EIGENVALUES OF THE LAPLACIAN OF RIEMANNIAN MANIFOLDS

Shûkichi Tanno

(Received December 19, 1972)

1. Introduction. Let (M, g) be a compact orientable Riemannian manifold (connected and C^{∞} , dim M = m) with metric tensor g. By \mathcal{P} we denote the Riemannian connection and by Δ we denote the Laplacian acting on p-forms, $0 \leq p \leq m$. Let $\lambda_{\alpha,p}$ be eigenvalues of Δ and put

(1.1) Spec $(M, g; p) = \{0 \ge \lambda_{0,p} \ge \lambda_{1,p} \ge \lambda_{2,p} \ge \cdots \downarrow -\infty\}$.

For p = 0, we denote Spec (M, g; 0) = Spec (M, g) and $\lambda_{\alpha,0} = \lambda_{\alpha}$. Relations between Spec (M, g) and Riemannian structures have been studied by Berger [1], Mckean-Singer [6], Patodi [10], Sakai [11], etc. Some results are listed in the first part of §3. A useful tool is a formula of Minakshisundaram:

(1.2)
$$\sum_{\alpha=0}^{\infty} e^{\lambda_{\alpha} t} \, \underbrace{\frac{1}{t \to 0}}_{t \to 0} \left(\frac{1}{4\pi t}\right)^{m/2} \sum_{\beta=0}^{\infty} a_{\beta} t^{\beta} \, .$$

 a_0 , a_1 , a_2 were calculated by Berger [1] and Mckean-Singer [6]; and a_3 was calculated by Sakai [11]. In the following Theorems A, B, and D, the assumption on Spec (,) is also replaced by $\sum e^{\lambda_{\alpha} t}$, and more precisely in terms of a_{β} ($\beta = 0, 1, 2, 3$).

THEOREM A. Let (M, g) and (M', g') be compact orientable Riemannian manifolds. Assume that Spec (M, g) = Spec (M', g'). Then m = m'and

(1) for $2 \leq m \leq 5$, (M, g) is of constant curvature K, if and only if (M', g') is of constant curvature K' = K,

(2) for m = 6, (2-1) (M, g) is conformally flat and the scalar curvature S is constant, if and only if (M', g') is conformally flat and the scalar curvature S' is constant, S' = S,

(2-2) (M, g) is of constant curvature K > 0, if and only if (M', g') is of constant curvature K' = K > 0.

Theorem A for m = 2, 3 was proved by Berger [1]. For m = 4, Berger's Theorem 8.1 in [1] requires an additional condition $\chi(M) = \chi(M')$, where $\chi(M)$ denotes the Euler-Poincaré characteristic of M. Our result generalizes this and furthermore it is valid for m = 5.

By $S^{m}(c)$ or $(S^{m}(c), g_{0})$ we denote a Euclidean *m*-sphere with constant curvature c > 0, and by $H^{m}(-c)$ we denote a hyperbolic *m*-space with constant curvature -c < 0.

THEOREM B. Let (M, g) be a compact orientable Riemannian manifold, $2 \leq m \leq 6$. If Spec (M, g) = Spec $(S^{m}(c), g_{0})$, then (M, g) is isometric to $(S^{m}(c), g_{0})$.

This follows from Theorem A (1) and (2-2).

Theorem B has some aspect related to Obata's theorem [8] on the first non-zero eigenvalue on Einstein spaces.

THEOREM C. Let (M, g) be a compact orientable Riemannian manifold with m = 6. In (1.2), $a_2 = a_3 = 0$ holds, if and only if (M, g) is either (1) E^6/Γ_1 , where Γ_1 is some discontinuous group of translations of the 6-dimensional Euclidean space E^6 , or

(2) $[S^{3}(c) \times H^{3}(-c)]/\Gamma_{2}$, where Γ_{2} is some discontinuous group of isometries of $S^{3}(c) \times H^{3}(-c)$.

For $m \leq 5$, Mckean-Singer [6] and Patodi [10] showed that (1) is the only case. For $m \geq 7$, see Proposition 7 (3).

Kählerian analogues are also true. Corresponding to Theorem A, we have Theorem E in §4. Corresponding to Theorem B, we have

THEOREM D. Let (M, g, J) be a compact Kählerian manifold, $m = 2n \leq 12$. Let $(CP^n(H), g_0, J_0)$ be a complex n-dimensional projective space with the Fubini-Study metric of constant holomorphic sectional curvature H. If Spec (M, g, J) = Spec $(CP^n(H), g_0, J_0)$, then (M, g, J) is holomorphically isometric to $(CP^n(H), g_0, J_0)$.

