ON THE ANALYTICITY OF THE KERNEL OF A CLASS OF CONVOLUTION TRANSFORM

Dedicated to Professor Gen-ichirô Sunouchi on his 60th birthday

Yûkichi Tanno

(Received Nov. 17, 1971; Revised March 17, 1972)

1. Introduction. In the previous papers [6], [7] we have studied the convergence properties and inversion theory of convolution transform

$$
\begin{equation*}
f(x)=\int_{-\infty}^{\infty} G(x-t) d \alpha(t), \tag{1}
\end{equation*}
$$

for which the kernel $G(t)$ is of the form

$$
\begin{equation*}
G(t)=\frac{1}{2 \pi i} \int_{-i \infty}^{i \infty}[F(s)]^{-1} e^{s t} d s \tag{2}
\end{equation*}
$$

Here $F(s)$ is the meromorphic function with only real zeros and poles, and is of the form

$$
F(s)=e^{b_{8}} \prod_{k=1}^{\infty}\left(1-s / a_{k}\right) e^{s / a_{k}} /\left(1-s / c_{k}\right) e^{s / c_{k}}
$$

where $b,\left\{a_{k}\right\}_{1}^{\infty},\left\{c_{k}\right\}_{1}^{\infty}$ are constants such that $0 \leqq a_{k} / c_{k}<1, \sum_{k=1}^{\infty} a_{k}^{-2}<\infty$ and c_{k} may be equal to $\pm \infty$.

In these papers we assumed the order of $[F(s)]^{-1}$ as $|\tau| \rightarrow \infty(s=\sigma+i \tau)$, however, this order should be determined originally by the correlation of zeros a_{k} and poles c_{k} of $F(s)$.

From this point of view, Z. Ditzian and A. Jakimovski [1], [2], [3] showed that for all integer $n \leqq N\left(N \equiv N\left(\left\{a_{k}\right\},\left\{c_{k}\right\}\right)\right.$

$$
|F(s)|^{-1}=O\left(|\tau|^{-n}\right) \quad|\tau| \rightarrow \infty
$$

uniformly in the strip $|\sigma| \leqq R$ for every R and they obtained the inversion formula of the transform (1) which differs from that of ours where it was constructed by repeated integro-differential operators and our formula consisted of integral operator and differential operator separated from each other.

If the series $\sum_{k=1}^{\infty}\left(a_{k}^{-1}-c_{k}^{-1}\right)$ converges then the kernel $G(t)$ becomes a special one called class III kernel and has the characteristic properties ([2], [7]).

In this paper we shall suppose that

$$
\begin{equation*}
\sum_{k=1}^{\infty}\left(a_{k}^{-1}-c_{k}^{-1}\right)=\infty \tag{3}
\end{equation*}
$$

and for some positive number δ

$$
\begin{equation*}
a_{k+1}-a_{k}>\delta \quad(k=1,2, \cdots) \tag{4}
\end{equation*}
$$

The condition (3) means that $G(t)$ is a kernel of class II, and in §4 we shall show that this condition implies $N=\infty$ necessarily and the infinite differentiability of $G(t)$ can be obtained. However, this condition (3) is not enough to become clear the construction of $G(t)$ completely.

If we assume the condition (4) we shall see that the class of kernel $G(t)$ can be considered as a class of Dirichlet series and that if we replace the variable t of $G(t)$ by the complex variable z the analyticity of $G(z)$ can be obtained. This class of Dirichlet series is a generalization of the class of entire function generated by the given sequence which is studied by J. Mikusiński ([4]). Though the assumption (4) seems to be severe, it causes no inconvenience for practical use.
2. Function $\boldsymbol{H}(\boldsymbol{t})$ as a Dirichlet series. For brevity, we assume hereafter that $b=0$ and the constants a_{k}, c_{k} are positive and increasing.

Let us define

$$
\begin{aligned}
& g_{k}(t)=\left\{\begin{array}{cc}
a_{k} e^{a_{k} t-1} & \left(-\infty<t<a_{k}^{-1}\right) \\
0 & \left(a_{k}^{-1}<t<\infty\right),
\end{array}\right. \\
& h_{k}(t)=\int_{-\infty}^{\infty}\left(1-a_{k} / c_{k}\right) g_{k}\left(u+c_{k}^{-1}\right) d u+\frac{a_{k}}{c_{k}} j\left[t-\left(a_{k}^{-1}-c_{k}^{-1}\right)\right],
\end{aligned}
$$

where $j(t)$ is the standard jump function, that is, $j(t)=1$ for $t>0,1 / 2$ for $t=0$, and 0 for $t<0$. By a simple calculation it is easily verified that $h_{k}(t)$ is a normalized distribution function and that

$$
\begin{aligned}
& h_{k}(t)=\left(1-a_{k} / c_{k}\right) \exp \left\{a_{k}\left[t-\left(a_{k}^{-1}-c_{k}^{-1}\right)\right]\right\} \quad\left(t<a_{k}^{-1}-c_{k}^{-1}\right) \\
& h_{k}\left(a_{k}^{-1}-c_{k}^{-1}\right)=1-a_{k} / 2 c_{k} \\
& \int_{-\infty}^{\infty} e^{-s t} d h_{k}(t)=\left(1-s / c_{k}\right) e^{s / c_{k}} /\left(1-s / a_{k}\right) e^{s / a_{k}}
\end{aligned}
$$

the bilateral Laplace transform converging absolutely for $\mathfrak{R} s<\alpha_{k}$.
Theorem 2.1. If we set for $n \geqq 2)$

$$
H_{n}(t)=h_{1} h_{2} \cdots h_{n}(t),
$$

where the operation denotes the Stieltjes convolution for distribution functions, then:
A. $H_{n}(t)$ is a normalized distribution function;
B.

