1}^{-1 / 2}$ and $k_{2}{ }^{1 / 2}, k_{2}{ }^{-1 / 2}$, and there is no loss in generality in assuming that $0<k_{1}<k_{2}<1$. It is easily checked (Cf. [13]) that $k_{j}=e^{-2 h j}, j=1,2$.

Now for $j=1,2$, let $z_{j}=x_{j}+i y_{j}$ and $w_{j}=u_{j}+i v_{j}$. Then (See $[6 ; 14]$)

$$
z_{j}=g_{j}\left(w_{j}\right)=k_{j}^{\frac{1}{2}} \operatorname{sn}\left(w_{j}, k_{j}\right)
$$

maps the rectangle $R_{j}: 0<u_{j}<K_{j}, 0<v_{j}<K_{j}^{\prime}$ conformally onto the first quadrant $x_{j}>0, y_{j}>0$ of the z_{j}-plane, with

$$
g_{j}(0)=0, g_{j}\left(K_{j}\right)=k_{j}^{\frac{1}{2}}, g_{j}\left(K_{j}+i K_{j}^{\prime}\right)=k_{j}^{-\frac{1}{2}}, g_{j}\left(i K_{j}^{\prime}\right)=\infty .
$$

Let φ be the natural affine mapping of R_{1} onto R_{2}. Then $f_{0}=g_{2} \circ \varphi \circ g_{1}^{-1}$ is the required extremal mapping, after being continued by reflection in the real axis. We note that the stretchings of f_{0} have the same form as in (9), hence that $K=K\left(f_{0}\right)$ $=\left(K_{1}^{\prime} K_{2}\right) /\left(K_{1} K_{2}^{\prime}\right)$ as in (10).

We now prove that the space mapping F_{0} obtained by rotating f_{0} about the imaginary axis is also quasiconformal, and we determine its dilatation.

Theorem 2. For $j=1,2$ let a_{j} and b_{j} be two points in the half plane Re $z_{j}>0$. Let f_{0} be the extremal mapping of least dilatation from the right half plane onto itself with $f_{0}\left(a_{1}\right)=a_{2}$ and $f_{0}\left(b_{1}\right)=b_{2}$. If F_{0} is the mapping of \bar{R}^{3} onto itself obtained by rotating f_{0} about the imaginary axis in \bar{R}^{2}, then F_{0} is a quasiconformal mapping of \bar{R}^{3} onto itself with $K\left(F_{0}\right)=\left(k_{1}^{\prime} K_{1}^{\prime}\right)^{2} /\left(k_{2}^{\prime} K_{2}^{\prime}\right)^{2}$, where $k_{j}=e^{-2 h,}$, $h_{j}=h\left(a_{j}, b_{j}\right)$ being the hyperbolic distance between the points a_{j} and b_{j} with respect to the half plane Re $z_{j}>0$.

Proof. If the mapping g_{j} is reflected in the segment $u_{j}=0,0<v_{j}<K_{j}^{\prime}$, then g_{j} maps the rectangle $\left|u_{j}\right|<K_{j}, 0<v_{j}<K_{j}^{\prime}$ conformally onto the upper half
plane $\operatorname{Im} z_{j}>0$, while the extension of φ is still affine. It follows by (2),(9), and Lemma 1 that for $\operatorname{Im} z_{1}>0$,

$$
\begin{equation*}
l_{2}<\frac{y_{2}}{y_{1}}<L_{2} \tag{16}
\end{equation*}
$$

Now let P_{1} be any point in $\bar{R}^{3}-\{0, \infty\}-\mathcal{C}_{1}^{\prime} \cup \mathcal{C}_{1}^{\prime \prime}$, where \mathcal{C}_{j}^{\prime} and $\mathcal{C}_{j}^{\prime \prime}$ will here represent the circles obtained by rotating the points $k_{j}{ }^{3 / 2}$ and $k_{j}^{-1 / 2}$, respectively, about the imaginary axis. By symmetry we may assume that $P_{1}=\left(x_{1}, y_{1}, 0\right), x_{1} \geqslant 0$, $y_{1} \geqslant 0$. Then by [5, p.41; 6, \#125.01]
we get