2. Preliminaries. By $R = (R^{i}_{jkl})$ we denote the Riemannian curvature tensor: $R^{i}_{jkl}\partial/\partial x^{i} = R(\partial/\partial x^{k}, \partial/\partial x^{l})\partial/\partial x^{j}$ and $R(X, Y)Z = \mathcal{V}_{[X,Y]}Z - [\mathcal{V}_{X}, \mathcal{V}_{Y}]Z$, $i, j, k, l = 1, \dots, m = \dim M$. By $R_{1} = (R_{jk}) = (R^{r}_{jkr})$ we denote the Ricci curvature tensor. By $S = (g^{jk}R_{jk})$ we denote the scalar curvature. For a tensor field $T = (T_{ijk})$, for example, we denote $|T|^{2} = (T_{ijk}T^{ijk})$. Then we have (cf. [1], [2], [6], [11])

$$(2.1) a_{\circ} = \operatorname{Vol}(M) = \int dM,$$

$$(2.2) a_1 = \frac{1}{6} \int S dM ,$$

(2.3)
$$a_2 = \frac{1}{360} \int [2|R|^2 - 2|R_1|^2 + 5S^2] dM,$$

EIGENVALUES OF THE LAPLACIAN OF RIEMANNIAN MANIFOLDS 393

$$(2.4) \qquad a_{3} = \frac{1}{6!} \iint \left[-\frac{1}{9} |\nabla R|^{2} - \frac{26}{63} |\nabla R_{1}|^{2} - \frac{142}{63} |\nabla S|^{2} \right. \\ \left. - \frac{8}{21} R^{ij}{}_{kl} R^{kl}{}_{rs} R^{rs}{}_{ij} - \frac{8}{63} R^{rs} R_{r}{}^{jkl} R_{sjkl} + \frac{2}{3} S |R|^{2} \\ \left. - \frac{20}{63} R^{ik} R^{jl} R_{ijkl} - \frac{4}{7} R^{i}{}_{j} R^{j}{}_{k} R^{k}{}_{i} - \frac{2}{3} S |R_{1}|^{2} + \frac{5}{9} S^{3} \right] dM.$$

The following are also useful.

(2.5)
$$|R|^2 - \frac{2}{m-1}|R_1|^2 \ge 0$$
,

(2.6)
$$|R_1|^2 - \frac{1}{m}S^2 \ge 0$$
.

The equality in (2.5) on M implies that (M, g) is of constant curvature, and the equality in (2.6) on M implies that (M, g) is an Einstein space (cf. [1], or [2]).

The Weyl's conformal curvature tensor $C = (C^{i}_{jkl}), C_{ijkl} = g_{ir}C^{r}_{jkl}$, is given by (for $m \ge 4$)

$$(2.7) C_{ijkl} = R_{ijkl} - \frac{1}{m-2} (R_{jk}g_{il} - R_{jl}g_{ik} + g_{jk}R_{il} - g_{jl}R_{ik}) \\ + \frac{1}{(m-1)(m-2)} (g_{jk}g_{il} - g_{jl}g_{ik})S.$$

Then we have (cf. [14], [15])

(2.8)
$$|C|^2 = |R|^2 - \frac{4}{m-2} |R_1|^2 + \frac{2}{(m-1)(m-2)} S^2 \ge 0.$$

By (2.8) we have

$$(2.9) \quad 2|R|^2 - 2|R_1|^2 + 5S^2 = 2|C|^2 + \frac{2(6-m)}{m-2}|R_1|^2 + \frac{5m(m-3)+6}{(m-1)(m-2)}S^2$$

3. Geometry reflected by the spectrum. Let (M, g) and (M', g') be compact orientable Riemannian manifolds. The following are known.

[i] Spec (M, g) = Spec (M', g') implies m = m', Vol (M) = Vol (M') ([2], p. 215).

[ii] For m = m' = 2, if $a_{\beta} = a'_{\beta}$ ($\beta = 0, 1, 2$) and S = constant, then S' is also constant and S = S' (Berger: [2], p. 226).

[iii] For m = m' = 3, if $a_{\beta} = a'_{\beta}$ ($\beta = 0, 1, 2$) and if (M, g) is of constant curvature K, then (M', g') is also of constant curvature K (Berger: [2], p. 228).