$$
H_{n}(t)= \begin{cases}\sum_{j=1}^{n} B_{j}^{(n)} \exp \left\{a_{j}\left[t-\sum_{k=1}^{n}\left(a_{k}^{-1}-c_{k}^{-1}\right)\right]\right\} & t<\sum_{k=1}^{n}\left(a_{k}^{-1}-c_{k}^{-1}\right) \\ 1-\frac{a_{1} a_{2} \cdots a_{n}}{2 c_{1} c_{2} \cdots c_{n}} & t=\sum_{k=1}^{n}\left(a_{k}^{-1}-c_{k}^{-1}\right) \\ 1 & t>\sum_{k=1}^{n}\left(a_{k}^{-1}-c_{k}^{-1}\right)\end{cases}
$$

where

$$
B_{j}^{(n)}=\prod_{k=1}^{n}\left(1-a_{j} / c_{k}\right) / \prod_{k=1}^{n}\left(1-a_{j} / a_{k}\right) \quad(j=1,2, \cdots, n)
$$

and Π^{\prime} denotes the product excluding the factor for $k=j$;
C.

$$
\int_{-\infty}^{\infty} e^{-s t} d H_{n}(t)=\prod_{k=1}^{n}\left(1-s / c_{k}\right) e^{s / c_{k}} /\left(1-s / a_{k}\right) e^{s / a_{k}}
$$

the bilateral Laplace transform converging absolutely for $\mathfrak{R} s<a_{1}$.
Proof. Since the conclusion A and C are familiar results [2], [6], [7], let us prove only conclusion B by the induction.

For the sake of simplicity we shall write s_{n} for $\sum_{k=1}^{n}\left(a_{k}^{-1}-c_{k}^{-1}\right)$.
In the case $n=2$, if $t>s_{2}$, then $h_{1}(t-u) \equiv 1$ for $u<{a_{2}^{-1}}^{-1}-c_{2}^{-1}$ and we have $h_{1} h_{2}(t)=\int_{-\infty}^{a_{2}^{-1}-c_{2}^{-1}} d h_{2}(u)+a_{2} / c_{2}=1$, and if $t<s_{2}$ then

$$
\begin{aligned}
h_{1} \ngtr & h_{2}(t)=\int_{-\infty}^{a_{2}^{-1}-o_{2}^{-1}} h_{1}(t-u) d h_{2}(u)+h_{1}\left(t-\left(a_{2}^{-1}-c_{2}^{-1}\right)\right) \frac{a_{2}}{c_{2}} \\
= & \int_{-\infty}^{t-s_{1}} h_{1}(t-u) d h_{2}(u)+\int_{t-s_{1}}^{a_{2}^{-1}-c_{2}^{-1}} h_{1}(t-u) d h_{2}(u)+h_{1}\left(t-\left(a_{2}^{-1}-c_{2}^{-1}\right)\right) \frac{a_{2}}{c_{2}} \\
= & \left(1-a_{2} / c_{2}\right) e^{a_{2} / c_{2}-1} e^{a_{2}\left(t-s_{1}\right)} \\
& +\left(1-a_{1} / c_{1}\right)\left(1-a_{2} / c_{2}\right) a_{2} e^{a_{1} / c_{1}-1} e^{a_{2} / c_{2}-1} e^{a_{1} t} \frac{1}{a_{2}-a_{1}}\left[e^{\left(a_{2}-a_{1}\right)\left(a_{2}^{-1}-c_{2}^{-1}\right)}-e^{\left(a_{2}-a_{1}\right)\left(t-s_{1}\right)}\right] \\
& +a_{2} / c_{2}\left(1-a_{1} / c_{1}\right) e^{a_{1} / c_{1}-1} e^{a_{1}\left(t-s_{1}\right)} \\
= & \left\{a_{2} / c_{2}+\frac{a_{2}}{a_{2}-a_{1}}\left(1-a_{2} / c_{2}\right)\right\}\left(1-a_{1} / c_{1}\right) e^{a_{1} / c_{1}-1} e^{a_{1}\left(t-s_{1}\right)} \\
& +\left\{1-\frac{a_{2}}{a_{2}-a_{1}}\left(1-a_{1} / c_{1}\right)\right\}\left(1-a_{2} / c_{2}\right) e^{a_{2} / c_{2}-1} e^{a_{2}\left(t-s_{1}\right)} \\
= & \frac{a_{2}\left(c_{1}-a_{1}\right)\left(c_{2}-a_{1}\right)}{c_{1} c_{2}\left(a_{2}-a_{1}\right)} e^{a_{1}\left(t-s_{2}\right)}+\frac{a_{1}\left(c_{1}-a_{2}\right)\left(c_{2}-a_{2}\right)}{c_{1} c_{2}\left(a_{1}-a_{2}\right)} e^{a_{2}\left(t-s_{2}\right)} \\
= & B_{1}^{(2)} e^{a_{1}\left(t-s_{2}\right)}+B_{2}^{(2)} e^{a_{2}\left(t-s_{2}\right)}
\end{aligned}
$$

and it is clear that $h_{1} h_{2}\left(s_{2}\right)=1-a_{1} a_{2} /\left(2 c_{1} c_{2}\right)$. Thus we have proved the
conclusion C for $n=2$.
Now, we assume that the conclusion B is valid for $n=m$. For $t<s_{m+1}, t-s_{m}<a_{m+1}^{-1}-c_{m+1}^{-1}$ and we have