$$
\begin{equation*}
\frac{x_{2}}{x_{1}} \div L_{2}=\frac{K_{1}}{K_{2}} \frac{s_{2} D_{2}}{s_{1} D_{1}}\left[\frac{1-s_{1}^{2} D_{1}^{2}}{1-s_{2}^{2} D_{2}^{2}}\right]^{\frac{1}{2}}\left[\frac{D_{1}^{2}-k_{1}^{2} s_{1}^{2}}{D_{2}^{2}-k_{2}^{2} s_{2}^{2}}\right]^{\frac{1}{2}} \tag{17}
\end{equation*}
$$

where

$$
\begin{align*}
& s_{j}=\operatorname{sn}\left(u_{j}, k_{j}\right), \quad c_{j}=\operatorname{cn}\left(u_{j}, k_{j}\right), \quad d_{j}=\operatorname{dn}\left(u_{j}, k_{j}\right), \tag{18}\\
& S_{j}=\operatorname{sn}\left(v_{j}, k_{j}^{\prime}\right), \quad C_{j}=c n\left(v_{j}, k_{j}^{\prime}\right), \quad D_{j}=d n\left(v_{j}, k_{j}^{\prime}\right) .
\end{align*}
$$

It is easily checked, using (17) and $[5, \mathrm{p} .9 ; 6, \# 121.00]$ that the stretchings of F_{0} at P_{1} are
(19) $\left\{\begin{array}{l}L_{2}, l_{2}, \frac{x_{2}}{x_{1}} \quad \text { for } x_{1}>0, y_{1}>0 \\ L_{2}, l_{2}, L_{2} \quad \text { for } x_{1}=0, y_{1}>0, \\ L_{2}, l_{2}, \frac{x_{2}}{x_{1}}=\left[\frac{c_{1} d_{1}}{s_{1}} \div \frac{c_{2} d_{2}}{s_{2}}\right] \frac{K_{1}}{K_{2}} L_{2} \text { for } y_{1}=0 ; 0<x_{1}<k_{1}^{\frac{1}{2}} \text { or } x_{1}>k_{1}^{-\frac{1}{2}}, \\ L_{2}, l_{2}, \frac{x_{2}}{x_{1}}=\left[\frac{S_{1} C_{1}}{D_{1}} \div \frac{S_{2} C_{2}}{D_{2}}\right] \frac{k_{1}{ }^{\prime 2} K_{1}}{k_{2}^{\prime 2} K_{2}} L_{2} \text { for } y_{1}=0 ; k_{1}^{\frac{1}{2}}<x_{1}<k_{1}{ }^{-\frac{1}{2}} .\end{array}\right.$

Now by [5, p.38; 6, \#125.01]

$$
\begin{equation*}
\frac{x_{2}}{x_{1}} \div \frac{y_{2}}{y_{1}}=\left[\frac{c_{1} d_{1}}{s_{1}} \div \frac{c_{2} d_{2}}{s_{2}}\right]\left[\frac{S_{1} C_{1}}{D_{1}} \div \frac{S_{2} C_{2}}{D_{2}}\right] \tag{20}
\end{equation*}
$$

while the inequalities of [4] give the sharp bounds

$$
\begin{equation*}
\frac{K_{2}}{K_{1}} \leqq \frac{c_{1} d_{1}}{s_{1}} \div \frac{c_{2} d_{2}}{s_{2}} \leqq \frac{k_{1}{ }^{\prime 2} K_{1}}{k_{2}^{\prime 2} K_{2}}, \frac{1+k_{2}}{1+k_{1}} \leqq \frac{S_{1} C_{1}}{D_{1}} \div \frac{S_{2} C_{2}}{D_{2}} \leqq \frac{K_{1}^{\prime}}{K_{2}^{\prime}} . \tag{21}
\end{equation*}
$$

From (16), (20), and (21) we thus obtain

$$
\begin{equation*}
\frac{\left(1+k_{2}\right) K_{2}}{\left(1+k_{1}\right) K_{1}} l_{2}<\frac{x_{2}}{x_{1}}<\frac{k_{1}^{\prime 2} K_{1} K_{1}^{\prime}}{k_{2}^{\prime 2} K_{2} K_{2}^{\prime}} L_{2} \text { for } x_{1}>0, y_{1}>0 \tag{22}
\end{equation*}
$$

