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1. Introduction. In the previous papers [6], [7] we have studied
the convergence properties and inversion theory of convolution transform

(1) f(x) = ( G(x-t)da(t),

for which the kernel G(t) is of the form

(2) G(t) = J^\i~ [F(s)Γesids.

Here F(s) is the meromorphic function with only real zeros and poles,
and is of the form

F(s) = eb8 Π (1 - s/ak)e'la></(l - s/c,)e8/c* ,
kΠ

where b, {ak}~, {ck}~ are constants such that 0 ̂  ak/ck < 1, Σ~= 1 ύk2 < °°
and ck may be equal to ±oo.

In these papers we assumed the order of [^(s)]"1 as | τ | —> oo(s = σ + iτ),
however, this order should be determined originally by the correlation of
zeros ak and poles ck of F(s).

From this point of view, Z. Ditzian and A. Jakimovski [1], [2], [3]
showed that for all integer n ^ N (N = N({ak}, {ck})

uniformly in the strip \σ\ ^ R for every R and they obtained the inver-
sion formula of the transform (1) which differs from that of ours where
it was constructed by repeated integro-differential operators and our
formula consisted of integral operator and differential operator separated
from each other.

If the series Σ~=i (αϊ"ι — cϊι) converges then the kernel G(t) becomes
a special one called class III kernel and has the characteristic properties
([2], [7]).
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In this paper we shall suppose that

and for some positive number δ

( 4) ak+1 - ak > δ (k = 1, 2, •) .

The condition (3) means that G(t) is a kernel of class II, and in §4
we shall show that this condition implies N = ^ necessarily and the
infinite differentiability of G(t) can be obtained. However, this condition
(3) is not enough to become clear the construction of G(t) completely.

If we assume the condition (4) we shall see that the class of kernel
G(t) can be considered as a class of Dirichlet series and that if we replace
the variable t of G(t) by the complex variable z the analyticity of G(z)
can be obtained. This class of Dirichlet series is a generalization of the
class of entire function generated by the given sequence which is studied
by J. Mikusiήski ([4]). Though the assumption (4) seems to be severe,
it causes no inconvenience for practical use.

2. Function H(t) as a Dirichlet series. For brevity, we assume
hereafter that 6 = 0 and the constants ak, ck are positive and increasing.

Let us define

S oo n

(1 - ak/ck)gk(u + ck

ι)du + —j[t - {ak

ι - cj1)] ,
where j(t) is the standard jump function, that is, j(t) = 1 for t > 0, 1/2
for t — 0, and 0 for t < 0. By a simple calculation it is easily verified
that hk(t) is a normalized distribution function and that

hk(t) = (1 — ak/ck) exp {ak[t — (ak

ι — c^1)]} (t < aζι — Cζ1)

h (n~ι /»—1\ 1 n /9/»
rvkyUsfc isk J — JL \Jbkι LΛ\Jk

\" e~stdhk(t) = (1 - s/ck)es"*/(l - slak)e"^ ,
J—oo

the bilateral Laplace transform converging absolutely for 9is < ak.

THEOREM 2.1. If we set for n ^ (n ^ 2)

Hn(t) = K & h2 & >& hn(t) ,

where the operation >$< denotes the Stίeltjes convolution for distribution
functions, then:
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A. Hn{t) is a normalized distribution function;

B. (± Bj > exp iaϊt - Σ («Γ - o i l « < Σ (a? - c*1

J=l I L * = 1 J J * = 1

333

1 - an

2c,c2 cn

1

= Σ fa1 - C?
k

t > Σ (akl ~ Cfc1) >

where

Bjn) = Π (1 ~ αy/ct)/ Π' ( l - as/ak) (j = 1, 2, . . , n)

and Π ' denotes the product excluding the factor for k = i;

C. I e~8tdHn(t) = Π (1 - s/ck)eslCk/(l - s/ak)e8lak ,
J-oo k = l

the bilateral Laplace transform converging absolutely for 9ϊs < a lβ

PROOF. Since the conclusion A and C are familiar results [2], [6], [7],
let us prove only conclusion B by the induction.