$$
\begin{aligned}
H_{m+1} & (t)=\int_{-\infty}^{\infty} H_{m}(t-u) d h_{m+1}(u) \\
= & \int_{-\infty}^{t-s_{m}} H_{m}(t-u) d h_{m+1}(u)+\int_{t-s_{m}}^{a_{m}^{-1}-c_{m+1}^{-1}} H_{m}(t-u) d h_{m+1}(u) \\
& +H_{m}\left(t-\left(a_{m+1}^{-1}-c_{m+1}^{-1}\right)\right) \frac{a_{m+1}}{c_{m+1}} \\
= & \left(1-a_{m+1} / c_{m+1}\right) e^{a_{m+1}\left(t-s_{m+1}\right)} \\
& +\left(1-a_{m+1} / c_{m+1}\right) a_{m+1} \int_{t-s_{m}}^{a_{m+1}^{--c_{m+1}^{-1}}\left\{\sum_{j=1}^{m} B_{j}^{(m)} e^{a_{j}\left(t-u-s_{m}\right)}\right\} e^{a_{m+1}\left[u-\left(a_{m+1}^{-1}-c_{m+1}^{-1}\right)\right]} d u} \\
& +\left(a_{m+1} / c_{m+1}\right) \sum_{j=1}^{m} B_{j}^{(m) a_{j}\left(t-s_{m+1}\right)} \\
= & \left(1-a_{m+1} / c_{m+1}\right) e^{a_{m+1}\left(t-s_{m+1}\right)}+\left(1-a_{m+1} / c_{m+1}\right) \sum_{j=1}^{m} \frac{a_{m+1} B_{j}^{(m)}}{a_{m+1}-a_{j}} e^{a_{j}\left(t-s_{m+1}\right)} \\
& -\left(1-a_{m+1} / c_{m+1}\right) \sum_{j=1}^{m} \frac{a_{m+1} B_{j}^{(m)}}{a_{m+1}-a_{j}} e^{a_{m+1}^{\left(t-s_{m+1}\right)}+a_{m+1} / c_{m+1} \sum_{j=1}^{m} B_{j}^{(m)} e^{a_{j}\left(t-s_{m+1}\right)}} \\
= & \sum_{j=1}^{m}\left\{\left(1-a_{m+1} / c_{m+1}\right) \frac{a_{m+1} B_{j}^{(m)}}{a_{m+1}-a_{j}}+a_{m+1} B_{j}^{(m)} / c_{m+1}\right\} e^{a_{j}\left(t-s_{m+1}\right)} \\
& +\left\{\left(1-a_{m+1} / c_{m+1}\right)-\left(1-a_{m+1} / c_{m+1}\right) \sum_{j=1}^{m} \frac{a_{m+1} B_{j}^{(m)}}{a_{m+1}-a_{j}}\right\} e^{a_{m+1}^{\left(t-s_{m+1}\right)}} .
\end{aligned}
$$

It is easily seen that

$$
\begin{aligned}
& \left(1-a_{m+1} / c_{m+1}\right) \frac{a_{m+1} B_{j}^{(m)}}{a_{m+1}-a_{j}}+a_{m+1} B_{j}^{(m)} / c_{m+1}=B_{j}^{(m+1)} \quad(j=1,2, \cdots, m) \\
& \left(1-a_{m+1} / c_{m+1}\right)\left\{1-\sum_{j=1}^{m} \frac{a_{m+1} B_{j}^{(m)}}{a_{m+1}-a_{j}}\right\}=B_{m+1}^{(m+1)}
\end{aligned}
$$

and hence for $t<s_{m+1}$

$$
H_{m+1}(t)=\sum_{j=1}^{m+1} B_{j}^{(m+1)} e^{a_{j}\left(t-s_{m+1}\right)}
$$

On the other hand, it is also clear that
$H_{m+1}\left(s_{m+1}\right)=1-a_{1} a_{2} \cdots a_{m+1} /\left(2 c_{1} c_{2} \cdots c_{m+1}\right)$ and $H_{m+1}(t)=1$ for $t>s_{m+1}$. Thus the conclusion B is valid for $n=m+1$ and this completes the proof.

Corollary 2.1. If $H_{n}(t)$ is defined as in Theorem 2.1, then for $n(n \geqq 2)$

$$
H_{n}(t)= \begin{cases}\sum_{j=1}^{n} A_{j}^{(n)} e^{a_{j} t} & t<s_{n} \tag{1}\\ 1-a_{1} a_{2} \cdots a_{n} /\left(2 c_{1} c_{2} \cdots c_{n}\right) & t=s_{n} \\ 1 & t>s_{n}\end{cases}
$$

where

$$
\begin{equation*}
A_{j}^{(n)}=\prod_{k=1}^{n}\left(1-a_{j} / c_{k}\right) e^{a_{j} / c_{k}} / e \prod_{k=1}^{n}\left(1-a_{j} / a_{k}\right) e^{a_{j} / a_{k}} \tag{2}
\end{equation*}
$$

This is an immediate rewriting of the conclusion B of the preceding theorem.

Theorem 2.2. Let

$$
A_{j}=\prod_{k=1}^{\infty}\left(1-a_{j} / c_{k}\right) e^{a_{j} / c_{k}} / e \prod_{k=1}^{\infty}\left(1-a_{j} / a_{k}\right) e^{a_{j} / a_{k}}
$$

$(j=1,2, \cdots)$. Then the series $H(t)=\sum_{j=1}^{\infty} A_{j} e^{a_{j} t}$ converges absolutely and uniformly in any interval $\left(-\infty, t_{0}\right]\left(-\infty<t_{0}<\infty\right)$.

Proof. Since $\sum_{k=1}^{\infty} a_{k}^{-2}<\infty$ and $\sum_{k=1}^{\infty} c_{k}^{-2}<\infty$ the infinite products $\prod_{k}\left(1-s / a_{k}\right) e^{s / a_{k}}$ and $\prod_{k}\left(1-s / c_{k}\right) e^{s / c_{k}}$ converge absolutely and uniformly in any closed bounded set of the s-plane that contains none of the points a_{k} and c_{k}. Thus A_{j} are well-defined for every j. If all c_{k} equal $+\infty$, then $H(t)$ is a slight modification of entire fuction which treated by Mikusinski [4, p. 388] and the most part of the proof of this theorem due to him.

Now, for any fixed j we denote by $k(j)$ the largest k such that $c_{k}<a_{j}$. Evidently, $k(j)<j$ and $k(j) \uparrow \infty$ as $j \uparrow \infty$.