Since obviously $\left(1+k_{2}\right) K_{2}>\left(1+k_{1}\right) K_{1}$ in (22) and since the inequalities of [4] show that the coefficient of L_{2} in (22) is not less than 1, it follows from (7) that the space mapping F_{0} has dilatation $K\left(F_{0}\right)$ satisfying

$$
\begin{equation*}
K\left(F_{0}\right) \leqq \frac{k_{1}^{\prime 2} K_{1} K_{1}^{\prime}}{k_{2}^{{ }_{2}{ }^{\prime} K_{2} K_{2}^{\prime}} K\left(f_{0}\right)=\frac{k_{1}^{\prime 2} K k_{1}^{\prime 2}}{k_{2}^{\prime} K_{2}^{\prime 2}} ~} \tag{23}
\end{equation*}
$$

To show that (23) holds with equality it is sufficient to show that the coefficient of L_{2} in (22) cannot be replaced by a smaller number. By (19) and [4], $\left(x_{2} / x_{1}\right) \div L_{2}$ approaches $\left(k_{1}{ }^{\prime 2} K_{1} K_{1}^{\prime}\right) /\left(k_{2}{ }^{\prime 2} K_{2} K_{2}{ }^{\prime}\right)$ as a limit as z_{1} tends to $k_{1}^{1 / 2}$ along the segment $y_{1}=0, k_{1}^{1 / 2}<x_{1}<k_{1}^{-1 / 2}$. By the continuity of $\left(x_{2} / x_{1}\right) \div L_{2}$ on this segment as a function of z_{1} (Cf. (17)), we conclude that the second inequality in (22) is sharp. Therefore F_{0} is a differentiable $\left(k_{1}^{\prime} K_{1}^{\prime}\right)^{2} /\left(k_{2}^{\prime} K_{2}^{\prime}\right)^{2}$-quasiconformal mapping of \bar{R}^{3} $\{0, \infty\}-\mathcal{C}_{1}^{\prime} \cup \mathcal{C}_{1}^{\prime \prime}$ onto $\bar{R}^{3}-\{0, \infty\}-\mathcal{C}_{2}^{\prime} \cup \mathcal{C}_{2}^{\prime \prime}$ and hence, by removing the singularities, a (generalized) quasiconformal mapping of \bar{R}^{3} onto itself with the same dilatation.

Corollary 2. For $j=1,2$ let γ_{j} denote the ray $x_{j}=0, y_{j} \geqslant 0$, and let $z_{2}=f_{0}\left(z_{1}\right)$ be the extremal quasiconformal mapping of Theorem 2 carrying the first quadrant of the z_{1}-plane onto the first quadrant of the z_{2}-plane, with $f_{0}(0), f_{0}\left(k_{1}^{1 / 2}\right)=k_{2}^{1 / 2}, f_{0}\left(k_{1}^{-1 / 2}\right)=k_{2}^{-1 / 2}$, and $f_{0}(\infty)=\infty$. Then
where $\omega\left(\gamma_{j}, z_{j}\right)$ denotes the harmonic measure of γ_{j} at z_{j} with respect to the first quadrant of the z_{j}-plane. These bounds are sharp.

Proof. Since $\omega\left(\gamma_{j}, z_{j}\right)=2 \theta_{j} / \pi$, where $\theta_{j}=\arg z_{j}$, and since $\left(\tan \theta_{1}\right) /\left(\tan \theta_{2}\right)$ $=\left(x_{2} / x_{1}\right) /\left(y_{2} / y_{1}\right)$, this result follows directly from (20) and (21) above. The bounds are sharp because the inequalities in (21) are sharp.

