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ROTATION OF PLANE QUASICONFORMAL MAPPINGS1*

G. D. ANDERSON AND M. K. VAMANAMURTHY

(Received Jan. 16,1971)

1. Introduction. 1.1. Summary of results. The main purpose of this
paper is to exhibit several quasiconformal mappings in space obtained by rotating

important plane quasiconformal mappings. It is well known that, in general, such

mappings need not be quasiconformal in space, even if the plane mapping is

conformal. As a simple example, w=f(z) = z2 maps the half plane R e z > 0

conformally onto the w-plane minus the ray Re w ^ 0, Im w = 0, while the space

mapping F obtained by rotating / about the real axis fails to be quasiconformal

because the dilatation K(F) = supcRe z>0) \ z | /(Re z) is infinite. A simple sufficient

condition is herein provided (§ 1. 3) that a space mapping obtained by rotation from

a plane quasiconformal mapping be quasiconformal, and in each of our rotation

theorems this condition is shown to hold. In one case we show that the space

mapping is even extremal, given a certain very natural assumption.

Next, by a configuration is meant a plarie domain 12 bounded by m disjoint

Jordan curves with nΊ distinguished interior points and n2 distinguished boundary

points. When Ω is simply-connected (i. e., m = 1), there are three types of configu-

ration with exactly one conformal invariant (Cf. [ 1 ], p. 88), namely, those having

( i ) four distinguished boundary points av a2, as, <z4 [nΛ = 0, n2 = 4), (ii) two

distinguished interior points av a2 {nΊ = 2, n2 = 0), and (iii) one interior point <2X

and two boundary points <z2, a3 distinguished (wj = 1, n2 = 2). Conformal invariants

in these cases are, respectively, ( i ) modulus of the quadrilateral Ω(av a2, a3, α4),

(ii) hyperbolic distance between ax and a2 with respect to Ω, (iii) harmonic measure

of one of the boundary arcs a2a3 at ax with respect to ί2. Now suppose ί2 is a

half plane, and consider two configurations of the same type. In each case we

show that if the extremal quasiconformal mapping of least dilatation of the first

configuration onto the second is rotated about the boundary line, then the resulting

space mapping is quasiconformal.

We begin by studying f0 of smallest dilatation which takes R2 onto itself with

fo(aj) = bp j — 1, 2, 3, 4, where aj and bj are a preassigned pair of positively ordered

quadruples of points on the real axis. For a particular choice of the aj and bj this
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mapping reduces to the extremal distortion mapping which shows that the linear

distortion estimates of Hersch and Pfluger ([11], Cf. [15]) are best possible. The

possibility of rotating the extremal distortion mapping to obtain a quasiconformal

mapping in space was first suggested by a statement without proof in a paper of

Sycev [19]. We show that rotation of this mapping yields, in fact, an extremal

space mapping. The proof of this result makes no use of the properties of elliptic

functions—in fact, only the Riemann Mapping Theorem and the Schwarz Lemma

are needed. In § 2 we observe that the rotated mapping gives some information

concerning estimates of linear distortion in spaceC2\ As a corollary of our first

theorem we^derive an interesting monotone property for the moduli of Grotzsch

rings.

In § 3 we consider the extremal mapping of a half plane with two distinguished

interior points onto another such configuration. After finding the dilatation of the

space mapping obtained by rotation about the boundary line, we employ the

quasiconformality of this mapping to derive inequalities for harmonic measure.

Finally, in § 4, we study the extremal mapping f0 of a half plane with one

distinguished interior point and two distinguished boundary points onto another

configuration of this type. We show that the space mapping Fo obtained by rotation

about the boundary line is i^(/0)
3-quasiconformal.

1.2. Definitions and notation. Suppose that / is a diffeomorphism of an

n-space domain Ωj onto ί l 2 . Then for P s ί l j the differential df=df[P) is affine

and maps the unit ball onto an ellipsoid E. The lengths of the n semiaxes of E

are called the stretchings of / at P. Let Ln = Ln{P) and ln = ln(P) denote the

maximum and minimum stretchings of / at P. Then we define the dilatation of f

by

If this dilatation is finite we say that f is a differentiable quasiconformal
mapping of ί2χ onto ί22. If K{f)^K<oo, then we say that / is a differentiable
K-quasiconformal mapping of ίlx onto ίϊ2.