[iv] For m = m' = 4, if $a_{\beta} = a'_{\beta}$ ($\beta = 0, 1, 2$), $\chi(M) = \chi(M')$ and if (M, g) is of constant curvature K, then (M', g') is of constant curvature

K (Berger: [2], p. 229).

[v] Assume that (M, g) and (M', g') are Einstein spaces and $a_{\beta} = a'_{\beta}$ $(\beta = 0, 1, 2)$. Then (M, g) is of constant curvature K, if and only if (M', g') is of constant curvature K (Sakai [11], p. 599).

[vi] For m = m' = 6, assume that (M, g) and (M', g') are Einstein spaces. If $a_{\beta} = a'_{\beta}$ ($\beta = 0, 1, 2, 3$) and $\chi(M) = \chi(M')$, then (M, g) is locally symmetric if and only if (M', g') is locally symmetric (Sakai [11], p. 601).

[vii] For $m \leq 5$, assume $a_{\beta} = 0$ ($\beta = 1, 2$). Then (M, g) is locally flat (for $m \leq 3$, Mckean-Singer [6]; for $m \leq 5$, Patodi [10]).

Concerning [iii], [iv] and [v], we have

THEOREM A'. Let (M, g) and (M', g') be compact orientable Riemannian manifolds. Assume $a_{\beta} = a'_{\beta}$ for $\beta = 0, 1, 2$. Then,

(1) for $m = m' \leq 5$, (M, g) is of constant curvature K, if and only if (M', g') is of constant curvature K,

(2) for m = m' = 6, (M, g) is conformally flat and S is constant, if and only if (M', g') is conformally flat and S' is constant, S = S'.

PROOF. Since the case m = 2, 3 was proved in [1], assume $m \ge 4$. By (2.3) and (2.9), $a_2 = a'_2$ is written as

$$(3.1) \qquad \int \left[2 |C|^2 + \frac{2(6-m)}{m-2} \left(|R_1|^2 - \frac{1}{m} S^2 \right) \right. \\ \left. + \left(\frac{2(6-m)}{m(m-2)} + \frac{5m(m-3)+6}{(m-1)(m-2)} \right) S^2 \right] dM \\ = \int \left[2 |C'|^2 + \frac{2(6-m)}{m-2} \left(|R_1'|^2 - \frac{1}{m} S'^2 \right) \right. \\ \left. + \left(\frac{2(6-m)}{m(m-2)} + \frac{5m(m-3)+6}{(m-1)(m-2)} \right) S'^2 \right] dM' \,.$$

First assume $4 \leq m \leq 5$ and (M', g') is of constant curvature K'. Then it is conformally flat (C' = 0) and is an Einstein space $(|R'_1|^2 = S'^2/m)$. Since S' is constant, $a_0 = a'_0$ and $a_1 = a'_1$ imply $\int S^2 dM \geq \int S'^2 dM'$. In fact, using Schwarz inequality, we have

$$ig(\int\! dMig)ig(\int\! S^2 dMig) \geqq ig(\int\! S dMig)^2 = ig(\int\! S' dM'ig)^2 \ = S'^2ig(\int\! dM'ig)^2 = S'^2ig(\int\! dMig)ig(\int\! dM'ig) \ = ig(\int\! dMig)ig(\int\! S'^2 dM'ig) \, .$$

Hence, (3.1) gives C = 0, $|R_1|^2 = S^2/m$ and $\int S^2 dM = \int S'^2 dM'$. Consequently,

(M, g) is of constant curvature K = K'.

Next, assume m = 6, C' = 0 and S' = constant. Then, using (3.1), similarly we have C = 0 and S = constant.

REMARK. (3.1) gives a simple proof of [v].

Concerning [vii], a simple proof is (2.3) and (2.9). Patodi [10] gives a counter-example for m = 6. For m = 6, under an additional condition $a_3 = 0$, we determine (M, g).

LEMMA 1. If $a_2 = 0$ and m = 6, then (M, g) is conformally flat and the scalar curvature S is vanishing.

PROOF. This follows from (2.3) and (2.9).

Now we denote $(R_1^3) = (R_j^i R_k^j R_i^k)$.