Corollary 3. Let g be the extremal quasiconformal mapping of a
quadrilateral G_{1} onto a quadrilateral G_{2} with $g\left(\gamma_{1}\right)=\gamma_{2}$, where γ_{1} and γ_{2} are sides of G_{1} and G_{2}, respectively. For $j=1,2$ let $\omega\left(\gamma_{j}, z_{j}\right)$ denote the harmonic measure of γ_{j} with repect to G_{j} at z_{j}. If $a_{2}=\bmod G_{2}<\bmod G_{1}=a_{1}$, then

$$
1<\frac{\omega\left(\gamma_{1}, z_{1}\right)}{\omega\left(\gamma_{2}, z_{2}\right)}<A
$$

where $A=O\left(a_{2} e^{\pi / a_{2}}\right)$ as a_{2} tends to 0 . This is the best possible result as to order.

Proof. We may assume that G_{j} is the rectangle $0<x_{j}<1,0<y_{j}<a_{j}$, where $a_{j}=K_{j}^{\prime} / K_{j}, 0<k_{1}<k_{2}<1$, and that γ_{j} is the vertical segment $x_{j}=0$, $0 \leqq y_{j} \leqq a_{j}$. Then (Cf. beginning of §3) G_{j} may be mapped conformally onto the first quadrant of the w_{j}-plane by means of

$$
w_{j}=k_{j}^{\frac{1}{2}} \operatorname{sn}\left(K_{j} z_{j}, k_{j}\right),
$$

with γ_{j} being carried onto the ray $u_{j}=0, v_{j} \geqslant 0$.
Next, identify the z_{1} - and z_{2}-planes so that the corresponding axes coincide. Then clearly $G_{2}<G_{1}, \gamma_{2}<\gamma_{1}$, and $z_{1} \in G_{1}$ lies vertically above its image $z_{2}=g\left(z_{1}\right)$ $\in G_{2}$. As in the proof of Lemma $1, G_{2}{ }^{\prime}<G_{1}$ and $\gamma_{2}{ }^{\prime}<\gamma_{1}$, where $G_{2}{ }^{\prime}$ and $\gamma_{2}{ }^{\prime}$ denote the translates of G_{2} and γ_{2}, respectively, vertically by an amount $\left|z_{1}-z_{2}\right|$. From the conformal invariance of harmonic measure and the maximum principle for harmonic functions we then easily obtain

$$
\frac{2}{\pi} \theta_{1}=\omega\left(\gamma_{1}, z_{1}\right)>\omega\left(\gamma_{2}^{\prime}, z_{1}\right)=\omega\left(\gamma_{2}, z_{2}\right)=\frac{2}{\pi} \theta_{2}
$$

Since, for $\theta>0, \theta /(\tan \theta)$ is a strictly decreasing function of θ, we have

$$
\begin{equation*}
1<\frac{\theta_{1}}{\theta_{2}}<\frac{\tan \theta_{1}}{\tan \theta_{2}} \tag{24}
\end{equation*}
$$

Then (24) and Corollary 2 yield

$$
1<\frac{\theta_{1}}{\theta_{2}}<\frac{k_{1}^{\prime}{ }^{\prime} K_{1} K_{1}^{\prime}}{k_{2}^{\prime 2} K_{2} K_{2}^{\prime}}
$$

the right side being $O\left(a_{2} e^{\pi / a_{2}}\right)$ as a_{2} tends to 0 with a_{1} fixed, according to [5, p.21; 6, \#112.04]. We see that the order is correct because the upper bound in Corollary 2 is sharp.
4. Rotation of the extremal mapping for the case of one interior point and two boundary points. For $j=1,2$ let $\alpha_{j}, \beta_{j}, \delta_{j}$, be a triple of points in \bar{R}^{2} with

$$
\operatorname{Im} \alpha_{j}=\operatorname{Im} \beta_{j}=0, \operatorname{Im} \delta_{j}>0
$$

If f is any quasiconformal mapping of $\operatorname{Im} z_{1}>0$ onto $\operatorname{Im} z_{2}>0$ with $f\left(\alpha_{1}\right)=\alpha_{2}$, $f\left(\beta_{1}\right)=\beta_{2}, f\left(\delta_{1}\right)=\delta_{2}$, then $\mu\left(\sin \pi \omega_{1} / 2\right) \leqq K(f) \mu\left(\sin \pi \omega_{2} / 2\right)$, where ω_{j} denotes the harmonic measure of the segment $\alpha_{j} \beta_{j}$ at δ_{j} with respect to the upper half plane and $\mu(k)=m(2, k)$ as in (12) (See [13]). If we take $K=\mu\left(\sin \pi \omega_{1} 2 /\right) / \mu\left(\sin \pi \omega_{2} / 2\right)$, then there exists a unique extremal mapping f_{0} of this class satisfying $K\left(f_{0}\right)=K$.