This definition may be'generalized in the following way to include an arbitrary
homeomorphism f of 12] onto ί22. I f / is differentiable with Jacobian J > 0 a. e. in
Ώi and if f is absolutely continuous on lines (Cf. [ 9 ]), then we define K(f) by
taking the essential supremum in ( 1 ) ; otherwise we let K(f)= ©o. If this
dilatation, as redefined, is finite, the mapping is said to be quasiconformal, and if

it is called K-quasiconformal. The quasiconformal mappings

ζ2> Other distortion theorems making use of results of this paper appear in a paper of M. Virtu
[20].
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considered in this paper will be differentiable except at a finite number of points
or on a finite number of smooth curves.

Next, we shall find it convenient in some of our proofs to make use of the
hyperbolic density [17]. Suppose that G is a simply-connected domain in the
z-plane, z = x+iy, with nondegenerate boundary, and that w = g(z), w = u+iv, is
a conformal mapping of G onto the half plane z>>0. Then the hyperbolic
density of G is defined by

(2

and the density p is independent of the conformal mapping g. The hyperbolic
density satisfies the transformation law

3)

if w = w(z) is a conformal mapping of G onto G'. If Gι and G2 are two simply-
connected domains with nondegenerate boundaries such that Gi < G2 (i. e., d is a
proper subset of G2), then it follows by the Schwarz Lemma that

( 4) />(*, GO > ρ{z, G2) for ^ d .

If G is such a domain and if aγ and a2 are points in G, then the hyperbolic
distance from aλ to a2, with respect to G, is

h = h(a19 a2) = inf I p[z)\dz

where the infimum is taken over all arcs joining ax and <z2 in G.
Finally, let G be a Jordan domain and 7 a boundary arc. By the harmonic

measure of 7 at z with respect to G is meant the unique function ω = ω(7,2)
which is bounded and harmonic in G, and which has boundary values 1 at all in-
terior points of 7, and 0 at all points which are interior to the complementary arc.

1.3. Rotation of plane mappings. Suppose that Gx and G2 are domains
in the xxyx- and x2y2-plsnes which are symmetric with respect to the xλ- and
:r2-axes, respectively. Let x2+iy2 — f[xi+iyi) be a differentiable X-quasiconformal

mapping of Gx onto G2 such that f{x1—iy1)=f{x1+iy1) for each point xx+iyx € Gu

We may assume that y2>0 for 3^ > 0 . Let P=x1+iy1, yλ^0, be a point in
Gi, and let L2 = L2(P) and Z2 = 12{P) be the maximum and minimum stretchings
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of / a t P. Then LJ

Next, let il x and Ω2 be the domains in space obtained by rotating Gx and G2

about the xx- and *r2-axes, respectively, and let (r,θ,xx) and (5, φ, x2) be cylindrical

coordinates about the xx- and ,r2-axes, respectively. Then the mapping given by

F(r, θ, x1) = (s, φ, x2), where

x2 + is =f[xi + ir\ φ = θ,

is a diffeomorphism of ίli onto ίl 2.

Now let P be a point in Ωx. By symmetry we may assume that P lies in

Gi and that P= xx + iyι,yi^0. The maximum and minimum stretchings of F

at P are given by

(L3 = m a ^ L ^ / j ^ ) , Z3 = min(Z2,3/2/yi) for J Ί > 0,
(5)

\L3 = L2 and /3 = Z2 for 3̂1 = 0.

Thus a sufficient condition for F to be a differentiable quasiconformal mapping is

that there exist m^l^M such that

(6 ) ml2 ^ y2/yχ ^ ML 2 for 3;x > 0,

in which case

(7) K(f)^K[F)^^-K(f).

Finally, suppose that m — 1 = M in ( 6 ). Then it follows from ( 7 ) that

K(F) = K(f). If we make the natural assumption that an extremal mapping of

ίlx onto ί l 2 must take a plane section of Ωx containing the real axis onto a plane

section of ί l 2 containing the real axis, then by (5) we may conclude that F is

extremal. This is the case in Theorem 1 of this paper.

