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ROTATION OF PLANE QUASICONFORMAL MAPPINGS®

G. D. ANDERSON AND M. K. VAMANAMURTHY
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1. Introduction. 1.1. Summary of results. The main purpose of this
paper is to exhibit several quasiconformal mappings in space obtained by rotating
important plane quasiconformal mappings. It is well known that, in general, such
mappings need not be quasiconformal in space, even if the plane mapping is
conformal. As a simple example, w =f{z)=2? maps the half plane Rez>0
conformally onto the w-plane minus the ray Re w =0, Im w =0, while the space
mapping F obtained by rotating f about the real axis fails to be quasiconformal
because the dilatation K(F)= supw:e .>q|2|/(Re 2) is infinite. A simple sufficient
condition is herein provided (§ 1. 3) that a space mapping obtained by rotation from
a plane quasiconformal mapping be quasiconformal, and in each of our rotation
theorems this condition is shown to hold. In one case we show that the space
mapping is even extremal, given a certain very natural assumption.

Next, by a configuration is meant a planie domain Q bounded by m disjoint
Jordan curves with #, distinguished interior points and 7, distinguished boundary
points, When Q is simply-connected (i. e., 7 = 1), there are three types of configu-
ration with exactly one conformal invariant (Cf. [1], p.88), namely, those having
(i) four distinguished boundary points a,, ay, as; a, (m,=0,7n,=4), (ii) two
distinguished interior points a;, a, (m, =2, 7, =0), and (iii) one interior point a,
and two boundary points a,, a; distinguished (7, =1, 7, =2). Conformal invariants
in these cases are, respectively, (i) modulus of the quadrilateral Q(a;, a, as a.)
(ii) hyperbolic distance between a, and a, with respect to Q, (iii) harmonic measure
of one of the boundary arcs a.a; at a, with respect to Q. Now suppose Q is a
half plane, and consider two configurations of the same type. In each case we
show that if the extremal quasiconformal mapping of least dilatation of the first
configuration onto the second is rotated about the boundary line, then the resulting
‘space mapping is quasiconformal.

We begin by studying f, of smallest dilatation which takes R? onto itself with
Sola;)=b; =1, 2, 3, 4, where a; and b; are a preassigned pair of positively ordered
quadruples of points on the real axis. For a particular choice of the a; and b; this
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mapping reduces to the extremal distortion mapping which shows that the linear
distortion estimates of Hersch and Pfluger ([11], Cf.[15]) are best possible. The
possibility of rotating the extremal distortion mapping to obtain a quasiconformal
mapping in space was first suggested by a statement without proof in a paper of
Syéev [19]. We show that rotation of this mapping yields, in fact, an extremal
space mapping. The proof of this result makes no use of the properties of elliptic
functions—in fact, only the Riemann Mapping Theorem and the Schwarz Lemma
are needed. In § 2 we observe that the rotated mapping gives some information
concerning estimates of linear distortion in space®. As a corollary of our first
theorem we.derive an interesting monotone property for the moduli of Grétzsch
rings.

In §3 we consider the extremal mapping of a half plane with two distinguished
interior points onto another such configuration. After finding the dilatation of the
space mapping obtained by rotation about the boundary line, we employ the
quasiconformality of this mapping to derive inequalities for harmonic measure.

Finally, in § 4, we study the extremal mapping f, of a half plane with one
distinguished interior point and two distinguished boundary points onto another
configuration of this type. We show that the space mapping F, obtained by rotation
about the boundary line is K{(f,)*-quasiconformal.

1.2. Definitions and notation. Suppose that f is a diffeomorphism of an
n-space domain Q, onto Q,. Then for Pe Q, the differential df =df(P) is affine
and maps the unit ball onto an ellipsoid E. The lengths of the » semiaxes of E
are called the stretchings of f at P. Let L,=L,P) and I,=1[1,(P) denote the
maximum and minimum stretchings of f at P. Then we define the dilatation of f

by

(1) K(f) = sup LolL)

If this dilatation is finite we say that f is a differentiable quasiconformal
mapping of Q, onto Q,. If K(f)=K < oo, then we say that f is a differentiable
K-quasiconformal mapping of Q, onto Q..