We have

$$
\begin{aligned}
\log \mid & A_{j} \mid=\sum_{k=1}^{\infty}\left(\log \left|1-a_{j} / c_{k}\right|+a_{j} / c_{k}\right)-\sum_{k=1}^{j-1}\left(\log \left(a_{j} / a_{k}-1\right)+a_{j} / a_{k}\right) \\
& -\sum_{k=j+1}^{\infty}\left(\log \left(1-a_{j} / a_{k}\right)+a_{j} / a_{k}\right)-1 \\
= & \sum_{k=1}^{k(j)}\left(\log \left(a_{j} / c_{k}-1\right)+a_{j} / c_{k}-a_{j} / a_{k}\right)+\sum_{k=k(j)+1}^{\infty}\left(\log \left(1-a_{j} / c_{k}\right)+a_{j} / c_{k}\right) \\
& -\sum_{k=k(j)+1}^{j} a_{j} / a_{k}-\sum_{k=1}^{j-1} \log \left(a_{j} / a_{k}-1\right)-\sum_{k=j+1}^{\infty}\left(\log \left(1-a_{j} / a_{k}\right)+a_{j} / a_{k}\right)
\end{aligned}
$$

It is clear that

$$
\sum_{k=k(j)+1}^{\infty}\left(\log \left(1-a_{j} / c_{k}\right)+a_{j} / c_{k}\right)<0
$$

and, using the fact that the function $\log \left(a_{j} / x-1\right)$ is decreasing for
$0<x<a_{j}$, it is also clear that

$$
\sum_{k=1}^{k(j)} \log \left(a_{j} / c_{k}-1\right)<\sum_{k=1}^{k(j)} \log \left(a_{j} / a_{k}-1\right)
$$

Then we have

$$
\begin{aligned}
\frac{1}{a_{j}} \log \left|A_{j}\right|< & -\sum_{k=1}^{k(j)}\left(a_{k}^{-1}-c_{k}^{-1}\right)-\frac{1}{a_{j}} \sum_{k=k(j)+1}^{j-1} \log \left(a_{j} / a_{k}-1\right) \\
& -\frac{1}{a_{j}} \sum_{k=j+1}^{\infty}\left(\log \left(1-a_{j} / a_{k}\right)+a_{j} / a_{k}\right) \\
\equiv & -\sum_{k=1}^{k(j)}\left(a_{k}^{-1}-c_{k}^{-1}\right)+S_{1}+S_{2}, \quad \text { say }
\end{aligned}
$$

If $j=1$ or $k(j)=j-1$, then the second term vanishes. We have by (4) of $\S 1$, using Mikusiński's method,

$$
\begin{aligned}
S_{1} & =\frac{1}{a_{j}} \sum_{k=k(j)+1}^{j-1} \log \frac{a_{k}}{a_{j}-a_{k}}<\frac{1}{a_{j}} \sum_{k=k(j)+1}^{j-1} \log \frac{a_{j}-(j-k) \delta}{(j-k) \delta} \\
& =\frac{1}{a_{j}} \sum_{k=1}^{j-k(j)-1} \log \frac{a_{j}-k \delta}{k \delta}<\frac{1}{a_{j}} \int_{0}^{j-k(j)-1} \log \frac{a_{j}-\delta x}{\delta x} d x \\
& =1 / \delta \int_{0}^{\delta(j-k(j)-1) / a_{j}} \log (1 / t-1) d t<\log 2 / \delta,
\end{aligned}
$$

and

$$
S_{2}<1 / \delta
$$

Thus we have

$$
\frac{1}{a_{j}} \log \left|A_{j}\right|<(1+\log 2) / \delta-\sum_{k=1}^{k(j)}\left(a_{k}^{-1}-c_{k}^{-1}\right)
$$

so that $\lim _{j \rightarrow \infty} k(j)=\infty$ and (3) of $\S 1$ implies that

$$
\lim _{j \rightarrow \infty}\left|A_{j}\right|^{1 / a_{j}}=0
$$

Now, let t_{0} be an arbitrary fixed real number, then, when $t \leqq t_{0}$

$$
\left|A_{j} e^{a_{j} t}\right| \leqq\left|A_{j}\right| e^{a_{j} t_{0}}=\left(\left|A_{j}\right|^{1 / a_{j}} e^{t_{0}}\right)^{a_{j}} .
$$

Therefore, for sufficiently large j, we have

$$
\left|A_{j} e^{a_{j} t}\right|<(1 / 2)^{a_{j}}=(j)^{-\frac{a_{j}}{\log j} \log 2} .
$$

But, by the assumption (4) it follows that $\lim _{j \rightarrow \infty} \frac{a_{j}}{\log j}=\infty$, so we have

$$
\left|A_{j} e^{\alpha_{j} t}\right|<j^{-2}
$$

for sufficiently large j. This implies that the Dirichlet series $H(t)=$
$\sum_{j=1}^{\infty} A_{j} e^{a_{j} t}$ converges absolutely and uniformly in $-\infty<t \leqq t_{0}$ and completes the proof.

Remark. In Theorem 2.2, it should be noted that real number t can be replaced by complex number z and the Dirichlet series $H(z)=\sum_{j=1}^{\infty} A_{j} e^{a_{j}{ }^{z}}$ converges absolutely and uniformly in any half plane $\mathfrak{R z < t _ { 0 }}$.

If all c_{k} equal to $+\infty$, this class of Dirichlet series reduces to a slight modification that is called the class of entire function generated by the given sequence $\left\{a_{k}\right\}$ of exponents. Thus, our class of Dirichlet series is a generalization of it.

Theorem 2.3. If $H(t)$ is defined as in Theorem 2.2, then $H(t)$ is infinitely differentiable term by term in $(-\infty, \infty)$, that is, for any positive integer $n, H^{(n)}(t)=\sum_{j=1}^{\infty} A_{j} a_{j}^{n} e^{a_{j} t}$ converges absolutely for every t and uniformly in any interval $-\infty<t \leqq t_{0}\left(-\infty<t_{0}<+\infty\right)$.

Proof. In the preceding Theorem 2.2 we had

$$
\left|A_{j} e^{a_{j} t}\right|<(1 / 2)^{a_{j}}
$$

for sufficiently large j. From this fact, for sufficiently large j, we have

$$
\begin{aligned}
\mid A_{j} a_{j}^{n} e^{a_{j} t} & <a_{j}^{n}(1 / 2)^{a_{j}}=2^{n \log _{2} a_{j}-a_{j}} \\
& \leqq 2^{-a_{j} / 2}<2^{-\frac{j-1}{2} \delta}=\left(2^{-\frac{2}{\delta}}\right)^{j-1} .
\end{aligned}
$$