The mapping f_{0} is easily described. First, by performing preliminary Möbius transformations of \bar{R}^{2} onto itself we may assume that the given pair of triples are $-1,1, i a_{1}$ and $-1,1, i a_{2}$, and that $0<a_{2}<a_{1}<\infty$. Let

$$
k_{j}=\left(1+a_{j}^{2}\right)^{-\frac{1}{2}}, j=1,2,
$$

so that $0<k_{1}<k_{2}<1$ and $a_{j}=k_{j}^{\prime} / k_{j}$. It is easily verified that $k_{j}=\sin \pi \omega_{j} / 2$. Then for $j=1,2$, let $z_{j}=x_{j}+i y_{j}$ and $w_{j}=u_{j}+i v_{j}$. Next,

$$
z_{j}=g_{j}\left(w_{j}\right)=c n\left(w_{j}, k_{j}\right),
$$

where $c n$ denotes Jacobi's elliptic cosine function [6; 14], maps the rectangle $R_{j}: 0<u_{j}<K_{j},-K_{j}^{\prime}<v_{j}<0$ conformally onto the first quadrant of the z_{j}-plane with

$$
g_{j}\left(-i K_{j}^{\prime}\right)=\infty, g_{j}\left(K_{j}-i K_{j}^{\prime}\right)=i a_{j}, g_{j}\left(K_{j}\right)=0, g_{j}(0)=1
$$

Finally, let φ be the natural affine mapping of R_{1} onto R_{2}. Then $f_{0}=g_{2} \circ \varphi \circ g_{1}^{-1}$ is the required extremal mapping, after being extended by reflection in the imaginary axis. This mapping is differentiable at all points of $\operatorname{Im} z_{1}>0$ except $i a_{1}$.

To calculate the dilatation of f_{0}, let P_{1} be any point in the first quadrant of the z_{1}-plane and let $P_{2}=f_{0}\left(P_{1}\right), Q_{1}=g_{1}^{-1}\left(P_{1}\right)$, and $Q_{2}=g_{2}^{-1}\left(P_{2}\right)$. The maximum and minimum stretchings $L_{2}\left(P_{1}\right)$ and $l_{2}\left(P_{1}\right)$ of f_{0} at P_{1} can be written as in (9), whence, as in previous work, $K=K\left(f_{0}\right)=\left(K_{1}^{\prime} K_{2}\right) /\left(K_{1} K_{2}^{\prime}\right)$.

We now prove that the space mapping F_{0} obtained by rotating f_{0} about the real axis is also quasiconformal.

THEOREM 3. For $j=1,2$ let $\alpha_{j}, \beta_{j}, \delta_{j}$ be a triple of points in \bar{R}^{2} with

$$
\operatorname{Im} \alpha_{j}=\operatorname{Im} \beta_{j}=0, \operatorname{Im} \delta_{j}>0
$$

Let f_{0} be the extremal quasiconformal mapping of least dilatation from the half plane $\operatorname{Im} z_{1}>0$ onto the half plane $\operatorname{Im} z_{2}>0$ with $. f_{0}\left(\alpha_{1}\right)=\alpha_{2}, f_{0}\left(\beta_{1}\right)=\beta_{2}$, $f_{0}\left(\delta_{1}\right)=\delta_{2}$, and let $K\left(f_{0}\right)=K$. If F_{0} is the mapping of \bar{R}^{3} onto itself obtained by rotating f_{0} about the real axis in \bar{R}^{2}, then F_{0} is a quasiconformal mapping of \bar{R}^{3} onto itself with $K \leqq K\left(F_{0}\right) \leqq K^{3}$.