LEMMA 2. If (M, g) is conformally flat, $m \ge 4$, and S = constant, then

(3.2)
$$\int |\nabla R_1|^2 = \iint \left[\frac{-m}{m-2} (R_1^3) + \frac{2m-1}{(m-1)(m-2)} S |R_1|^2 - \frac{1}{(m-1)(m-2)} S^3 \right] dM.$$

PROOF. By (2.7) and C = 0, R_{ijkl} is expressed by R_{jk} , g_{jk} , and S. By the second Bianchi identity for R_{ijkl} we have

Then we have

(3.4)
$$|\nabla R_1|^2 = \nabla_k R_{ij} \nabla^k R^{ij} = \nabla_j R_{ik} \nabla^k R^{ij}$$
$$= \nabla^k (\nabla_j R_{ik} \cdot R^{ij}) - \nabla^k \nabla_j R_{ik} \cdot R^{ij} ,$$

where $\nabla^k \nabla_j R_{ik}$ is calculated by the Ricci identity:

$$(3.5) g^{kr} \nabla_r \nabla_j R_{ik} = g^{kr} (\nabla_j \nabla_r R_{ik} - R^s_{ijr} R_{sk} - R^s_{kjr} R_{is}) .$$

Noticing that $g^{kr} \nabla_r R_{ik} = (1/2) \nabla_i S = 0$ and $g^{kr} R^*_{kjr} = -R^*_{j}$, we simplify (3.5). Putting the result into (3.4) and integrating, we have (3.2).

LEMMA 3. If (M, g) is conformally flat, $m \ge 4$, and S = constant, then

$$(3.6) a_3 = \frac{1}{6!} \int \left[\frac{24 - 26m}{63(m-2)} | \mathcal{V}R_1 |^2 + \frac{1}{63(m-2)^3} [192(m-4) - 16(m-2)(m-4) - 40(m-2)^2 - 36(m-2)^3](R_1^3) \right]$$

S. TANNO

$$+ \frac{1}{63(m-1)(m-2)^3} [576 - 16(m+1)(m-2) \\ + 4(m-2)^2(52m-47) - 42(m-1)(m-2)^3]S|R_1|^2 \\ + \frac{1}{63(m-1)^2(m-2)^3} [-96m + 16(m-1)(m-2) \\ - 104(m-1)(m-2)^2 + 35(m-1)^2(m-2)^3]S^3]dM.$$

PROOF. By (2.7) and C = 0, we have

(3.7)
$$|\nabla R|^2 = \frac{4}{m-2} |\nabla R_1|^2$$
,

$$(3.8) S|R|^2 = \frac{4}{m-2} S|R_1|^2 - \frac{2}{(m-1)(m-2)} S^3,$$

(3.9) $R^{ik}R^{jl}R_{ijkl}$

$$= rac{2}{m-2} \, (R_{\scriptscriptstyle 1}^{\scriptscriptstyle 3}) - rac{2m-1}{(m-1)(m-2)} \, S \, | \, R_{\scriptscriptstyle 1} \, |^2 + rac{1}{(m-1)(m-2)} \, S^{\scriptscriptstyle 3} \, ,$$

$$(3.10) \quad R^{rs} R_r^{jkl} R_{sjkl} = \frac{2(m-4)}{(m-2)^2} (R_1^3) + \frac{2(m+1)}{(m-1)(m-2)^2} S |R_1|^2 - \frac{2}{(m-1)(m-2)^2} S^3 ,$$

$$(3.11) \quad R^{ij}{}_{kl} R^{kl}{}_{rs} R^{rs}{}_{ij} = [\text{replacing } R^{ij}{}_{kl} \text{ by } (2.7)] R^{kl}{}_{rs} R^{rs}{}_{ij} = \frac{-4}{m-2} R^{rs} R_r^{jkl} R_{sjkl} + \frac{2}{(m-1)(m-2)} S |R|^2 = -\frac{8(m-4)}{(m-2)^3} (R_1^3) - \frac{24}{(m-1)(m-2)^3} S |R_1|^2 + \frac{4m}{(m-1)^2(m-2)^3} S^3 .$$

Substituting these into (2.4), we get (3.6).

PROPOSITION 4. Let (M, g) and (M', g') be compact orientable Riemannian manifolds, m = m' = 6. Assume $a_{\beta} = a'_{\beta}$ ($\beta = 0, 1, 2, 3$). Then (M', g')is of constant curvature K' > 0, if and only if (M, g) is also of constant curvature K = K' > 0.