This definition may be”generalized in the following way to include an arbitrary
homeomorphism f of Q; onto Q,. If f is differentiable with Jacobian J>0 a.e. in
Q, and if f is absolutely continuous on lines (Cf.[9]), then we define K(f) by
taking the essential supremum in (1); otherwise we let K(f)=oco. If this
dilatation, as redefined, is finite, the mapping is said to be quasiconformal, and if
K(f)=K<oo it is called K-quasiconformal. The quasiconformal mappings

@ QOther distortion theorems making use of results of this paper appear in a paper of M. Virsu
[20].
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considered in this paper will be differentiable except at a finite number of points
or on a finite number of smooth curves.

Next, we shall find it convenient in some of our proofs to make use of the
hyperbolic density [17]. Suppose that G is a simply-connected domain in the
z-plane, 2= x+7y, with nondegenerate boundary, and that w = g(z), w=u+, is
a conformal mapping of G onto the half plane v>0. Then the hAyperbolic
density of G is defined by

(2) ple) = ples G) = 121,

and the density p is independent of the conformal mapping g. The hyperbolic
density satisfies the transformation law

(3) ple:G) = ol G) G

if w=w(z) is a conformal mapping of G onto G'. If G, and G, are two simply-
connected domains with nondegenerate boundaries such that G, <G, (i.e., G, is a
proper subset of G,), then it follows by the Schwarz Lemma that

(4) Pz Gy) > plz G,) for 2€ G, .

If G is such a domain and if @, and a, are points in G, then the Ayperbolic
distance from a, to a, with respect to G, is

h = hla,, a,) = inff p(z)|dz],
T Yy

where the infimum is taken over all arcs joining a; and a, in G.

Finally, let G be a Jordan domain and ¥ a boundary arc. By the harmornic
measure of ¥ at z with respect to G is meant the unique function o= (7, z)
which is bounded and harmonic in G, and which has boundary values 1 at all in-
terior points of ¥, and O at all points which are interior to the complementary arc.

1.3. Rotation of plane mappings. Suppose that G, and G, are domains
in the x,y,- and x,v,-planes which are symmetric with respect to the x;- and
x,-axes, respectively. Let x,+7y, =fla;+2y,) be a differentiable K-quasiconformal

mapping of G; onto G, such that fla, —iy,)=flx, +2y,) for each point x, +iy, € G,.
We may assume that y,>0 for y, >0. Let P=ux,+7y,, =0, be a point in
G, and let L,=L,P) and l,=1,(P) be the maximum and minimum stretchings
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of fat P. Then L,/[,=K.
Next, let Q, and Q, be the domains in space obtained by rotating G, and G,
about the x,- and x,-axes, respectively, and let (r, 8, z;) and (s, ¢, x,) be cylindrical

coordinates about the x;- and x,-axes, respectively. Then the mapping given by
F(r, 0, x,)=(s, ¢, x,), where

x2+i5 =f(x1 +ir)7 ¢= 6)

is a diffeomorphism of Q, onto Q,.

Now let P be a point in ;. By symmetry we may assume that P lies in
G, and that P=x, +4y,,¥,>>0. The maximum and minimum stretchings of F
at P are given by

L; = max(L,y,/y:), 5 = min(l,,y,/y,) for y, >0,
L,=L,and I, =1, for y,=0.

(5)

Thus a sufficient condition for F' to be a differentiable quasiconformal mapping is
that there exist m =<1 =M such that

(6) ml, =y./yi =ML, for y, >0,

in which case

(7) K(f)=K(F)=-_-K(f).

M
m

Finally, suppose that m=1=M in (6). Then it follows from (7) that
K(F)=K(f). If we make the natural assumption that an extremal mapping of
Q, onto Q, must take a plane section of , containing the real axis onto a plane
section of {2, containing the real axis, then by (5) we may conclude that F is
extremal. This is the case in Theorem 1 of this paper.

2. Rotation of the extremal distortion mapping. For j=1,2,3,4, let
a; and b; denote a pair of positively ordered quadruples of points on the real axis
in R®. Let H,= H(a, ayasa,) and H,= H(b,, b, bs,b,) be the quadrilaterals
formed by the upper half plane H with the vertices a; and b;, respectively. If f
is any quasiconformal mapping of H; onto H, with vertices corresponding, then
mod H, =K(f) mod H, (See [15]). If we take K=(mod H,)/(mod H,), then there
exists a unique extremal mapping f, of R? onto itself such that fya;)=5; j
=1,2,3,4, and K(f,)=K.