Proof. As already remarked, we may assume that the given triples are $-1,1$, $i a_{1}$ and $-1,1, i a_{2}$, with $0<a_{2}<a_{1}<\infty$. As in earlier problems, this normalization does not affect the dilatation of the space mapping F_{0}.

Now let P_{1} be any point in $\bar{R}^{3}-\{-1,1\}-\mathcal{C}_{1}$, where \mathcal{C}_{j} will here represent the circle obtained by rotating the point $i a_{j}$ about the real axis. By symmetry we may assume that $P_{1}=\left(x_{1}, y_{1}, 0\right), x_{1} \geqslant 0, y_{1} \geqslant 0$. The three stretchings of F_{0} at P_{1} are easily seen to be

$$
\left\{\begin{array}{lll}
L_{2}, & l_{2}, & \frac{y_{2}}{y_{1}} \quad \text { for } y_{1}>0, x_{1} \geqslant 0 \\
L_{2}, & l_{2}, & l_{2} \quad \text { for } y_{1}=0,0 \leqq x_{1}<1 \\
L_{2}, & l_{2}, & L_{2}
\end{array} \quad \text { for } y_{1}=0, x_{1}>1 . ~ \$\right.
$$

If we show that, for $y_{1}>0$ and $x_{1} \geqslant 0$,

$$
\begin{equation*}
\frac{1}{K} l_{2}<\frac{y_{2}}{y_{1}}<K L_{2} \tag{25}
\end{equation*}
$$

it will follow from (7) in $\S 1.3$ that $K \leqq K\left(F_{0}\right) \leqq K^{3}$.
To establish (25) we note first that $g_{j}\left(w_{j}\right)^{2}$ maps the rectangle R_{j}. conformally onto the half plane $\operatorname{Im} z_{j}>0$. Hence by Lemma 1 and (9),

$$
\begin{equation*}
\frac{r_{2}}{r_{1}} l_{2}<\frac{x_{2} y_{2}}{x_{1} y_{1}}<\frac{r_{2}}{r_{1}} L_{2} \tag{26}
\end{equation*}
$$

where $r_{j}=\left(x_{j}^{2}+y_{j}^{2}\right)^{1 / 2}, j=1,2$. Now by [5, p.38; $\left.6, \# 125.01\right]$

$$
\begin{equation*}
\frac{x_{j}}{r_{j}}=\frac{\operatorname{Re} c n\left(w_{j}, k_{j}\right)}{\left|c n\left(w_{j}, k_{j}\right)\right|}=\left[1+\frac{s_{j}^{2} d_{j}^{2}}{c_{j}^{2}} \frac{S_{j}^{2} D_{j}^{2}}{C_{j}^{2}}\right]^{-\frac{1}{2}} \tag{27}
\end{equation*}
$$

where $s_{j}, c_{j}, d_{j}, S_{j}, C_{j}, D_{j}$ have the meaning assigned in (18).
Next it follows from [4] and [5, (29), p.13; 6, \#122.03] that

$$
\begin{equation*}
\frac{K_{1}}{K_{2}} \leqq \frac{s_{2} d_{2}}{c_{2}} \div \frac{s_{1} d_{1}}{c_{1}} \leqq \frac{K_{2}}{K_{1}}, \frac{K_{2}^{\prime}}{K_{1}^{\prime}} \leqq \frac{S_{2} D_{2}}{C_{2}} \div \frac{S_{1} D_{1}}{C_{1}} \leqq \frac{K_{1}^{\prime}}{K_{2}^{\prime}} \tag{28}
\end{equation*}
$$

and hence by (27) that

$$
\frac{1}{K} \leqq \frac{x_{2} / x_{1}}{r_{2} / r_{1}} \leqq K .
$$

Because of (26) this gives (25). Thus F_{0} is a differentiable K^{3}-quasiconformal mapping of $\bar{R}^{3}-\{-1,1\}-\mathcal{C}_{1}$ onto $\bar{R}^{3}-\{-1,1\}-\mathcal{C}_{2}$, and hence a (generalized) quasicon-formal mapping of \bar{R}^{3} onto itself satisfying $K \leqq K\left(F_{0}\right) \leqq K^{3}$ as claimed.