PROOF. Assume that (M', g') is of constant curvature K' > 0. By Theorem A' we have C = 0 and S = constant. By (3.6) we have

$$(3.12) \quad a_{3} = \frac{1}{6!} \int \left[-\frac{11}{21} | \mathbb{F}R_{1} |^{2} - \frac{2}{3} (R_{1}^{3}) + \frac{19}{105} S | R_{1} |^{2} + (^{*})S^{3} \right] dM,$$

where (*) denotes the coefficient of S^3 . By (3.2) we have

EIGENVALUES OF THE LAPLACIAN OF RIEMANNIAN MANIFOLDS

$$(3.13) \quad a_3 = \frac{1}{6!} \int \left[-\frac{5}{63} |\nabla R_1|^2 - \frac{4}{63} S\left(|R_1|^2 - \frac{1}{6} S^2 \right) + (**) S^3 \right] dM \,.$$

Since (M', g') is of constant curvature, we have $a'_{3} = (1/6!) \int (**) S'^{3} dM'$. Since S = S' > 0, $a_3 = a'_3$ implies that $VR_1 = 0$ and $|R_1|^2 = S^2/6$. Hence, (M, g) is of constant curvature K = K' > 0. q.e.d.

Theorem A' and Proposition 4 give a proof of Theorem A.

PROPOSITION 5. If (M, g) is conformally flat and S = 0, and if $m \ge 4$ $(m \neq 8)$ and $a_3 = 0$, then $\nabla R_1 = 0$, and hence (M, g) is either

(1) locally flat, or

(2) locally Riemannian product $S^{m/2}(c) \times H^{m/2}(-c)$.

PROOF. By (3.2) and (3.6), we have

$$a_{_3}=rac{1}{6!}\int rac{2(m-8)(5m^2-2m-48)}{63m(m-2)^2}|arPR_{_1}|^2 dM$$
 .

Since $5m^2-2m-48>0$ for $m\geq 4$, if $m\neq 8$, we have $\mathbb{V}R_1=0$. If (M, g) is irreducible, then (M, g) is an Einstein space. S = 0 implies that (M, g) is locally flat. This is a contradiction. If (M, g) is reducible, then it is locally Riemannian product $[E^1 \times S^{m-1}(c), \text{ or } E^1 \times H^{m-1}(-c), \text{ or } E^m,$ or $S^{r}(c) \times H^{m-r}(-c)$ (cf. Kurita [4]). S = 0 implies that (M, g) is locally E^m or locally $S^{m/2}(c) \times H^{m/2}(-c)$.

THEOREM C'. Let (M, g) be a compact orientable Riemannian manifold with m = 6. If $a_{\beta} = 0$ for $\beta = 2, 3$, then (M, g) is either

- (1) E^{6}/Γ_{1} , or
- (2) $[S^{3}(c) imes H^{3}(-c)]/\Gamma_{2}$.

PROOF. This follows from Lemma 1 and Proposition 5.

REMARK. As for $\sum e^{\lambda_{\alpha} t}$ for $S^{3}(c) \times [H^{3}(-c)/\Gamma^{*}]$, cf. [10], p. 283~285.

Concerning [vii] for $m \ge 7$, we can state

PROPOSITION 6. Let (M, g) be a compact orientable Riemannian manifold with $a_2 = 0, m \ge 7$. If

$$(3.14) |R_1|^2 \leq \frac{5m(m-3)+6}{2(m-1)(m-6)} S^2$$

holds on M, then (M, g) is conformally flat, and the equality holds in (3.14) on M.

PROOF. This follows from (2.3) and (2.9).

Hence, as for a_2 , we can summerize the above as follows.

S. TANNO

PROPOSITION 7. Let (M, g) be a compact orientable Riemannian manifold.

(1) For $2 \leq m \leq 5$, $a_2 \geq 0$ holds, equality is only for locally flat (M, g).

(2) For m = 6, $a_2 \ge 0$ holds; (if $a_3 = 0$) equality is only for locally flat (M, g) or locally Riemannian product $S^{3}(c) \times H^{3}(-c)$.

(3) For $m \geq 7$, if Ricci curvatures are non-negative (or non-positive) on M, then $a_2 \ge 0$ holds; equality is only for locally flat (M, g).

PROOF. (1) is [vii] or (2.9). (2) is Theorem C'. We show (3). By the assumption of Ricci curvatures we have

(3.15)
$$|R_1|^2 \leq S^2 \leq \frac{5m(m-3)+6}{2(m-1)(m-6)}S^2$$
.