Thus we obtain our desired results.
Theorem 2.4. If $H_{n}(t)$ and $H(t)$ are defined as in Theorem 2.1 and Theorem 2.2, respectively, then for any $t(-\infty<t<\infty)$

$$
\lim _{n \rightarrow \infty} H_{n}(t)=H(t) .
$$

Proof. By the estimations similar to that of Theorem 2.2, we have for $n>j$

$$
\begin{aligned}
\frac{1}{a_{j}} \log \left|A_{j}^{(n)}\right|< & -\sum_{k=1}^{k(j)}\left(a_{k}^{-1}-c_{k}^{-1}\right)-\frac{1}{a_{j}} \sum_{k=k(j)+1}^{j-1} \log \left(a_{j} / a_{k}-1\right) \\
& -\frac{1}{a_{j}} \sum_{k=j+1}^{n}\left\{\log \left(1-a_{j} / a_{k}\right)+a_{j} / a_{k}\right\} \\
< & -\sum_{k=1}^{k(j)}\left(a_{k}^{-1}-c_{k}^{-1}\right)+\frac{1+\log 2}{\delta},
\end{aligned}
$$

and for arbitrary fixed t we have

$$
\left|\boldsymbol{A}_{j}^{(n)} e^{a_{j} t}\right|<j^{-2}
$$

for sufficiently large j. Thus, this estimation together with the same of A_{j} implies that, given $\varepsilon>0$, we can find j_{0} such that

$$
\left|\sum_{j=j_{0}+1}^{n} A_{j}^{(n)} e^{a_{j} t}\right|<\varepsilon / 2 \text { and }\left|\sum_{j=j_{0}+1}^{\infty} A_{j} e^{a_{j} t}\right|<\varepsilon / 2 .
$$

Then, we have

$$
\left|H_{n}(t)-H(t)\right|<\sum_{j=1}^{j_{0}}\left|A_{j}^{(n)}-A_{j}\right| e^{a_{j} t}+\varepsilon .
$$

However, it is clear that

$$
\lim _{n \rightarrow \infty} A_{j}^{(n)}=A_{j} \quad\left(j=1,2, \cdots, j_{0}\right),
$$

and consequently

$$
\varlimsup_{n \rightarrow \infty}\left|H_{n}(t)-H(t)\right| \leqq \varepsilon,
$$

which is the required result.
Theorem 2.5. If $H(t)$ is defined as in Theorem 2.2, then $H(t)$ is a distribution function.

Proof. By Theorem 2.1, $H_{n}(t)$ is the normalized distribution function and

$$
\int_{-\infty}^{\infty} e^{i \tau t} d H_{n}(t)=\sum_{j=1}^{n}\left(1+i \tau / c_{j}\right) e^{i \tau / c_{j}} /\left(1+i \tau / a_{j}\right) e^{i \tau / a_{j}}
$$

For any $\tau(-\infty<\tau<\infty)$, it is clear that

$$
\prod_{j=1}^{n}\left(1+i \tau / c_{j}\right) e^{i \tau / c_{j}} /\left(1+i \tau / a_{j}\right) e^{i \tau / a_{j}} \rightarrow 1 / F(i \tau) \quad \text { as } \quad n \rightarrow \infty
$$

and that $1 / F(i \tau)$ is continuous at $\tau=0$ and $1 / F(0)=1=H_{n}(\infty)-H_{n}(-\infty)$. By the theory of distribution function [9, vol. II p.262], there exists a non-decreasing function $H^{*}(t)$ such that

$$
H^{*}(\infty)=1, H^{*}(-\infty)=0, \quad \lim _{n \rightarrow \infty} H_{n}(t)=H^{*}(t)
$$

at all points of continuity of $H^{*}(t)$ and $1 / F(i \tau)=\int_{-\infty}^{\infty} e^{i \tau t} d H^{*}(t)$. Using Theorem 2.4, it is clear that this function equal to $\vec{H}(t)$. This completes the proof.
3. Construction of the kernel. Now, we may construct the kernel $G(t)$ and can be established its analyticity in the whole plane of z.

Theorem 3.1. If $H(t)$ is defined as in Theorem 2.2, then $H(t)$ has its derivative $G(t)=H^{\prime}(t)$ and

$$
\begin{equation*}
G(t) \text { is a frequency function and } G(t) \in C^{\infty}(-\infty, \infty) \text {, } \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\int_{-\infty}^{\infty} e^{-s t} G(t) d t=1 / F(s) \tag{2}
\end{equation*}
$$

the bilateral Laplace transform converging absolutely for $\Re s<a_{1}$, and

$$
\begin{equation*}
G(t)=1 /(2 \pi i) \int_{-i \infty}^{i \infty}[F(s)]^{-1} e^{s t} d s \tag{3}
\end{equation*}
$$

Proof. It follows from Theorem 2.3 that $H(t)$ has its derivative $G(t)=H^{\prime}(t)$ and (1) follows from Theorem 2.3 and Theorem 2.5.

Let s be an arbitrary real number $<a_{1}$. Then, by (3) and (4) of $\S 1$, it is clear that

$$
\begin{array}{r}
\sum_{k=1}^{\infty}\left[\frac{1}{a_{k}-s}-\frac{1}{c_{k}-s}\right]=\infty \text { and }\left(a_{k+1}-s\right)-\left(a_{k}-s\right)>\delta>0 \tag{4}\\
(k=1,2, \cdots)
\end{array}
$$

Therefore, putting

$$
B_{j}=\prod_{k=1}^{\infty}\left(1-\frac{a_{j}-s}{c_{k}-s}\right) e^{\frac{a_{j}-s}{c_{k}-s}} / e \prod_{k=1}^{\infty}\left(1-\frac{a_{j}-s}{a_{k}-s}\right) e^{\frac{a_{j}-s}{a_{k}-s}}
$$

$(j=1,2, \cdots)$, we can define an infinitely differentiable function $K(t)$ such as

$$
K(t)=\sum_{j=1}^{\infty} B_{j} e^{\left(a_{j}-s\right) t}
$$

where the infinite product defining B_{j} are convergent for all s, because

$$
\sum_{k=1}^{\infty}\left(a_{k}-s\right)^{-2}<\infty \quad \text { for all } s\left(s<a_{1}\right)
$$