For the sake of simplicity we shall write sn for Σϊ=i fe1 — cΐ"1)-
In the case n = 2, if t > s2, then hγ{t — u) = 1 for u < a^1 — c2

ι and

we have h, >$< h2(t) = \ 2 2 d^2(^) + α2/c2 = 1, and if t < s2
J—oo

^(ί — u)dh2(u) + hx(t — (aj1 — c

t h e n

. φ h2(t) =

= Γ 8 l^(ί -
J-«>

,{t - (a2

ι

= (1 - ajφ***'*-

+ (1 - tti/cOίl -
α2 —

+ α2/c2(l - a

= \ajc2

a2 —

+ jl _ —2«—(1 - αA) 1(1 - aJφ
{ a2 — aγ )

-82) \ ^ l (

c1c2(α1 — α2)
_ J5(2)eo1(ί-β2) _|_ β(2)ea2{t-s2)

and it is clear t h a t /^ >$< / 2̂(s2) = 1 — αLα2/(2c1c2). Thus we have proved t h e
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conclusion C for n = 2.
Now, we assume that the conclusion B is valid for n = m. For

t < sm+1, t - sm< α"Vi - c~ι

+ι and we have

Hm+ί(t) = Γ Hm(t - u)dhm+1(u)
J-oo

" '"fl . ί ί - u)dhm+1(u) +
—

Hm(t - (α- +1 - c-VO)-

- (1 - α m + 1 / c w + 1 )
α m + 1 -

= Σ {(1 - g«+i/g.+i) α m + l g r ) + am+1Br/
i=i I α m + 1 - aj

+ {(1 - am+1/cm+1) - (1 - α m + 1 / c w + 1 ) Σ - α

I i=i a

It is easily seen that

(1 - am+1/cm+1)
 a^B*m) + am+1Br/cm+ί = B^+1) (j = 1, 2, , m) f

(1 - am+jcm+1)\l - Σ α m + l j g f ) } = BΛί ι ) ,
I i=i α w + 1 - α, J

and hence for t < sm+1

Hm+1(t) = Σ 1

 JBjw+1)eαi(<-s-+i) .

On the other hand, it is also clear that

Hm+1(sm+1) = 1 - α ^ α^+i/ί&A cm+1) and JHΓw+1(ί) = 1 for t > sm+ί.
Thus the conclusion B is valid for n = m + 1 and this completes the
proof.

COROLLARY 2.1. // Hn(t) is defined as in Theorem 2.1, then for
n (n ^ 2)
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t<Sn

cJ t = sn

(2) A}-1 = Π (1 - α,/β»)β ί' Vβ Π' (1 - α,/α»)e i' *

This is an immediate rewriting of the conclusion B of the preceding
theorem.

THEOREM 2.2. Let

A, = Π (1 - ajW't/e ft'(l - αy/α4)β^ *
fc=l ϋ s = l

(i = 1, 2, •). TΛew the series H(t) — Σ Γ - i ^ i β α i < converges absolutely and
uniformly in any interval (—°°,ί0] (—°° < £ 0 < °°)

PROOF. Since Σ"=i aϊ2 < °° and ΣΓ=i ck2 < °° the infinite products
Π (1 — s/ak)eslak and Π (1 ~ s/ck)e8lCk converge absolutely and uniformly
in any closed bounded set of the s-plane that contains none of the points
ak and cfc. Thus A5 are well-defined for every j . If all ck equal +oo,
then H(t) is a slight modification of entire fuction which treated by
Mikusiήski [4, p 388] and the most part of the proof of this theorem due
to him.

Now, for any fixed j we denote by k(j) the largest k such that ck< a,.
Evidently, k(j) < j and k(j) ] °o as i j °° •

We have

log I A, I = Σ (log 11 - a5jck\ + a5lck) - Σ (\og(a, /ak - 1) + a,Ίak)
fc=l fc=l

oo

- Σ (log(l - aj/ak) + αj/αt) - 1
k j+

(j)

= Σ
k=l

- Σ dj/dk - Σ log(aάlak - 1) - Σ (log(l - ty/α*) + α,
fc fc(i)+ k=l k = j+i

It is clear that

Σ (log(l — a,j/ck) + aj/ck) < 0 ,

and, using the fact that the function \og{aίjx — 1) is decreasing for
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0 < x < ajf it is also clear that

Σ l°g(aj/Ck ~

Then we have

i log I A, I < - Σ_ fe' - <T) - r- . Σ loff(αj/<>ι - 1)

k(j)

= ~ Σ fe1 — c^0 + Si + S 2, say .
fc = l

If j = 1 or fc(i) = i — 1, then the second term vanishes. We have by (4)
of §1, using Mikusiήski's method,

ι = λ g
α k k ( j

j — k)o

S ί(i-*(i)-D/o,
Iog(l/ί-l)dί<log2/δ,

0

and

S2 < 1/δ .