References

[1] L. V. Ahlfors, Confomal Mapping, Notes from lectures at Oklahoma A. \&M. College, Summer 1951.
[2] G. D. ANDERSON, The coefficients of quasiconformality of ellipsoids, Ann. Acad. Sci. Fenn. Ser. AI, 411(1967), 1-14.
[3] G. D. ANDERSON, Symmetrization and extremal rings in space, Ann. Acad. Sci. Fenn. Ser. AI, 438(1969), 1-24.
[4] G.D. ANDERSON, and M. K. Vamanamurthy, Affine mappings and elliptic functions, Publ. de l'Inst. Math. (Yogoslavia), tome 11(25), (1971), 49-51.
[5] F. Bowman, Introduction to Elliptic Functions with Applications, Dover, New York, 1961.
[6] P.F. Byrd and M. D. Friedman, Handbook of Elliptic Integrals for Engineers and Physicists, Springer, Berlin, 1954.
[7] F. W. Gehring, Symmetrization of rings in space, Trans. Amer. Math. Soc., 101 (1961), 499-519.
[8] F. W. Gehring, Rings and quasiconformal mappings in space. Trans. Amer. Math. Soc., 103(1962), 353-393.
[9] F.W. Gehring, and J. VÄisÄiä, The coefficients of quasiconformality of domains in space, Acta Math., 114(1965), 1-70.
[10] J, HERSCH, Contribution à la théorie des fonctions pseudo-analytiques, Comment. Math. Helv. 29, 1955, 301-337.
[11] J. Hersch and A. Pfluger, Généralisation du lemme de Schwarz et du principe de la mesure harmonique pour les fonctions pseudo-analytiques, C. R. Acad. Sci. Paris, 234 (1952), 43-45.
[12] K. IKOMA, On the distortion and correspondence under quasiconformal mappings in space, Nagoya Math. J., 24(1965), 175-203.
[13] J. A. Kelingos, Characterizations of quasiconformal mappings in terms of harmonic and hyperbolic measure, Ann. Acad. Sci. Fenn. Ser. AI, 368(1965), 1-16.
[14] H. KOBER, Dictionary of Conformal Representations, Dover, New york, 1957.
[15] O. Lehto, and K. I. Virtanen, Quasikonforme Abbildungen, Springer, Berlin, 1965.
[16] Z. Nehari, Conformal Mapping, McGraw-Hill, New York, 1952.
[17] R. Nevanlinna, Eindeutige Analytische Funktionen, Springer, Berlin, 1953.
[18] B. V. ŠABAT, On the theory of quasiconformal mappings in space, Soviet Math., 1(1960), 730-733.
[19] A. V. SYČEv, Quasiconformal mappings in space, Dokl. Akad. Nauk. SSSR. 166(1966), 298-300.
[20] M. VIRsU, On the linear dilatation of quasiconformal mappings in space, Duke Math. J., 38(1971), 569-574.

DEpartment of Mathematics, Michigan State University,
East Lansing, Michigan, U. S. A.
AND
DEPARTMENT OF MATHEMATICS,
Madurai University,
Madurai, INDIA

[^0]: (1) This research was supported in part by the National Science Foundation, USA, Grants GP-13022 and GP-7234. A portion of the work is included in the second author's Ph. D. dissertation written under the direction of Professor F.W. Gehring at the University of Michigan in 1969.

[^1]: (2) Other distortion theorems making use of results of this paper appear in a paper of M. Virsu [20].

[^2]: (3) Although K is being used in this paper to denote either the dilatation of a quasiconformal mapping or the value of an elliptic integral, the context will always make clear the meaning of K.
 (4) This mapping is $g_{j}\left(w_{j}\right)=k_{j} s n^{2}\left(w_{j}, k_{j}\right)$, where $s n$ denotes Jacobi's elliptic sine function [6;14], but in our proofs that fact is not needed.

[^3]: (5) It is also easy to see that $K_{I}\left(F_{0}\right)=K_{o}\left(F_{0}\right)=K$, where $K_{I}\left(F_{0}\right)$ and $K_{O}\left(F_{0}\right)$ are the inner and outer dilatations of F_{0} as defined in [9].