Hence, (3.14) holds. Therefore C = 0 and (3.15) must be equalities. Thus S = 0 and $|R_1|^2 = 0$. This implies R = 0.

Next, we show

PROPOSITION 8. Let (M, g) and (M', g') be compact orientable Riemannian manifold, m = m' = 4. Assume $a_{\beta} = a'_{\beta}$ for $\beta = 0, 1$, and 2. If (M', g') is an Einstein space, then

$$(3.16) \qquad \qquad \chi(M) \leq \chi(M')$$

The equality holds, if and only if (M, g) is also an Einstein space. holds.

PROOF. By Gauss-Bonnet formula we have (cf. [1], (8.1))

(3.17)
$$a_2 = \frac{8\pi^2}{45} \chi(M) + \frac{1}{120} \int [2|R_1|^2 + S^2] dM.$$

Since (M', g') is an Einstein space, $a_2 = a'_2$ is written as

$$egin{array}{l} rac{8\pi^2}{45}\,\chi(M) + rac{1}{120}\,\int & \left[2\Big(|\,R_1|^2 - rac{1}{4}\,S^2\Big) + rac{3}{2}S^2
ight]\!dM \ &= rac{8\pi^2}{45}\,\chi(M') + rac{1}{120}\int rac{3}{2}\,S'^2 dM' \;. \end{array}$$

Since $\int S^2 dM \ge \int S'^2 dM'$ (cf. proof of Theorem A'), we have (3.16). The equality implies $|R_1|^2 = S^2/4$.

REMARK. In connection with Theorem A' (2) and Proposition 4, the role of $a_3 = a'_3$ may be replaced by the fundamental group of *M*. Namely we have

PROPOSITION 9. Let (M, g) and (M', g') be compact orientable Riemannian manifolds, m = m' = 6. Assume that $a_{\beta} = a'_{\beta}$ holds for $\beta = 0, 1, 2$

and assume that (M', g') is of constant curvature K'. If the fundamental group $\pi_1(M)$ of M is finite, then (M, g) is also of constant curvature K' and K' > 0.

In particular, if $(M', g') = (S^{\mathfrak{s}}(c), g_0)$, then (M, g) is isometric to $(S^{6}(c), g_{0}).$

This follows from Theorem A' (2) and the following fact: Let (M, g)be a compact conformally flat Riemannian manifold with finite $\pi_1(M)$, $m \geq 3$; if S is constant, then (M, g) is of positive constant curvature (cf. Tanno [13]).

4. Kählerian manifolds. Let (M, g, J) be a Kählerian manifold with almost complex structure tensor $J = (J_i)$ and Kählerian metric tensor $g = (g_{ij})$. The complex dimension of M is n = m/2. Then,

$$(4.1) g_{rs}J_i^rJ_j^s = g_{ij}, J_r^iJ_j^r = -\delta_j^i$$

and $\mathcal{V}_{k}J_{j}^{i}=0$. $J_{ij}=g_{ir}J_{j}^{r}$ is skew-symmetric. The Ricci curvature tensor satisfies

(4.2)
$$R_{ij}J_r^i J_s^j = R_{rs}$$
, $R_{ir}J_j^r = -R_{jr}J_i^r$.

The Bochner curvature tensor $B = (B^{i}_{jkl}), B_{ijkl} = g_{ir}B^{r}_{jkl}$, is given by (cf. [15], etc.)

$$(4.3) \quad B_{ijkl} = R_{ijkl} - \frac{1}{m+4} (R_{jk}g_{il} - R_{jl}g_{ik} + g_{jk}R_{il} - g_{jl}R_{ik} \\ + R_{jr}J_k^rJ_{il} - R_{jr}J_l^rJ_{ik} + J_{jk}R_{ir}J_l^r - J_{jl}R_{ir}J_k^r - 2R_{kr}J_l^rJ_{ij} \\ - 2R_{ir}J_j^rJ_{kl}) + \frac{1}{(m+2)(m+4)} (g_{jk}g_{il} - g_{jl}g_{ik} \\ + J_{jk}J_{il} - J_{jl}J_{ik} - 2J_{kl}J_{ij})S.$$

|B| is given by (cf. [15])

$$(4.4) |B|^2 = |R|^2 - \frac{16}{m+4} |R_1|^2 + \frac{8}{(m+2)(m+4)} S^2.$$

A Kählerian manifold $(M, g, J), m \ge 4$, is of constant holomorphic sectional curvature H, if and only if