It is trivial that $K(t)$ has the same properties analogous to $H(t)$.
By the definition A_{j} in Theorem 2.2, we have

$$
\begin{aligned}
\frac{B_{j}}{A_{j}}= & \frac{a_{j}}{a_{j}-s} \prod_{k=1}^{\infty}\left(1-s / a_{k}\right) \exp \left\{\frac{s}{a_{k}-s}+\left(a_{j} / a_{k}-a_{j} /\left(a_{k}-s\right)\right\} /\right. \\
& \left(1-s / c_{k}\right) \exp \left\{\frac{s}{c_{k}-s}+\left(a_{j} / c_{k}-a_{j} /\left(c_{k}-s\right)\right)\right\}
\end{aligned}
$$

Then, putting

$$
Q=\prod_{k=1}^{\infty}\left(1-s / a_{k}\right) \exp \left(\frac{s}{a_{k}-s}\right) /\left(1-s / c_{k}\right) \exp \left(\frac{s}{c_{k}-s}\right)
$$

and

$$
q=\sum_{k=1}^{\infty}\left\{\frac{s}{a_{k}\left(a_{k}-s\right)}-\frac{s}{c_{k}\left(c_{k}-s\right)}\right\}
$$

we have

$$
\begin{equation*}
B_{j} / A_{j}=\frac{a_{j}}{a_{j}-s} Q e^{-q a_{j}} \tag{5}
\end{equation*}
$$

where the convergence of the infinite product Q and the series q are easily verified by (4).

By Theorem 2.3, $H^{\prime}(t)$ converges absolutely for any t and uniformly in any interval $-\infty<t \leqq u(-\infty<u<\infty)$. Thus, observing $H^{\prime}(t)=O\left(e^{a_{1} t}\right)$ as $t \rightarrow-\infty$ and integrating by parts we have

$$
\begin{aligned}
\int_{-\infty}^{u} e^{-s t} G(t) d t & =\int_{-\infty}^{u} e^{-s t} H^{\prime}(t) d t=\sum_{j=1}^{\infty} \frac{A_{j} a_{j}}{a_{j}-s} e^{\left(a_{j}-s\right) u}=\frac{e^{q s}}{Q} \sum_{j=1}^{\infty} B_{j} e^{\left(a_{j}-s\right)(u+q)} \\
& =\frac{e^{q s}}{Q} K(u+q)
\end{aligned}
$$

by (5). However, the properties of $K(t)$ same as in Theorem 2.5 for $H(t)$ shows that $K(u+q) \rightarrow 1$ as $u \rightarrow \infty$.

Consequently, the integral $\int_{-\infty}^{\infty} e^{-s t} G(t) d t$ exists for any real number $s\left(<a_{1}\right)$ and is equal to $e^{q s} / Q$, i.e.

$$
\begin{equation*}
\int_{-\infty}^{\infty} e^{-s t} G(t) d t=\prod_{k=1}^{\infty}\left(1-s / c_{k}\right) e^{s / c_{k}} /\left(1-s / a_{k}\right) e^{s / a_{k}}=1 / F(s) \tag{6}
\end{equation*}
$$

If we take any complex number s whose real part less than a_{1} instead of real number s such as $s<a_{1}$, it follows that the integral on the left side of (6) converges in any half-plane $\Re s \leqq \sigma_{0}<a_{1}$ and it represents an analytic function in the half-plane $\Re s<a_{1}$.

On the other hand, it is familiar that the right side of (6) is analytic in the half-plane $\mathfrak{R} s<a_{1}$. Since the both sides of (6) coincides on the interval $\left(-\infty, a_{1}\right)$ of real axis, by the identity theorem, (6) is valid in the half-plane $\Re s<a_{1}$. Since that the bilateral Laplace transform converges absolutely for $\mathfrak{R} s<a_{1}$ is easily verified and (3) is an immediate consequence of familiar theorem of Laplace transform [8, p. 241], the proof is complete.

Remark. As in Remark of §2, the real variable t of $G(t)$ can be replaced by the complex variable z and, on that occasion, the series $G(z)=$ $\sum_{j=1}^{\infty} a_{j} A_{j} e^{a_{j} z}$ converges absolutely for every complex z and uniformly in any half-plane $\mathfrak{R z \leqq} t_{0}\left(-\infty<t_{0}<\infty\right)$. Thus $G(z)$ is an entire function.
4. Differentiability of $G(t)$. In this section, we shall show that if we take no notice of construction of $G(t)$ then its infinite differentiability can be obtained by the only condition (3) without the condition (4),
provided that the sequences $\left\{a_{k}\right\}$ and $\left\{c_{k}\right\}$ satisfy the other conditions in $\S 1$. We shall need some preliminary results.
Let $n_{a}(t)=n\left(\left\{a_{k}\right\}, t\right)$ be the number of a_{k} lying in the interval $(0, t)$, which is called the counting function of sequence $\left\{a_{k}\right\}$ ([1], [5]).

Lemma [5, p. 25]. For any λ such that $0<\lambda<\infty$, we have

$$
\sum_{k=1}^{\infty} a_{k}^{-\lambda}=\int_{0}^{\infty} \frac{d n_{a}(t)}{t^{\lambda}}=\lambda \int_{0}^{\infty} \frac{n_{a}(t)}{t^{\lambda+1}} d t
$$

in the sense that all three expressions are infinite, or all are finite and equal.

Theorem 4.1. If the sequences $\left\{a_{k}\right\}$ and $\left\{c_{k}\right\}$ are defined as in $\S 2$, then

$$
\sum_{k=1}^{\infty}\left(a_{k}^{-1}-c_{k}^{-1}\right)=\int_{0}^{\infty} \frac{n_{a}(t)-n_{c}(t)}{t^{2}} d t
$$

in the sense that both sides are infinite, or both are finite and equal.
Proof. For any $R>0$, we have easily

$$
\sum_{a_{k}<R} a_{k}^{-1}=\sum_{k=1}^{n_{a}(R)} a_{k}^{-1}=n_{a}(R) / R+\int_{0}^{R} \frac{n_{a}(t)}{t^{2}} d t
$$

Hence we have

$$
\sum_{k=1}^{n_{a}(R)}\left(a_{k}^{-1}-c_{k}^{-1}\right)+\sum_{k=n_{c}(R)+1}^{n_{a}(R)} c_{k}^{-1}=\frac{n_{a}(R)-n_{c}(R)}{R}+\int_{0}^{R} \frac{n_{a}(t)-n_{c}(t)}{t^{2}} d t
$$