2. Rotation of the extremal distortion mapping. For j = 1,2, 3, 4, let
a, and bj denote a pair of positively ordered quadruples of points on the real axis

in if2. Let Hi = H(a19 a2, as, a^) and H2 = H(bi,b2,b3,b4) be the quadrilaterals

formed by the upper half plane H with the vertices a5 and bp respectively. If f

is any quasiconformal mapping of Hx onto H2 with vertices corresponding, then

mod H2^K(f) mod Hx (See [15]). If we take X=(mod H2)/{moά Hx), then there

exists a unique extremal mapping f0 of R2 onto itself such that fo{aj) = bj, j

= 1,2, 3, 4, and K(f0) = K.

We now briefly describe / 0 . First, by performing preliminary Mobius transfer-
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mations of R2 onto itself we may assume that the given pair of quadruples are 0,
k19 l/kl9 oo and 0, k2, l/k2, oo. Since K{f) = K(f~1) we may assume that 0<kx

^g&2<l. If kλ = k2 there will be nothing to prove; hence we take 0 < & I < £ 2 < 1 .

Then for j = 1, 2, let z} — Xj+iy5 and w3 = u5Λ-iv5, and let

κ5 = κ(kj), κ; = κ(kΛ) = κ(k;),

where, for 0 < £ < l > K(k) and K'[k) are the complete elliptic integralsC3) defined
by

K = K{k) = J [(1 - t2){l - kψ)]~ » du

K* = K'(k) = K{k')y k' = (1 - ¥) ^ .

Next, let z3 — gj{w3) map the rectangle Rj: 0 < u5 < i£, , 0 < v5 < Kj conformally
onto the quadrilateral Hj with vertices corresponding^. Finally, the affine mapping

carries Rλ onto R2. ThenfQ = g2o φ°gfι is the required extremal mapping, after
being extended by reflection in the real axis. This mapping is differentiable at all
points of ίί 2 but ai9 j = 1, 2, 3, 4.

To calculate the dilatation of f0, let Pi be any point in the upper half plane
i n zx > 0 , and let P2 =/0(Pi), Qι = 9ι~\P^ and Q2 = gfι{P2). The maximum
and minimum stretchings L2[PX) and Z2(-Pi) of jΓ0 at Px are

T -
2 "

/ _ g ; 1<7/(Q2)1
2 ~ X # l^(Q)l 'l^(Q)l l^(Q)l

whence, because of symmetry and the removability of analytic arcs for quasicon-
formal mappings [15],

( 3 ) Although K is being used in this paper to denote either the dilatation of a quasiconformal
mapping or the value of an elliptic integral, the context will always make clear the meaning
of K.

C4) This mapping is gj(wj) —kjsn2(wjf kj), where sn denotes Jacobi's elliptic sine function [6; 14],
but in our proofs that fact is not needed.
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Next, for 0 < £ < l , let R(G,n,k) denote the Grδtzsch ring in Rn whose
boundary components are the segment [0,k] of the # r axis and the sphere Sn~ι.
Let

(11) m{n, k) = mod i?(G, n, k).

It is well known [15] that

(12)

where K(k) and K'(k) are the elliptic integrals defined inf (8 ). If n = 2, then by
(10) and (11) obviously K= m(2> kι)/m(2, k2). T h e n / 0 is the extremal distortion
mapping of R{G, 2, kx) onto R[G, 2, k2). That is,

max

where f is any K-quasiconformal mapping of the unit disk onto Itself with f[0) = 0,
and f0 is the unique mapping of this class such that fo(ki9 0) = [k2,0) and K(f0)
= K(See[lS\).

In order to prove that the space mapping Fo obtained by rotating fQ about the
real axis is also quasiconformal, we shall employ the following lemma, which is an
application of the Schwarz Lemma.

LEMMA 1. Far j=l,2, let R5 be the 'rectangle 0<uj<pj, 0<vj<qj,

0<p1?===p2<oo> 0<<72^tfi < °°> cind let
j 5

where 0<p1?===p2<oo> 0<<72^tfi < °°> cind let

zv2 = u2 + iv2 = φ{wχ) = ~-Uχ + i—*-Vx
Pi Hi

be the natural affine mapping of R1 onto R2. If Qi € R1 and Q2 = φ(Qι)€ R2>
and if p{Qp Rj) is the hyperbolic density of Rj at Qp then

( I 3 ) ^ ^ < A -

with equality if and only if R1 and R2 are similar.