We now briefly describe f;,. First, by performing preliminary Mo&bius transfor-
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mations of R? onto itself we may assume that the given pair of quadruples are 0,
ky, 1/k;, oo and 0, k,, 1/k;, oco. Since K(f)= K(f~!) we may assume that 0<<k,
=k, <1. If k, =k, there will be nothing to prove; hence we take 0<<k,<<k,<<1.
Then for j=1,2, let 2; = x;+7y; and w; = u;+v; and let

K; = Kik;), Ky = K'(k;) = K(k;),

where, for 0 <<k <1, K(k) and K'(k) are the complete elliptic integrals‘® defined
by

K = K(k) = f = A — R s,
(8) 0

K =Kk =KEFk), F=(1-%):.

Next, let 2; = g, (w;) map the rectangle R;: 0<<u; <K, 0<v;<<Kj; conformally
onto the quadrilateral H; with vertices corresponding®. Finally, the affine mapping

’

uy + v, = Pluy + ) = T?u, + zg—j,v‘

1

carries R, onto R,. Then f,=g,0 @og,~! is the required extremal mapping, after
being extended by reflection in the real axis. This mapping is differentiable at all
points of R? but a;, j=1,2,3,4.

To calculate the dilatation of f;, let P, be any point in the upper half plane
Im 2,>0, and let P,=fy(P), Q.= 9, "YP), and Q,= g,"(P,). The maximum
and minimum stretchings L,(P,) and [,(P,) of f, at P, are

_ K 10Q) K 19,0
(9) =% o0 BT K 1aQ)

whence, because of symmetry and the removability of analytic arcs for quasicon-
formal mappings [15],

_ _ L _ K/K,
(10) K_K(fo)"" 12 - Kle' .

@) Although K is being used in this paper to denote either the dilatation of a quasiconformal
mapping or the value of an elliptic integral, the context will always make clear the meaning
of K.

@ This mapping is gj(w;) =k;sn?(wj, k;), where sn denotes Jacobi’s elliptic sine function [6; 14],
but in our proofs that fact is not needed.
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Next, for 0< k<1, let R(G,n k) denote the Grodtzsch ring in R" whose

boundary components are the segment [0, 2] of the x,-axis and the sphere S™'.
Let

(11) m(n, k) = mod R(G,n, k).
It is well known [15] that

2K'(%)
2 K(k)’

(12) m(2, k) =

where K(k) and K'(k) are the elliptic integrals defined in¥(8). If n=2, then by
(10) and (11) obviously K = m(2, k,)/m(2, k,). Then f, is the extremal distortion
mapping of R(G,2, k,) onto R(G, 2, k,). That is,

max {|f(2)]: [z] = &} = ks

where f is any K-quasiconformal mapping of the unit disk onto ‘itself with £{0)=0,
and f, is the unique mapping of this class such that fy(%;,0)=(%,0) and K{f,)
=K (See [15]).

In order to prove that the space mapping F, obtained by rotating f, about the
real axis is also quasiconformal, we shall employ the following lemma, which is an
application of the Schwarz Lemma.

LEMMA 1. For j=1,2, let R; be the rectangle 0<<u;<p; 0<v;<qy
where 0< p=p,< o0, 0< g, =¢q, <0, and let

W, = Uy + v, = @lw,) = &ul + i&'vl

y 2!

be the natural affine mapping of R, onto R,. If Q,€ R, and Q,=¢(Q,)e R,,
and if p(Qj R;) is the hyperbolic density of R; at Qj, then

b PQuR) a1
(13) = PQuR) = q’

with equality if and only if R, and R, are similar.
PROOF. We prove only the left side of (13), the right side being proved

similarly. Because of the transformation law (3 ), the equality is obvious when the
rectangles are similar. Otherwise, because of (3), it is sufficient to prove the
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lemma under the assumption that p, = p,=1 and 0<< g, << q, < oo. Then the left
side of (13) reduces to

(14) PQ1 Ry) < p(Qs R,).