However, for all k such that $n_{c}(R)+1 \leqq k \leqq n_{a}(R)$ it is trivial that $c_{k}^{-1} \leqq R^{-1}$. Therefore,

$$
\sum_{k=n_{c}(R)+1}^{n_{a}(R)} c_{k}^{-1} \leqq \frac{n_{a}(R)-n_{c}(R)}{R}
$$

and then we have

$$
\begin{equation*}
\sum_{k=1}^{n_{a}(R)}\left(a_{k}^{-1}-c_{k}^{-1}\right) \geqq \int_{0}^{R} \frac{n_{a}(t)-n_{c}(t)}{t^{2}} d t \tag{1}
\end{equation*}
$$

On the other hand, we have also easily

$$
\sum_{k=1}^{n_{c}(R)}\left(a_{k}^{-1}-c_{k}^{-1}\right)+\sum_{k=n_{c}(R)+1}^{n_{a}(R)} a_{k}^{-1}=\frac{n_{a}(R)-n_{c}(R)}{R}+\int_{0}^{R} \frac{n_{a}(t)-n_{c}(t)}{t^{2}} d t
$$

and

$$
\sum_{k=n_{c}(R)+1}^{n_{a}(R)} a_{k}^{-1} \geqq \frac{n_{a}(R)-n_{c}(R)}{R} \text { since } a_{k}^{-1} \geqq R^{-1} \text { for } k \leqq n_{a}(R)
$$

Hence we have

$$
\begin{equation*}
\sum_{k=1}^{n_{c}(R)}\left(a_{k}^{-1}-c_{k}^{-1}\right) \leqq \int_{0}^{R} \frac{n_{a}(t)-n_{c}(t)}{t^{2}} d t \tag{2}
\end{equation*}
$$

Combining (1) and (2) and appealing the fact that $n_{a}(R) \rightarrow \infty$ and $n_{c}(R) \rightarrow \infty$ as $R \rightarrow \infty$, we obtain our desired result.

The following two results are the immediate consequences of this theorem.

Corollary 4.1. If $\left\{a_{k}\right\}$ and $\left\{c_{k}\right\}$ are defined as in Theorem 4.1 and $n_{a}(t)-n_{c}(t)=O\left(t^{1-\alpha}\right)$ as $t \rightarrow \infty$ for some $\alpha>0$, then the series $\sum_{k=1}^{\infty}\left(a_{k}^{-1}-c_{k}^{-1}\right)$ converges, in particular, $\varlimsup_{t \rightarrow \infty}\left\{n_{a}(t)-n_{c}(t)\right\}<\infty$ implies that the series $\sum_{k=1}^{\infty}\left(a_{k}^{-1}-c_{k}^{-1}\right)$ converges.

Corollary 4.2. If $\left\{a_{k}\right\}$ and $\left\{c_{k}\right\}$ are defined as in Theorem 4.1, then $\sum_{k=1}^{\infty}\left(a_{k}^{-1}-c_{k}^{-1}\right)=\infty$ implies that $\lim _{t \rightarrow \infty}\left\{n_{a}(t)-n_{c}(t)\right\}=\infty$.

Theorem 4.2. If $\left\{a_{k}\right\}$ and $\left\{c_{k}\right\}$ are defined as in $\S 1$ and $G(t)$ is defined by (2) of §1, then the kernel function $G(t)$ is infinitely differentiable.

Proof. By Corollary 4.2, using Theorem 2.2 of [1] and Corollary 3.2 and Theorem 3.5 of [2], we obtain our theorem.
5. Another class of Dirichlet series. In this section we suppose that the sequences $\left\{a_{k}\right\}$ and $\left\{c_{k}\right\}$ satisfy the following conditions:

$$
\begin{gather*}
a_{k}>0, \quad c_{k}<0 \quad(k=1,2, \cdots) ; \tag{1}\\
\sum_{k=1}^{\infty} a_{k}^{-1}=\infty, \quad \sum_{k=1}^{\infty} c_{k}^{-2}<\infty ; \tag{2}
\end{gather*}
$$

and for some positive number δ

$$
\begin{equation*}
a_{k+1}-a_{k}>\delta \quad(k=1,2, \cdots) \tag{3}
\end{equation*}
$$

The following is an analogous result to Theorem 2.2.
Theorem 5.1. Let

$$
A_{j}=\prod_{k=1}^{\infty}\left(1-a_{j} / c_{k}\right) e^{a_{j} / c_{k}} / e \prod_{k=1}^{\infty}\left(1-a_{j} / a_{k}\right) e^{a_{j} / a_{k}} \quad(j=1,2, \cdots)
$$

then the series $H(z)=\sum_{j=1}^{\infty} A_{j} e^{a_{j z}}$ converges absolutely and uniformly in any half plane $\mathfrak{R z}<t_{0}\left(-\infty<t_{0}<\infty\right)$.

Proof. By the similar arguments to the proof of Theorem 2.2, we have from (1) and (3)

$$
\begin{aligned}
a_{j}^{-1} \log \left|A_{j}\right|= & a_{j}^{-1} \sum_{k=1}^{\infty}\left\{\log \left(1-a_{j} / c_{k}\right)+a_{j} / c_{k}\right\}-\sum_{k=1}^{j} a_{k}^{-1} \\
& -a_{j}^{-1} \sum_{k=1}^{j-1} \log \left(a_{j} / a_{k}-1\right)-a_{j}^{-1} \sum_{k=j+1}^{\infty}\left\{\log \left(1-a_{j} / a_{k}\right)+a_{j} / a_{k}\right\}
\end{aligned}
$$

$$
\begin{aligned}
< & -\sum_{k=1}^{j} a_{k}^{-1}-a_{j}^{-1} \sum_{k=1}^{j-1} \log \left(a_{j} / a_{k}-1\right) \\
& -a_{j}^{-1} \sum_{k=j+1}^{\infty}\left\{\log \left(1-a_{j} / a_{k}\right)+a_{j} / a_{k}\right\} \\
< & -\sum_{k=1}^{j} a_{k}^{-1}+(1+\log 2) / \delta
\end{aligned}
$$

using the fact that

$$
\log \left\{\left(1-a_{j} / c_{k}\right)+a_{j} / c_{k}\right\}<0 \quad \text { for every } k
$$

Then, appealing the first condition of (2) we have

$$
|A|^{1 / a_{j}} \rightarrow 0 \quad \text { as } \quad j \rightarrow \infty,
$$

and we obtain our theorem by the similar arguments to the one in §2.
From this theorem it follows that $H(z)$ is analytic in the whole plane of z and $H(z)$ is an entire function. This is also a generalization of the entire function generated by the sequence $\left\{a_{k}\right\}$ introduced by Mikusinski.

