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In this note we shall examine certain characteristic submodules that
arise from the study of the following two conditions.

(A) The class of torsionless left R-module is closed under extension,

(B) The class of left R-modules with zero duals is closed under
taking submodules.

By the dual of an R-module M we mean M* = Hom,(M, R). A
module M is torsionless if 0 = M., Ker f. In [9] it was shown, that
for a ring with minimum condition, the ring has conditions (A) and (B)
if and only if it is a QF-3 ring. Recently, several generalizations of

QF-3 rings have been considered [1, 4, 5,7, 8]. Colby and Rutter [1] give
the following:

DEFINITION. The ring R is left QF-3’ if the minimal injective Q(zR)
of R is torsionless.

Kato [4] observed that the proof in [9] showed that a ring is left
QF-3' if and only if it satisfies conditions (A) and (B). No chain condi-
tions are needed in this case.

We wish to relate conditions (A) and (B) to torsion theories in the
sense of Dickson [2]. Such a torsion theory is a pair (%, ) of classes of
R-modules such that:

1. T and ¥ have only zero in common

2. T is closed under taking factors and § is closed under taking
submodules

3. For each R-module M there is a unique submodule 7'(M) such
that
0— T(M)— M— M/T(M)— 0
is exact with T(M)e<¥ M/T(M) < B.
T(M) is the torsion submodule of M for the particular torsion theory
(€, %). It is not hard to see that T is idempotent in the sense that

T(T(M)) = T(M) for all M. Also one can show that each class £ and §
is closed under taking extensions.

1) The author gratefully acknowledges the support of the N.S.F.



450 J. P. JANS

Now consider
K(M) =N Kerf.
feM*

Note that K is not the torsion functor for a torsion theory because
it is not, in general, idempotent.

We can get a torsion theory from K (M) if we define a chain of sub-
modules inductively as follows: Let K°(M) = M and for an ordinal «, let
K“'(M) = K(K*(M)). If g is a limit ordinal let K4(M) = (Na<cs K*(M).

The usual cardinality argument shows that there is an ordinal «
such that K«(M) = K**(M) (and K*(M) = K7(M) for all v = a also).

We let I(M) = K*(M) for that @ and we give some of the properties
of I(M) in the following theorem.

THEOREM 1. I(M) is the umnique largest submodule of M with zero
dual and containing all submodules of M having zero dual.

Proor. From the definition of K**'(M) it is clear that K*(M) =
K~*(M) if and only if K*(M)* =0, so I(M)* = 0.

Let S be a submodule of M such that S* = 0.

We show by induction that S & K#(M) for all 8. We assume that
S< K«M) for all a<p. If g=a+1 and SZ K**'(M) = K(K*(M))
then there is an element se S and fe (K*(M))* such that f(s) = 0. But
f restricted to S is nonzero and this contradicts the assumption that
S*=0. If g is a limit ordinal, this definition of K?#(M) implies
S & K¥M).

It follows that I(M) contains all submodules of M having zero duals
and is therefore the unique largest such submodule.

We observe that I is a torsion functor in the sense of Dickson.

The following theorem relates K, I and some other properties.

THEOREM 2. The following are equivalent:

(1) R satisfies condition (A).

(2) K is a torsion functor for a torsion theory.
B) KM)=I(M) for all R-modules M.

ProoF. If the class of torsionless modules is closed under extension
then, for each M, we have the following exact sequence of torsionless

1) The referee observed that, if £ = {7 | Hom(z T, rR) =0} and & = {zF | Hom(zF’, rR) # 0
for all nonzero submodules zF” of gF'}, then (, §) is a torsion theory, R satisfies (A) if and
only if §={rF|rF is torsionless}, and R satisfies (B) if and only if €= {zT|Hom(rT,

Q(rR)) =0}
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modules
0— K(M)/K*(M)— M/K*(M)— M/K(M)— 0.

But if M/K* M) is torsionless then K(M) < K*(M) and we have equality
K(M) = K*(M) = I(M). Thus (1) implies (3).

Since I is a torsion functor for a torsion theory it is clear that (3)
implies (2).

Finally, if K is a torsion functor the torsionless modules are torsion
free for the associated torsion theory and are closed under extension.

We consider another torsion theory. Let TyW(M) = M semomuromr) Kerf
where Q(R) is the minimal injective of R considered as a left module.
This torsion theory has been studied in [3,6]. The following theorem
relates T\ (M) and I(M).

THEOREM 3. I(M) 2 T(M) for all M.

Proor. We show T,(M)* =0 and apply Theorem 1. Suppose the
contrary, then there exists fe Ty(M)* and xe To(M) such that f(z) # 0.
This gives a diagram

0— T(M) — M

/
ll
¥
Q(R)
and since Q(R) is injective, there is a g making it commutative. But

then g(x) = f(x) # 0 contradicting € Ty(M) = (M, crom wr.0m) K€T go
For the equality of I (M) and T,(M) we have the following:

THEOREM 4. The following are equivalent:
(1) R satisfies condition (B).
2) I(M)= T(M) for all R-modules M.

ProoF. We show that (1) implies (2) by a contrapositive proof.
Suppose (1) and I(M) = T,(M). Choose x¢ T, (M) such that xe I(M),
then there is fe Home (M, Q(R)) such that f(x) = 0. Since f(I(M)) # 0,
SIM)NR+0 because R is essential in Q(R). This implies that
FFIM))YNRYNI(M) =M is a submodule of I(M) and M'* == 0
because f | M’ + 0 and f|M'e M'*. However, this contradicts (1).

The implication (2) — (1) follows from the fact that the class of torsion
modules for the 7T, torsion theory are always closed under taking sub-
modules and a module M has a zero dual if and only if M = I(M).
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COROLLARY. The following are equivalent:
1) R is left QF-3'.
(2) K(M) = Ty(M) for all R-modules M.

Proor. We have in general that K(M) 2 I(M) 2 T(M). By
Theorem 2 K(M) = I(M) is equivalent to condition (A) by Theorem 4,
I(M) = T(M) is equivalent to condition (B). The Corollary then follows
from the theorem cited at the beginning.

REMARK 1. It might be of interest to study the ordinals a for which
K*(M) = I(M). From Theorem 2 it is clear that ¢ <1 for exactly
those rings satisfying condition (A).

If R is a semiprimary ring such that for all M= 0, M* = 0 (i.e.
only zero has a zero dual), it can be shown that K"*'(M) = K*(M) =0
for all R-modules M where » is the power of the radical that is zero.

REMARK 2. It is not hard to show that the submodules K(M),
K*(M), I(M) and T,(M) are also submodules for the R endomorphism ring
acting on M.
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