Thus we have
I k(j)

-i- log |ΛI < (1 + Iog2)/δ - Σ fe1 - or1) ,

α y fc = i

so that lim fc(i) = co and (3) of § 1 implies that

limlAjl1*'' = 0 .
Now, let tQ be an arbitrary fixed real number, then, when t ^ t0

lAje s'l ^ \A3 \eas** = (\As\
lfa^)a'm .

Therefore, for sufficiently large j , we have

But, by the assumption (4) it follows that lim aj = oo, so we have
i lθg^

for sufficiently large i This implies that the Dirichlet series H{t) =
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Σ?=i Aj6a^ converges absolutely and uniformly in — oo < t <Ξ ί0 and com-
pletes the proof.

REMARK. In Theorem 2.2, it should be noted that real number t can
be replaced by complex number z and the Dirichlet series H{z) — Σ7=i Afia>*
converges absolutely and uniformly in any half plane 9ΐz < ί0.

If all ck equal to + oo, this class of Dirichlet series reduces to a slight
modification that is called the class of entire function generated by the
given sequence {ak} of exponents. Thus, our class of Dirichlet series is
a generalization of it.

THEOREM 2.3. If H(t) is defined as in Theorem 2.2, then H(t) is
infinitely differentiate term by term in (—<*>, <*>), that is, for any posi-
tive integer n, H{n)(t) = ΣT=i^i^e a i t converges absolutely for every t and
uniformly in any interval — oo < £ rg £0 ( - c o < £ 0 < + ° ° ) .

PROOF. In the preceding Theorem 2.2 we had

for sufficiently large j . From this fact, for sufficiently large j , we have
χ^\ < α?(l/2)β' = 2*lotW-βi

Thus we obtain our desired results.

THEOREM 2.4. If HJt) and H{t) are defined as in Theorem 2.1 and
Theorem 2.2, respectively, then for any t (— oo < t < oo)

lim HJt) = H(t) .

PROOF. By the estimations similar to that of Theorem 2.2, we have
for n > j

-ί log I Af | < - Σ fa1 - or1) - ^ Σ log(αy/αfc - 1)
% fc=i a fcfc(i)+i

- — Σ
a kj

and for arbitrary fixed t we have

for sufficiently large j . Thus, this estimation together with the same of
Aj implies that, given ε > 0, we can find j0 such that
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Σ AJ 'β ί* <ε/2 and

Then, we have

\H%(t)-H(t)\<'Σ\AP-j
3=1

However, it is clear that

lim Af] = Aj (j = 1, 2,

and consequently

<e/2

ίlβ i + e

,io),

which is the required result.

THEOREM 2.5. If H(t) is defined as in Theorem 2.2, then H(t) is a
distribution function.

PROOF. By Theorem 2.1, Hn(t) is the normalized distribution function
and

Γ ei7tdHn(t) = Σ (1 + iτlc3)eiτlcη{l + iz/as)eirIai .
J-oo j=ι

For any τ(— oo < τ < oo), it is clear that

Π (1 + iτ/φiτlct/(l + iτ/aj)eiτ!^ -> l/jP(ir) as n — oo ,
3=1

and that 1/F(iτ) is continuous at r = 0 and 1/F(O) = 1 = i ϊ j » - i i w ( - oo).
By the theory of distribution function [9, vol. Up. 262], there exists a
non-decreasing function H*(t) such that

ff*(oo) - 1, # * ( - oo) = o , lim Hn(t) = jff*(t)

at all points of continuity of H*(f) and 1/F(iτ) = Γ eiτtdH*(t). Using
J — oo

Theorem 2.4, it is clear that this function equal to H{t). This completes
the proof.

3. Construction of the kernel. Now, we may construct the kernel
G(t) and can be established its analyticity in the whole plane of z.

THEOREM 3.1. // H{t) is defined as in Theorem 2.2, then H(t) has
its derivative G(t) = H'(t) and

(1) G(t) is a frequency function and G(t) e C~(— oo,
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(2) Γ e-HG(t)dt = 1/F(s) ,
J—oo

the bilateral Laplace transform converging absolutely for 3ΐs < a19 and

(3 ) G(t) =

PROOF. It follows from Theorem 2.3 that H(t) has its derivative
G(t) = H\t) and (1) follows from Theorem 2.3 and Theorem 2.5.