PROOF. We prove only the left side of (13), the right side being proved
similarly. Because of the transformation law (3), the equality is obvious when the
rectangles are similar. Otherwise, because of (3), it is sufficient to prove the
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lemma under the assumption that px = p2 = 1 and 0 < q2 < Qi < °°. Then the left
side of (13) reduces to

(14) P(QI>RI)<P(QVR*).

To prove (14), identify the wx- and tc2-planes so that the corresponding axes

coincide. Then clearly R2 < Rx and Qx lies vertically above Q2. Since

IQ.-!

it is clear that R2 <RX, where R2 denotes the translate of R2 by an amount

I Ωi — Q21 Hence by the Schwarz Lemma in terms of hyperbolic densities ( 4 ),

we have

R*Ί = p(Qt>Rt).

We now prove that the space mapping Fo is quasiconformal. Under the

assumption stated at the end of § 1.3 it is extremal.

THEOREM 1. For j = 1,2,3,4, let a} and bj be a pair of positively

ordered quadruples of points on the real axis in R2. Let f0 be the extremal

mapping of least dilatation from R2 onto itself with fo(aj) = bj> and let

K(fo) — K. If FQ is the mapping of R3 onto itself obtained by rotating f0

about the real axis in R2, then Fo is an extremal quasiconformal mapping of

R3 onto itself with K(F0) = K.

PROOF. AS already remarked, we may assume that the given pair of

quadruples are 0, ki9 l/klf oo and 0, k2, l/kv oo, with 0 < kλ < k2 < 1. Since the

mappings obtained by rotating the preliminary Mδbius transformations about the

real axis are again Mδbius in space, this normalization does not affect the dilatations

of the space mapping Fo.

Now let Pi be any point in R3— [0, k19 l/kv oo}. By symmetry we may

assume that Px = (Xi,yi, 0), y^O. The three strecthings of Fo at Px are easily

seen to be

v 12> y2/yx for yx > 0,

L 2, l2, l2 for yx = 0 0 < xx < kx or xx > l/kx,

L2, L 2, l2 for yx = 0 xx < 0 or kx < xx < l/kX9

and it will follow that L 3 = L2 and /3 = l2 at Px if
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h < — < L2 for y, > 0 .
JΊ

But this follows immediately from Lemma 1, in view of ( 2 ) and ( 9 ) .

From ( 9 ) and (10) it now follows that L^/U = K at each point of R*

— {0,^i,l/^i,oo}. We conclude that Fo is a differentiable quasiconformal mapping

of R3 — (0, k19 l/k19 00} onto .R3 — {0, k2, l/k2, 00} with K(FQ) = K, and, by removing

the singularities, that Fo is a (generalized) quasiconformal mapping of R* onto itself

with the same diktation(5). Under the assumption at the end of § 1. 3 we may

conclude that Fo is extremal.

REMARK. Suppose that f is a i^-quasiconformal mapping of the unit ball

onto itself with /(0) = 0. Then it is known ([ 7 ], [12], Cf. [18]) that

(15) \j\P)\ ^c^/κ\P\ι/κ for | P | < 1,

where c is a constant, 4^c^A'21/2eπ/i. Now the mapping Fo in Theorem 1 is a

K-quasiconformal mapping of the unit ball onto itself with F0(0) = 0 and F0(k19 0, 0)

= (k2, 0, 0). Since, as stated in [15],

it follows that the constant c in (15) cannot be replaced by a number less than 4.

Next, let m(n, k) be as in (11). The following result on the monotoneity of

m(3, k)/m{2, k) is an immediate consequence of Theorem 1.

COROLLARY I. For 0 < k < I, m(3, k)/m(2, k) is a monotone increasing

function of k.

PROOF. Let 0 < kλ < k2 < 1 and K=m{2, kι)/m{2, k2). Then 1 < K< 00. Let

/o and FQ be the corresponding mappings in Theorem 1. Since Fo is K-quasicon-

formal and maps the Grotzsch ring R{G, 3, kλ) onto the ring R{G, 3, k2), it follows

from [ 8 ] (Cf. also (41) in [ 3 ]) that

m(3, kλ) ^ K m(3, k2),

whence

C5> It is also easy to see that Kr(F0')=Ko(F^)=Kt where X/GFo) and XoTO are the inner and
outer dilatations of Fo as defined in [ 9 ].
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ra(3, £i)/ra(2, kγ) ̂  m(3, k2)/m{2, k2)

as asserted.