To prove (14), identify the w,;- and w,-planes so that the corresponding axes
coincide. Then clearly R,<<R, and Q, lies vertically above Q,. Since

[Q:— Q,] =7)1( _%)<Q1(1—%>=Q1_92’

it is clear that R, << R,, where R, denotes the translate of R, by an amount
|Q, — Q,|. Hence by the Schwarz Lemma in terms of hyperbolic densities (4 ),
we have

P(Ql’ Rl) < pQi RY) = P(Qz’ R,).

We now prove that the space mapping F, is quasiconformal. Under the
assumption stated at the end of § 1.3 it is extremal.

THEOREM 1. For j=1,2,3,4, let a; and b; be a pair of positively
ordered quadruples of points on the real axis in R®. Let f, be the extremal
mapping of least dilatation from R® onto itself with fia;)=5b;, and let
K(f))=K. If F, is the mapping of R*® onto itself obtained by rotating f,
about the real axis in R?, then F, is an extremal quasiconformal mapping of
R onto itself with K(F,)=K.

PROOF. As already remarked, we may assume that the given pair of
quadruples are 0, %, 1/k;, 00 and 0, k,, 1/k,, o0, with 0<k, <k,<1. Since the
mappings obtained by rotating the preliminary Moébius transformations about the
real axis are again Mobius in space, this normalization does not affect the dilatations
of the space mapping F,.

Now let P, be any point in R*— {0, k,,1/k;, c0}. By symmetry we may
assume that P, =(x;,y1,0), y;==0. The three strecthings of F, at P, are easily
seen to be

Lg, lz’ yg/yl for yl > 0)
Lg, lg, lz for Y = 0; 0<x1 < k] or x; > l/kp
Ly Ly 1, for y, =0; 2, <0 or by < x; < 1/ky,

and it will follow that L, =L, and I;=1, at P, if
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lg<%2—<L2 for y, >0.

1

But this follows immediately from Lemma 1, in view of (2) and {9).

From (9) and (10) it now follows that L,/l;=K at each point of R3
— {0, %y, 1/k, 0}, We conclude that F, is a differentiable quasiconformal mapping
of R*— {0, ky,1/k,, oo} onto R*— {0, k,, 1/k,, oo} with K(F,)= K, and, by removing
the singularities, that F, is a (generalized) quasiconformal mapping of R?® onto itself
with the same dilatation®. TUnder the assumption at the end of §1.3 we may
conclude that F, is extremal.

REMARK. Suppose that f is a K-quasiconformal mapping of the unit ball
onto itself with f{0)=0. Then it is known ([ 7], [12], Cf.[18]) that

(15) |AP)] = c'"VE|P|VE for |P| <1,

where ¢ is a constant, 4=¢=4-2"%"*, Now the mapping F, in Theorem 1 is a
K-quasiconformal mapping of the unit ball onto itself with F(0)=0 and F(%;, 0, 0)
= (ky, 0,0). Since, as stated in [15],

lim— 2 = 417V/%
P

it follows that the constant ¢ in (15) cannot be replaced by a number less than 4.
Next, let m2(n, k) be as in (11). The following result on the monotoneity of
m(3, k)/m(2, k) is an immediate consequence of Theorem 1.

COROLLARY 1. For 0<k <1, m(3,k)/m(2, k) is a monotone increasing
Sfunction of k.

PrROOF. Let 0<k, <k, <1 and K=m(2, k,)/m(2, k,). Then 1<K < oo, Let
fo and F, be the corresponding mappings in Theorem 1. Since F, is K-quasicon-
formal and maps the Groétzsch ring R(G, 3, %,) onto the ring R(G, 3, k,), it follows
from [8] (Cf. also (41) in [ 3]) that

m(3, k) = K m(3, k),

whence

(® Tt is also easy to see that K;(F,) =Ko(F,) =K, where K;(F,) and Ko(F,) are the inner and
outer dilatations of F, as defined in [9].
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m(3, k,)/m(2, k) = m(3, k,)/m(2, k,)

as asserted.