Let s be an arbitrary real number <α l β Then, by (3) and (4) of §1,
it is clear that

Therefore, putting

(i = 1,2, •••), we can define an infinitely differentiate function K(t)
such as

where the infinite product defining Bs are convergent for all s, because

Σ fa ~ s)"2 < <*> for all s (s < a,) .
fc=l

It is trivial that K{t) has the same properties analogous to H(t).
By the definition Aό in Theorem 2.2, we have

B' α °° is Ί I
— - = — Π (1 ~ slak) βxps h (dj/ak — CL3-/(ak — s)>
Aj Uj — s fc=i I α f c — s J /

is Ί
(1 — s/ck) e x p s h (cii/Cfc — α, /(c f c — s)) > .

lc f c — s J

Then, putting

oo / s \ I ί s \

Q = ΐ[ (1 - s/ak) exp ^ _ — — W(l - s/cA) exp ^ _ j

and

*=i ^^(α/i. — s ) Otic* — s))
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we have

(5) Bj/At = —^l—Qe-^,
OLj — S

where the convergence of the infinite product Q and the series q are
easily verified by (4).

By Theorem 2.3, H'{t) converges absolutely for any t and uniformly
in any interval -oo <t<^u(— oo <u< oo). Thus, observing H'{t) = O(eait)
as t —> — oo and integrating by parts we have

e-HG(t)dt = ( e-*Ή'(t)dt =
J — S

by (5). However, the properties of K{t) same as in Theorem 2.5 for
shows that K{u + g) —> 1 as t6 —• oo.

S oo

e~8tG(t)dt exists for any real number
—oo

s(< αj and is equal to e"'/Q, i.e.

e-stG(t)dt - Π (1 - s/ck)esl°*/(l - s/ak)e"a>° - 1/F(s) .
o k = l

If we take any complex number s whose real part less than αx instead
of real number s such as s < αw it follows that the integral on the left
side of (6) converges in any half-plane 9ϊs ^ σ0 < ax and it represents an
analytic function in the half-plane ?Rs < αx.

On the other hand, it is familiar that the right side of (6) is analytic
in the half-plane 9ϊs < αlβ Since the both sides of (6) coincides on the
interval (—°°,ad of real axis, by the identity theorem, (6) is valid in
the half-plane 9ΐs < αx. Since that the bilateral Laplace transform con-
verges absolutely for 3ΐs < a1 is easily verified and (3) is an immediate
consequence of familiar theorem of Laplace transform [8, p. 241], the proof
is complete.

REMARK. AS in Remark of §2, the real variable t of G(t) can be
replaced by the complex variable z and, on that occasion, the series G(z) =
yΣ£=iCLjAjeaiz converges absolutely for every complex z and uniformly in
any half-plane ?Hz ^ ί0 (—oo < t0 < oo). Thus G(z) is an entire function.

4. Differentiability of G(t). In this section, we shall show that if
we take no notice of construction of G(t) then its infinite differentiability
can be obtained by the only condition (3) without the condition (4),
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provided t h a t t h e sequences {ak} and {ck} satisfy t h e other conditions in § 1 .

We shall need some prel iminary resu l t s .

Let na(t) = n({ak}, t) be t h e n u m b e r of ak ly ing in t h e interval (0, ί),
which is called t h e count ing function of sequence {ak} ([1], [5]).

L E M M A [5, p . 25]. For any λ such that 0 < λ < oo, we have

in the sense that all three expressions are infinite, or all are finite and
equal.

THEOREM 4.1. If the sequences {ak} and {ck} are defined as in §2, then

2 J \ak — Ck1) = 1 —
fc=i Jo t2

in the sense that both sides are infinite, or both are finite and equal.

PROOF. For any R > 0, we have easily
na{R) CR w (f\

&fc = ZΛ ak = na{ic)/xι -r \ — - — a τ .
ak<R k = ί Jo t

Hence we have

However, for all k such that ne(R) + 1 ^ A: ̂  na(R) it is trivial that
cζ1 ^ i?"1. Therefore,

k = nc(R)+l

and then we have

( 1 ) Jo t

On the other hand, we have also easily

k=ί

and

Hence

)

: = Λβ(Λ)+l

we have

na(R)

H Σ αr =

n.(Λ) - n.(Λ)

R

since α^1 ^ i?- 1 for k ^
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(2) Ίr!(a?-e?)
* i

Combining (1) and (2) and appealing the fact that na(R) —> oo and nc{R) —• oo
as JS—> oo, we obtain our desired result.

The following two results are the immediate consequences of this
theorem.