3. Rotation of the extremal mapping for the case of two interior
points. For j = 1, 2 let a5 and δ^ be two points in the half plane Re Zj > 0. If

f is any quasiconformal mapping of Re zλ > 0 onto Re z2>0 with f[ax) — a2 and

Άbi) = b2> then μ(e~2hϊ)^K(f)μ(e-2fιή, where hj = h[aPbj) denotes the hyperbolic

distance between ^ and έj with respect to the half plane Re z} > 0, and μ(k)

= m(2,k) as in (12) (See [13]). If we set K= μ{e~2ht)/μ(e-2hi)y then there exists a

unique extremal mapping f0 of this class satisfying K(fQ) = K.

We briefly describe f0. First, by performing preliminary Mobius transformations

of R2 onto itself we may assume that the given pairs of points are kγ

1/2, kλ~
1/2 and

k2

/2

y k2~
1/2

y and there is no loss in generality in assuming that 0 < kγ < k2 < 1. It

is easily checked (Cf. [13]) that £, = ί Γ 2 \ i = 1,2.

Now for j = 1,2, let zό = ̂  + ryj and Wj = Uj + iVj. Then (See [6; 14])

k3)

maps the rectangle i?^: 0<Uj<Kjf 0<Vj<K/ conformally onto the first quadrant

&i > OJ yj > 0 of the Zj-plane, with

gj(0) = 0,

Let φ be the natural affine mapping of Rλ onto R2. T h e n / 0 = 9ioφ° 9\~ι is the
required extremal mapping, after being continued by reflection in the real axis. We
note that the stretchings of f0 have the same form as in ( 9), hence that K=K[f0)

We now prove that the space mapping Fo obtained by rotating f0 about the

imaginary axis is also quasiconformal, and we determine its dilatation.

THEOREM 2. For j=h2 let as and b3 be two points in the half plane Re zj>0.

Letfo be the extremal mapping of least dilatation from the right half plane onto

itself withfo(a1)=a2 andf^>ι)—b2. If Fo is the mapping of Rz onto itself obtained

by rotating f0 about the imaginary axis in R2, then Fo is a quasiconformal

mapping of R3 onto itself with K(F0) = (k'1Kiy/(ki'Ki')*, where k^e~2hi,

hj = h(ajf bj) being the hyperbolic distance between the points a} and bj with

respect to the half plane Re z5 > 0.

PROOF. If the mapping g5 is reflected in the segment Uj = 0, 0<Vj< Kf,

then g, maps the rectangle \UJ\ < Kjy 0<Vj<K/ conformally onto the upper half
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plane Im Zj > 0, while the extension of ψ is still affine. It follows by ( 2 ), ( 9 ),
and Lemma 1 that for Im zx > 0,

(16) U<^-<U.

Now let Pi be any point in JR3— {0, 00} —Ci'uCi", where Cί and C}" will here
represent the circles obtained by rotating the points k}12 and kfυ\ respectively,
about the imaginary axis. By symmetry we may assume that Pι={Xι,yι,0), #1
y1>0. Then by [5, p.41; 6, #125. 01]

we get

where

sj = sn(up kj), Cj = cn[up k5), d5 — dn(up kj),
(18)

Sj = sn[vp k \ Cj = cn(vj, k/), Dj = dn[vjf kj).

It is easily checked, using (17) and [5, p.9; 6, #121. 00] that the stretchings of Fo

at Pi are

L2, l2, -jr~ for xx > 0, yx > 0

L I T for T — Π Λ; ^> Π

—— I \r\y Λf ~~" O* C\<^ IT -^^ p fw(19)

L i X9

Now by [5, p.38; 6, #125.01]

(20)
A ' A

while the inequalities of [ 4 ] give the sharp bounds

}
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κ2 cxdχ . c2d2 kί*κx ι+k2 s1c1 . s2c2 ^ κ;
Dλ D2 K2