For example, the Fourier sine transform

$$
F(X)=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} \sin X T \cdot \Phi(T) d T
$$

becomes, after exponential change of variables, the convolution transform (1) of § 1 with the kernel $G(t)=\sqrt{2 / \pi} \sin e^{t}$ whose bilateral Laplace transform is

$$
\begin{aligned}
\int_{-\infty}^{\infty} e^{-s t} G(t) d t & =\sqrt{\frac{2}{\pi}} \sin \left(-\frac{1}{2} \pi s\right) \Gamma(-s) \\
& =e^{\gamma s} \prod_{k=1}^{\infty}\left(1+\frac{s}{2 k}\right) e^{-s / 2 k} /\left(1-\frac{s}{2 k-1}\right) e^{s /(2 k-1)} \\
& =1 / F(s), \quad 0<\Re s<1
\end{aligned}
$$

The meromorphic function $F(s)$ has zeros $a_{k}=2 k-1$ and poles $c_{k}=-2 k$ ($k=1,2, \cdots$) and the sequences $\left\{a_{k}\right\}$ and $\left\{c_{k}\right\}$ satisfy the conditions (1), (2) and (3) with $\delta(<2)$. In this case, A_{j} is defined as

$$
\begin{aligned}
A_{j} & =\prod_{k=1}^{\infty}\left(1+\frac{2 j-1}{2 k}\right) e^{-\frac{2 j-1}{2 k} / e^{1-(2 j-1) r} \prod_{k=1}^{\infty}\left(1-\frac{2 j-1}{2 k-1}\right) e^{\frac{2 j-1}{2 k-1}}} \\
& =\sqrt{\frac{2}{\pi}} \sin \left(-\frac{1}{2} \pi(2 j-1)\right) \lim _{s \rightarrow 2 j-1}\left(1-\frac{s}{2 j-1}\right) \Gamma(-s) \\
& =\sqrt{\frac{2}{\pi}} \frac{1}{2 j-1} \frac{(-1)^{j-1}}{(2 j-1)!}
\end{aligned}
$$

using the familiar formula

$$
\lim _{s \rightarrow l}(-s+l) \Gamma(-s)=(-1)^{l} / l!
$$

The entire function generated by the sequences $\left\{a_{k}\right\}$ and $\left\{c_{k}\right\}$ is

$$
H(z)=\sum_{j=1}^{\infty} A_{j} e^{a_{j} z}=\sqrt{\frac{2}{\pi}} \sum_{j=1}^{\infty} \frac{1}{2 j-1} \frac{(-1)^{j-1}}{(2 j-1)!} e^{(2 j-1) z},
$$

and

$$
H^{\prime}(z)=\sqrt{\frac{2}{\pi}} \sum_{j=1}^{\infty} \frac{(-1)^{j-1}}{(2 j-1)!} e^{(2 j-1) z}=\sqrt{\frac{2}{\pi}} \sin e^{z} .
$$

This function $H^{\prime}(z)$ is equal to the kernel $G(t)$ in which the real variable t replaced by the complex variable z.

Moreover, it is well known that the Laplace transform can be reduced to the convolution transform (1) with the kernel $G(t)=e^{-e^{t}} e^{t}$ and the meromorphic function

$$
F(s)=1 / \Gamma(1-s)=e^{-r s} \prod_{k=1}^{\infty}(1-s / k) e^{s / k}
$$

whose zeros are $a_{k}=k(k=1,2, \cdots)$ and all c_{k} can be regarded as $+\infty$ or $-\infty$. In this case, A_{j} is defined as

$$
\begin{aligned}
A_{j} & =1 / e^{1-r_{j}} \prod_{k=1}^{\infty}(1-j / k) e^{j / k} \\
& =\lim _{s \rightarrow j}(1-s / j) \Gamma(1-s) \\
& =\frac{1}{j} \frac{(-1)^{j-1}}{(j-1)!}=\frac{(-1)^{j-1}}{j!} .
\end{aligned}
$$

The entire function generated by the sequence $\left\{a_{k}\right\}$ is

$$
H(z)=\sum_{j=1}^{\infty} A_{j} e^{a_{j} z}=\sum_{j=1}^{\infty} \frac{(-1)^{j-1}}{j!} e^{j z}
$$

and

$$
H^{\prime}(z)=\sum_{j=1}^{\infty} \frac{(-1)^{j}}{(j-1)!} e^{j z}=e^{-e^{z}} e^{z}
$$

This function $H^{\prime}(z)$ coincides also with the kernel $G(t)$ whose variable replaced by the complex variable z.

References

[1] Z. Ditzian and A. Jakimovski, A remark on a class of convolution transform, Tôhoku Math. J., 20 (1968), 170-174.
[2] Z. Ditzian and A. Jakimovski, Properties of kernels for a class of convolution transform, Tôhoku Math. J., 20 (1968), 175-198.
[3] Z. Ditzian and A. Jakimovski, Convergence and inversion results for a class of convolution transforms, Tôhoku Math. J., 21 (1969), 195-220.
[4] J. Mikusiński, Operational calculus, Pergamon Press (1957).
[5] W. K. Hayman, Meromorphic functions, Oxford (1964).
[6] Y. Tanno, On a class of convolution tronsform, Tôhoku Math. J. 18 (1966), 157-173.
[7] Y. Tanno, On a class of convolution transform II, Tôhoku Math. J., 19 (1967), 168-186.
[8] D. V. Widder, The Laplace transform, Princeton Univ. Press (1946).
[9] A. Zygmund, Trigonometric series, Cambridge Univ. Press (1968).
Chiba University,
Chiba, Japan