COROLLARY 4.1. If {ak} and {ck} are defined as in Theorem 4.1 and
na(t) — nc(t) = 0{tι~a) ast-+oo for some a > 0, then the series Σ ί U (^—Cζ1)
converges, in particular, l i m ^ {na{t) — nc(t)} < oo implies that the series
ΣfcU (akι — Ck1) converges.

COROLLARY 4.2. // {ak} and {ck} are defined as in Theorem 4.1, then
Σ~=i iakγ — ck

ι) = oo implies that l ϊ ϊ n ^ [na(t) — nc(t)} = oo.

THEOREM 4.2. // {ak} and {ck} are defined as in §1 and G(t) is defined
by (2) of §1, then the kernel function G(t) is infinitely differentiable.

PROOF. By Corollary 4.2, using Theorem 2.2 of [1] and Corollary 3.2
and Theorem 3.5 of [2], we obtain our theorem.

5. Another class of Dirichlet series. In this section we suppose
that the sequences {ak} and {ck} satisfy the following conditions:

( 1 ) ak > 0 , ck < 0 (fc = l, 2, . . . ) ;

oo oo

fc=l k=l

and for some positive number δ

( 3) ak+1 - ak > δ (k = 1, 2, •) .

The following is an analogous result to Theorem 2.2.

THEOREM 5.1. Let

A, = Π (1 - a3-/ck)ea^/e Π ' (1 - a3 /ak)ea^ (j - 1, 2, . . . ) ,

then the series H(z) — ΣΓ=iAjβαJz converges absolutely and uniformly in
any half plane ϋϊz < ί0 (— oo < t0 < oo).

PROOF. By the similar arguments to the proof of Theorem 2.2, we
have from (1) and (3)

αj 1 log I Ay I = aj1 Σ (log(l — a5lck) + aόlck) — Σ ak

ι

— aj1 Σ log(αy/αfc — 1) — ^Γ1 Σ {log(l — αy/α*) +
fc=i k=j+ί
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fc=i k 3 k=ι °

oo

aj1 Σ {l°g(l ~" a3'lak) + Uj/ak}

using the fact that

log{(l — dj/Ck) + aj/Ck} < 0 for every Jc .

Then, appealing the first condition of (2) we have

|A|1/β''-*0 as j-+ co ,

and we obtain our theorem by the similar arguments to the one in §2.
From this theorem it follows that H(z) is analytic in the whole plane

of z and H(z) is an entire function. This is also a generalization of the
entire function generated by the sequence {ak} introduced by Mikusiήski.

For example, the Fourier sine transform

F(X) = τ/B%if π Jo

becomes, after exponential change of variables, the convolution transform
(1) of § 1 with the kernel G(t) = V 2/π sin e* whose bilateral Laplace
transform is

Γ e-stG(t)dt = j /A s in( - —πs)Γ(-s)

= #* Π (l + -|r

= 1/F(s) , 0 < 9ΐs < 1 .

The meromorphic function F(s) has zeros ak = 2k — 1 and poles ck = —2k
(k = 1, 2, •••) and the sequences {αfc} and {ck} satisfy the conditions (1),
(2) and (3) with δ (<2). In this case, A3- is defined as

= /Isin( - i-π(2j - 1)) lim (l - _i_)r(-s)

2 l c-iy-1

π 2j - 1 (2j - 1)! '
using the familiar formula
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lim (-s + l)Γ(-s) = (-1)7*!

The entire function generated by the sequences {ak} and {ck} is

v A Paiz — J— V •*• ( — I; l

 r(2j-Dz

and

This function H'{z) is equal to the kernel G(t) in which the real variable
t replaced by the complex variable z.

Moreover, it is well known that the Laplace transform can be reduced
to the convolution transform (1) with the kernel G(t) = e~etet and the
meromorphic function

F(s) = 1/Γ(1 - s) = e-?8 Π (1 - s/k)eslk

k=ι

whose zeros are ak = k (k = 1, 2, ••) and all ck can be regarded as +oo
or — oo. In this case, A, is defined as

Ad = l /e^ i f i ' (1 - j/k)ejlk

k=ί

= lim (1 - s/j)Γ(l - s)

_ 1 (-1)'-* _ (-1)'-1

3 (j - 1)1 jl

The entire function generated by the sequence {ak} is

ττ(z\ _ v A pa3z = V (~1)3 1' pi*

and
oo / -j \j

This function £Γ'(̂ ) coincides also with the kernel G(t) whose variable
replaced by the complex variable z.
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