From (16), (20), and (21) we thus obtain

/99\ (l+k2)K2 , x2
( 2 2 ) / < ^

Since obviously (1 + k2)K2>(l + kιjKx in (22) and since the inequalities of [ 4 ] show

that the coefficient of L 2 in (22) is not less than 1, it follows from ( 7 ) that the

space mapping Fo has dilatation K(F0) satisfying

h '2K K' h '2Kh "*

To show that (23) holds with equality it is sufficient to show that the

coefficient of L2 in (22) cannot be replaced by a smaller number. By (19) and [ 4 ],

(xz/xi) -*- L2 approaches (k^KΛK-[)/(k2

2K2K2) as a limit as zΛ tends to kψ along the

segment yx=0, k{/9<x1<kϊί/2. By the continuity of (x2/x1)-^L2 on this segment as a

function of zx (Cf. (17)), we conclude that the second inequality in (22) is sharp.

Therefore F o is a differentiable {k^K^)2/{k2K2')
2-quasiconformal mapping of R* —

(0, oo] —Ci U CY' onto R3— {0, oo) — C% U C2" and hence, by removing the singularities,

a (generalized) quasiconformal mapping of i ί 3 onto itself with the same dilatation.

COROLLARY 2. For j= 1,2 let Ίs denote the ray xj = 0,yj^0, and let

z2 z=fQ(Zi) fa the extremal quasiconformal mapping of Theorem 2 carrying the

first quadrant of the zyplane onto the first quadrant of the z2-plane, with

/o(O), Um = kψ, /o(*Γ1/2) = *ί l Λ , ami /0(oo) = oo. Then

where ω^ijy Zj) denotes the harmonic measure of Ί} at z} with respect to the

first quadrant of the zrplane. These bounds are sharp.

PROOF. Since ω(Vp Zj) = 2θj/π, where θj = arg zjf and since (tan 0])/(tan Θ2)

= (x2/xi)/(y2/yij> this result follows directly from (20) and (21) above. The bounds

are sharp because the inequalities in (21) are sharp.

COROLLARY 3. Let g be the extremal quasiconformal mapping of a
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quadrilateral G} onto a quadrilateral G2 with g[Ί^ = Ί2, where τi1 and 72 are

sides of Gx and G2, respectively. For j = 1,2 let ω(7j, z5) denote the harmonic

measure of Ίs with repect to Gj at Zj. If a2 — mod G2 < mod G2 = ax, then

where A = O(a2e
π/a*) as a2 tends to 0. This is the best possible result as to

order.

PROOF. We may assume that G5 is the rectangle 0<Xj< 1, 0<yj<ap

where aj = Kj'/Kj9 0<k1<k2<h and that Ί} is the vertical segment x} = 0,
O^yj^aj. Then (Cf. beginning of §3) Gj may be mapped conformally onto the
first quadrant of the ze j-plane by means of

j_

Wj = k5

 2

with Ί5 being carried onto the ray u5 — 0,
Next, identify the 2:r and 2:2-planes so that the corresponding axes coincide.

Then clearly G2<GV Ί2<ΊV and zλ^Gλ lies vertically above its image z2 = g(z1)
€ G2. As in the proof of Lemma 1, G2'<Gλ and Ύ2'<

fyj, where G 2 ' and Ί2

denote the translates of G 2 and 72, respectively, vertically by an amount \z1—z21.
From the conformal invariance of harmonic measure and the maximum principle
for harmonic functions we then easily obtain

Θ { y ) > ( y \ ) { y ) 2 Λ

Since, for 0 > O , β/(tan θ) is a strictly decreasing function of θ, we have

Then (24) and Corollary 2 yield

!<-!•-<*••**•'_ k2

the right side being O(a2e
π/aή as a2 tends to 0 with ax fixed, according to

[5, p.21; 6, #112. 04]. We see that the order is correct because the upper bound
in Corollary 2 is sharp.
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4. Rotation of the extremal mapping for the case of one interior
point and two boundary points. For ,7 = 1,-2 let ap βp Sj9 be a triple of
points in R2 with

Im a5 = Im βs = 0, Im hΛ > 0.

If f is any quasiconformal mapping of Im zΊ > 0 onto Im z2 > 0 with βcί^j = ct2,

/ ( & ) = βv Ά$i) = %2> then μ(sin τtωι/2)^K[f)μ{sm πω2/2), where ω5 denotes the

harmonic measure of the segment aβ5 at δ, with respect to the upper half plane

and μ(k) = m(2,k) as in (12) (See [13]). If we take K= μ(sin πω£/)/μ{sm πω2/2),

then there exists a unique extremal mapping/0 of this class satisfying K(fQ} = K.