3. Rotation of the extremal mapping for the case of two interior
points. For j=1,2 let a; and b; be two points in the half plane Re z;>0. If
f is any quasiconformal mapping of Re 2, >0 onto Re 2,>0 with fla,)=a, and
fib,) = b,, then ple ) =K(f)ule *"), where h;=hla;;b;) denotes the hyperbolic
distance between a; and b; with respect to the half plane Re z;>0, and wu(k)
=m(2, k) as in (12)(See[13]). If we set K = ple™2*)/ule~?"), then there exists a
unique extremal mapping f, of this class satisfying K(f,) =K

We briefly describe f,. First, by performing preliminary Mébius transformations
of R? onto itself we may assume that the given pairs of points are k"2, k,~** and
k)%, k,”7, and there is no loss in generality in assuming that O<hk <k, <1l 1t
is easﬂy checked (Cf. [13]) that k;=e"%, j=1,2

Now for j=1,2, let 2;=x;+17y; and w,—u,-l—ivj. Then (See[6; 14])

2 = gilw,)= ijm(‘wJ’ k;)

maps the rectangle R,: 0<u;<K; 0<wv; <K, conformally onto the first quadrant
x;>0, ¥;>0 of the z;-plane, with

1 1

gl0) =0, gK)=k*, giK;+iK/) =k, *, gfiK;)= oo

Let @ be the natural affine mapping of R, onto R,. Then f;, =g,0pog,7! is the
required extremal mapping, after being continued by reflection in the real axis. We
note that the stretchings of f, have the same form as in (9), hence that K=K(f,)
= (K, K,)/(K\K,) as in (10).

We now prove that the space mapping F, obtained by rotating f, about the
imaginary axis is also quasiconformal, and we determine its dilatation.

THEOREM 2. For j=1,2 let a; and b; be two points in the half plane Re z;>0.
Let f, be the extremal mapping of least dilatation from the right half plane onto
itself with fya,)=a, and fob))=b,. If F,is the mapping of R® onto itself obtained
by rotating f, about the imaginary axis in R?, then F, is a quasiconformal
mapping of R® onto itself with K(F,)=(k\K\)/(k/K, )}, where k;y=e ",
h; = h(a; b;) being the hyperbolic distance between the points a; and b; with
respect to the half plane Re z;>0.

PROOF. If the mapping ¢g; is reflected in the segment u; =0, 0<v; <K},
then g; maps the rectangle |u;| < K, 0<v;<K; conformally onto the upper half
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plane Im z; >0, while the extension of @ is still affine. It follows by (2),(9)
and Lemma 1 that for Im 2, >0,

(16) lz<%<L2.

1

Now let P, be any point in R*— {0, 0o} —C, UC,", where C; and C;” will here
represent the circles obtained by rotating the points k;/* and k;7'/2, respectively,
about the imaginary axis. By symmetry we may assume that P,=(xy, ¥;,0), x; =0,
»,==0. Then by [5, p.4l; 6, #125.01]

we get
1 1
(17) Ly g o= K 5D, | 1-aDt 5} Di-kist |
X, K, D, | 1-sD; D;— ks
where
s; = snlup k), c; = cnluy ky),  dy = dnluy, k),
(18)

Sj = sn(‘vj, kj')’ Cj = cn(v,, kj,)y .Dj = dn('z),, kjl) .

It is easily checked, using (17) and [5, p.9; 6, #121. 00] that the stretchings of F,
at P, are

Ly 1y % for £, >0, y, >0

Lg) lgy Lg for X, = O, Y1 > 07

1

x d d, 1K 5 -
(19) L27 l2’ x_j = [—Cls—ll. * 61—22—]‘K—:L2 fOr yl=0; 0<x1<k1 2 Or x1>k1 2 ’

1

& -_— SlCl . S2C2 kl,zKl . _;_. _T
o b ) "[ D, " D, ]kK L, for =0 b’ <ti<k * .

Now by [5, p.38; 6, #125.01]

(20) Xy Yy [cld, . s ][S,Cl . Sgcz]
x, 2 $1 So D, ’ Dz ’

while the inequalities of [4] give the sharp bounds
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&< Cldl . d k K] 1+k2 - SICI . SgCg K]I
Ky -

K= s s “sz 1+%k — D, ~ D,

(21)

I

From (16),(20), and (21) we thus obtain

(1+4,)K.

21 kl KlKl
(1+ 4K, e <

(22) <k2KK L, for 2, >0, y,>0.