(4.5)
$$R_{ijkl} = \frac{H}{4} \left(g_{jk} g_{il} - g_{jl} g_{ik} + J_{jk} J_{il} - J_{ik} J_{jl} - 2 J_{ij} J_{kl} \right)$$

holds. Then R_{jk} and S are given by

(4.6)
$$R_{jk} = \frac{m+2}{4} H g_{jk}, \quad S = \frac{m(m+2)}{4} H$$

A Kählerian manifold (M, g, J) is of constant holomorphic sectional curvature, if and only if B = 0 and $|R_1|^2 = S^2/m$.

PROPOSITION 10. Let (M, g, J) and (M', g', J') be compact Kählerian manifolds. Assume $a_{\beta} = a'_{\beta}$ for $\beta = 0, 1, and 2$. Then,

(1) for $m = m' \leq 10$, (M, g, J) is of constant holomorphic sectional curvature, if and only if (M', g', J') is of constant holomorphic sectional curvature, H = H',

(2) for m = m' = 12, B = 0 and S = constant, if and only if B' = 0and S' = constant, S = S'.

PROOF. By (4.4), we have

$$(4.7) a_2 = \frac{1}{360} \iint \left[2|B|^2 + \frac{2(12-m)}{m+4} \left(|R_1|^2 - \frac{1}{m} S^2 \right) + \frac{5m^2 + 8m + 12}{m(m+2)} S^2 \right] dM.$$

Then the proof is completed in a way similar to that of Theorem A'.

LEMMA 11. (Matsumoto [5]) If the Bochner curvature tensor B = 0(more generally, parallel) and S = constant, then the Ricci curvature tensor R_1 is parallel (and (M, g) is locally symmetric).

LEMMA 12. If $\nabla R_1 = 0$, then

PROOF. By $0 = (\nabla_s \nabla_k R_{rj} - \nabla_k \nabla_s R_{rj})g^{rs}$ and the Ricci identity, we have (4.8).

LEMMA 13. If B = 0 and $\nabla R_1 = 0$, then

(4.9)
$$m(R_1^3) = \frac{2(m+1)}{m+2} S |R_1|^2 - \frac{1}{m+2} S^3$$

PROOF. Transvect (4.8) with R^{jk} and use (4.3). Then, using (4.2), we have (4.9).

LEMMA 14. If B = 0 and $\nabla R_1 = 0$, then

(4.10)
$$S|R|^2 = \frac{16}{m+4}S|R_1|^2 - \frac{8}{(m+2)(m+4)}S^3$$
,

(4.12)
$$R^{rs}R_{rjkl}R_{s}^{jkl} = \frac{16}{m+4}(R_{1}^{3}) - \frac{8}{(m+2)(m+4)}S|R_{1}|^{2},$$

$$(4.13) \qquad R^{ij}{}_{kl}R^{kl}{}_{rs}R^{rs}{}_{ij} = -\frac{16(m+12)}{(m+4)^2}(R^3) + \frac{8(m+20)}{(m+2)(m+4)^2}S|R_1|^2 \\ - \frac{32}{(m+2)^2(m+4)^2}S^3.$$

PROOF. (4.10) follows from (4.4). (4.11) follows from (4.8). (4.12) is calculated as follows: First write down $R^{rs}R_{rjkl}$ using (4.3). Next, transvect it with R_s^{jkl} and use (4.2) and well known identities:

(4.14)
$$R_{ijkl}J^{kl} = 2J_i^r R_{rj}$$
, $R_{ijkl}J^k_r J^l_s = R_{ijrs}$, etc.

For example, $R_s^{jkl}R_{kl}J_l^tR_h^sJ_j^h$ $(=-2(R_1^3))$ is calculated by the first Bianchi identity and the above relations.

(4.13) is calculated as follows (using (4.2), (4.8), (4.14))

$$[\text{replacing } R_{ijkl} \text{ by (4.3)}] \ R^{ij}{}_{rs}R^{rskl}$$

$$= \frac{1}{m+4} [-8R^{rs}R_{rjkl}R_{s}{}^{jkl} - 16(R_{1}^{3})]$$

$$- \frac{1}{(m+2)(m+4)} [-4|R|^{2} - 8|R_{1}|^{2}]S$$

Substituting (4.10) and (4.12), we have (4.13).