The mapping f0 is easily described. First, by performing preliminary Mobius
transformations of R2 onto itself we may assume that the given pair of triples are
— 1,1, iaλ and —1,1, ia2, and that 0 < α 2 < α 1 < o o . Let

so that 0 < &i < k2 < 1 and a} = kj'/kj. It is easily verified that kj = sin πωj/2.

Then for = 1,2, let zj = Xj+iyj and Wj = Uj + ivj. Next,

where en denotes Jacobi's elliptic cosine function [6; 14], maps the rectangle

Rj . 0<Uj<Kp — Kj <vj<0 conformally onto the first quadrant of the £j-plane

with

gA-iKj) = 00, glKy-iK)) = iaj9 g3{K5) =.0, ^ 0 ) = 1.

Finally, let φ be the natural affine mapping of R^ onto R2. Then / 0 = g2

oφ°gϊ1

is the required extremal mapping, after being extended by reflection in the imaginary

axis. This mapping is differentiable at all points of Im z1 > 0 except iax.

To calculate the dilatation of fQ, let Px be any point in the first quadrant of

the z,-plane and let P2=f0{Pi), Qi^ffϊKPi)* and Q2 = g~2

ι{P2). The maximum and

minimum stretchings L2(P^j and l2(Pi) of f0 at PΛ can be written as in ( 9), whence,

as in previous work, K = K(f0) = (K^K^/iK^K^).

We now prove that the space mapping Fo obtained by rotating fQ about the

real axis is also quasiconformal.

THEOREM 3. For j=l,2 let aP βj9 δ ; be a triple of points in R2 with

Im a.) = Im βj = 0, Im
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Let f0 be the extremal quasicσnjσrmal mapping of least dilatation from the
half plane Im zλ > 0 onto the half plane Im z2 > 0 with f0(oίi) = Λ2> fo(βi) = &>

/o(8i) = δ2, α ^ Zeί K(f0) = K. If Fo is the mapping of R* onto itself obtained
by rotating ft about the real axis in R2, then Fo is a quasiconformal mapping
of R* onto itself with K^

PROOF. AS already remarked, we may assume that the given triples are —1,1,
ώj and —1,1, ia2, with 0<α2<<Zi<°o. As in earlier problems, this normalization
does not affect the dilatation of the space mapping Fo.

Now let Px be any point in iϊ3— { — 1,1} — &> where Cj will here represent the
circle obtained by rotating the point iaj about the real axis. By symmetry we may
assume that Px = (xvyv 0), x^O, y±^0. The three stretchings of Fo at Pi are
easily seen to be

L2, Z2, — for yΛ > 0, xx > 0,

J
j L2, Z2, l2 for yΛ = 0, 0 ^ xΛ < 1,

^ L2, /2, L 2 for JΊ = 0, α:i > 1.

If we show that, for yx > 0 and ^ ^ 0,

(25) ^ . < ^ Γ <
it will follow from (7 ) in § 1.3 that K^KiF^K3.

To establish (25) we note first that gjiwjf maps the rectangle Rj conformally
onto the half plane Im Z) > 0. Hence by Lemma 1 and (9),

(26) ^ / 2 < -^2*- < ^ L 2 ,

where r,={a*i+^t, ; = 1,2. Now by [5, p.38; 6, #125. 01]

(27) xι Re ajwfik,) __ \Λ ήd) S)D) T±
rs ~ \<φυ*k,)\ " I . c) Q J '

where sjy c}, d}, Sj, Cj, D5 have the meaning assigned in (18).
Next it follows from [ 4 ] and [5, (29), p.13; 6, #122. 03] that

(28) ^ - <c s^2 -±- ^ < ^- -^ί <<
K c C K KK-2 c2 Cι Kx K1 C 2 C\ K.2
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and hence by (27) that

Because of (26) this gives (25). Thus Fo is a differentiable i£3-quasiconformal

mapping of R3 — { — 1,1} — & onto R3 — { — 1,1} — £72, and hence a (generalized)

quasicon-formal mapping of Rz onto itself satisfying K^K(F0)^K3 as claimed.
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