Since obviously (1+£,)K,>(1+4,)K; in (22) and since the inequalities of [4] show
that the coefficient of L, in (22) is not less than 1, it follows from (7) that the
space mapping F, has dilatation K(F,) satisfying

(23) KIF) = g KU =

To show that (23) holds with equality it is sufficient to show that the
coefficient of L, in (22) cannot be replaced by a smaller number. By (19) and [4],
(@y/x)) + L, approaches (k,?K K, )/(k,2K,K,’) as a limit as 2, tends to %} along the
segment y,=0, k/’<<x, < k2. By the continuity of (x,/z,)=+ L, on this segment as a
function of 2; (Cf.(17)), we conclude that the second inequality in (22) is sharp.
Therefore F, is a differentiable (&, K, #/(k, K, }*-quasiconformal mapping of R3—
{0, 00} —C/UC,” onto R*— {0, oo} —Cy UC,” and hence, by removing the singularities,
a (generalized) quasiconformal mapping of R?® onto itself with the same dilatation.

COROLLARY 2. For j=1,2 let V; denote the ray z;=0,y;,2>0, and let
2, =folz)) be the extremal quasiconformal mapping of Theorem 2 carrying the
Sirst quadrant of the z-plane onto the first quadrant of the z,-plane, with
Jol0), folk?) = K% folki?) = ki, and fooo)= oo. Then

T
LbK, _ 2 ks
RIS = ) = WK,

where oY z;) denotes the harmonic measure of Y; at z; with respect to the
first quadrant of the z;plane. These bounds are sharp.

PROOF. Since oY), 2;)=20;/n, where 6;=arg zj;, and since (tan 6,)/(tan 6,)
= (2,/x1)/(¥2/¥,)> this result follows directly from (20] and (21) above. The bounds
are sharp because the inequalities in (21) are sharp.

COROLLARY 3. Let g be the extremal quasiconformal mapping of a
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quadrilateral G, onto a quadrilateral G, with g(V,)=",, where Y, and v, are
sides of G, and G,, respectively. For j=1,2 let o(Y;z;) denote the harmonic
measure of V; with repect to G; at z;. If a,=mod G,<mod G, = a,, then

1< @Me2) g

("('Yw 22)

where A = Oa,e”’™) as a, tends to 0. This is the best possible result as to
order.

PROOF. We may assume that G; is the rectangle 0<x; <1, 0<y;<a;
where a;=K,//K,;, 0<k,<k,<1, and that 7¥; is the vertical segment x;=0,
0=y;=a;. Then (Cf. beginning of § 3) G; may be mapped conformally onto the
first quadrant of the w;-plane by means of

1
Wwj; = kj 2 sn(K;zj, kj)’

with 7¥; being carried onto the ray u; =0, v;=>0.

Next, identify the 2;- and z,-planes so that the corresponding axes coincide.
Then clearly G, <G;, Y, <%, and 2z, € G, lies vertically above its image z,= g(z,)
€ G,. As in the proof of Lemma 1, G, <G, and v, <7v,, where G, and v,
denote the translates of G, and 7,, respectively, vertically by an amount |2;,—z,].
From the conformal invariance of harmonic measure and the maximum principle
for harmonic functions we then easily obtain

2

2 ,
761 = “’('yv zl) > {7y, z,) = “’('yz’ 22) = -

g,.

Since, for 6 >0, 6/(tan 6) is a strictly decreasing function of 6, we have

6, tan 6,
(24) 1 <—02 <an g, -
Then (24) and Corollary 2 yield
6, _ k’KK/
1< g < paRR

the right side being O(a,e”*) as a, tends to 0 with @, fixed, according to
[5, p.21; 6, #£112.04]. We see that the order is correct because the upper bound
in Corollary 2 is sharp.
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4. Rotation of the extremal mapping for the case of one interior
point and_ two boundary points. For j=1,2 let a; B; §; be a triple of
points in R? with

Ima;=Im B;=0, Im §,>0.

If f is any quasiconformal mapping of Im 2,>0 onto Im 2,>0 with flay)=a,,
SfB) =B f18.) =8, then pfsin 7w, /2)=K(f)usin 7n®,/2), where ; denotes the
harmonic measure of the segment a;83; at 8; with respect to the upper half plane
and pu(k) =m(2, k) as in (12) (See [13]). If we take K = ulsin 7®,2/)/psin ww,/2),
then there exists a unique extremal mapping f, of this class satisfying K(f,)= K.

The mapping f, is easily described. First, by performing preliminary Moébius
transformations of R? onto itself we may assume that the given pair of triples are
—1,1, iaq; and —1,1, 7a, and that 0 <a,<<a;<<oo. Let

1

kj=(1+a_21) 2)j= 1:27

so that 0<k <k,<<1 and a;=k;/k;,. 1t is easily verified that %;=sin ne;/2.
Then for 7 =1,2, let 2; = x;4+17y; and w; = u;+iv;. Next,

z; = giw;) = cnlwy ky),

where c¢n denotes Jacobi’s elliptic cosine function [6; 14], maps the rectangle
Ry 0<u;<K;, —K; <v;<0 conformally onto the first quadrant of the z;-plane
with

g{—iKj) = oo, g{K;—1iK}) = ia; g{K;) = 0,g,0)=1.

Finally, let @ be the natural affine mapping of R, onto R,. Then f,= g,opog;!
is the required extremal mapping, after being extended by reflection in the imaginary
axis. This mapping is differentiable at all points of Im 2, >0 except ia,.

To calculate the dilatation of f,, let P, be any point in the first quadrant of
the 2;-plane and let P,=fy(P)), Q.= gi}(P:), and Q, = g3 (P,). The maximum and
minimum stretchings L,(P,) and [,(P,) of f, at P, can be written as in (9 ), whence,
as in previous work, K = K{( f,) = (KiK,)/(K,K).

We now prove that the space mapping F, obtained by rotating f, about the
real axis is also quasiconformal.

THEOREM 3. For j=1,2 let a; By 8; be a triple of points in R* with

Im a; = Im Bj =0, Im 8;>0.
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Let f, be the extremal quasiconformal mapping of least dilatation from the
half plane Im 2,>0 onto the half plane Im z,>0 with foay) = ay folB1)= B
Sol8)=28,, and let K| f,)=K. If F, is the mapping of R*® onto itself obtained
by rotating f, about the real axis in R then F, is a quasiconformal mapping
of R® onto itself with K=K|F,)=K:.

PROOF. As already remarked, we may assume that the given triples are —1,1,
ia;and —1,1, ia, with 0<a,<a;<<oo. As in earlier problems, this normalization
does not affect the dilatation of the space mapping F,.

Now let P, be any point in R3— {—1,1} —C,, where C; will here represent the
circle obtained by rotating the point Za; about the real axis. By symmetry we may
assume that P, =(x, ¥, 0), £;,2>0, ¥,=>0. The three stretchings of F, at P, are
easily seen to be

L, [, % for >0, ,>=0,

1

Lg, l2’ l2 fOI' y] = 0, 0 é x] < 1!

Lz) lip Lg fOI' M= O, X1 >1.
If we show that, for y, >0 and x,>0,

1

(25 %

I, <2t <KL,
"

it will follow from (7) in § 1.3 that K=K(F,)=K".
To establish (25) we note first that g {w;)® maps the rectangle R; conformally
onto the half plane Im 2;>0. Hence by Lemma 1 and (9),

Te XY _ T2
(26) 8 L< Iy Y1 < T Ly

where r;=(23+5%)% j=1,2. Now by [5, p.38; 6, #:125. 01]

-1
(27) ﬂ_h_cn(wbﬁ=[1+3'§d’f 3D§] "

ry |en(w;, &;)| i C;

where s;, ¢ dj Sy, Cj D; have the meaning assigned in (18).
Next it follows from [4] and [5, (29), p.13; 6, #122. 03] that

ey Kosd sd _K. K _SD,  SD _K,
K, = ¢ a K, Ki= G, G T K
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and hence by (27) that

/1,
T/

IA

=K.

1
K

Because of (26) this gives (25). Thus F, is a differentiable K*-quasiconformal
mapping of R*—{—1,1} —C, onto R*—{—1,1}—C, and hence a (generalized)
quasicon-formal mapping of R?® onto itself satisfying K <K(F,)=<K?* as claimed.
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