LEMMA 15. If B = 0 and $\nabla R_1 = 0$, then

$$(4.15) a_3 = \frac{1}{6!} \int \left[\left(\frac{128(3m^2 + 40m + 64)}{63m(m+2)(m+4)^2} - \frac{32(m+1)}{63m(m+2)} \right. \\ \left. + \frac{2(12-m)}{3(m+4)} \right) S |R_1|^2 + \langle^* \rangle S^3 \right] dM \,.$$

PROOF. In (2.4) we substitute (4.10), \cdots , (4.13) and next eliminate (R_i^3) using (4.9).

PROPOSITION 16. Let (M, g, J) and (M', g', J') be compact Kählerian manifolds, m = m' = 12. Assume $a_{\beta} = a'_{\beta}$ for $\beta = 0, 1, 2, \text{ and } 3$. Then (M', g', J') is of constant holomorphic sectional curvature $H' \neq 0$, if and only if (M, g, J) is of constant holomorphic sectional curvature H = H'.

PROOF. Assume that (M', g', J') is of constant holomorphic sectional curvature $H' \neq 0$. By proposition 10 and Lemmas 11 and 15, $a_3 = a'_3$ is written as

(4.16)
$$\frac{1}{6!} \int \left[\frac{1}{147} S\left(|R_1|^2 - \frac{1}{12} S^2 \right) + \langle ** \rangle S^3 \right] dM$$
$$= \frac{1}{6!} \int \langle ** \rangle S'^3 dM' .$$

 $S = S' \neq 0$ gives $|R_1|^2 = S^2/12$. Hence, (M, g, J) is of constant holomorphic sectional curvature H and H = H'.

By $CD^{n}(-H)$ we denote a simply connected complex space form (of constant holomorphic sectional curvature -H < 0) of complex dimension n.

PROPOSITION 17. Let (M, g, J) be a compact Kählerian manifold with dimension $m = 2n \leq 12$. $a_2 = 0$ holds good, if and only if (M, g, J) is either

(1) CE^n/Γ_3 , where Γ_3 is some discontinuous group of automorphisms of the complex n-dimensional Euclidean space CE^n , or

(2) m = 2n = 12 and $[CP^{3}(H) \times CD^{3}(-H)]/\Gamma_{4}$, where Γ_{4} is some discontinuous group of automorphisms of $CP^{3}(H) \times CD^{3}(-H)$.

PROOF. The case $m = 2n \leq 10$ is clear from (4.7). For m = 2n = 12, by (4.7) we have B = 0 and S = 0. By Lemma 11, we have $\mathbb{V}R_1 = 0$. Since S = 0, (M, g, J) is not irreducible. Hence, it is reducible and locally $[CE^6 \text{ or } CP^r(H) \times CD^s(-H), r + s = 6]$ (cf. Takagi-Watanabe [12]). S = 0gives r = s = 3.

Finally we combine Proposition 10 and Proposition 16.

THEOREM E. Let (M, g, J) and (M', g', J') be compact Kählerian manifolds, $m = m' \leq 12$. Assume Spec (M, g, J) =Spec (M', g', J').

(1) For $m \leq 10$, (M, g, J) is of constant holomorphic sectional curvature H, if and only if (M', g', J') is of constant holomorphic sectional curvature H' = H.

(2) For m = 12, (M, g, J) is of constant holomorphic sectional curvature $H \neq 0$, if and only if (M', g', J') is of constant holomorphic sectional curvature H' = H.

By Theorem E we have Theorem D in the introduction.

References

- M. BERGER, Le spectre des variétés riemanniennes, Rev. Roum. Math. Pure et Appl., 13 (1969), 915-931.
- [2] M. BERGER, P. Gauduchon et E. Mazet, Le Spectre d'une Variété riemannienne, Lect. Notes in Math. Springer-Verlag, 194.
- [3] M. KAC, Can one hear the shape of a drum? Amer. Math. Monthly, 73 (April, 1966), 1-23.
- [4] M. KURITA, On the holonomy group of the conformally flat Riemmannian manifold, Nagoya Math. J., 9 (1955), 161-171.
- [5] M. MATSUMOTO, On K\u00e4hlerian spaces with parallel or vanishing Bochner curvature tensor, Tensor (N.S), 20 (1969), 25-28.
- [6] H. F. MCKEAN AND I. M. SINGER, Curvature and the eigenvalues of the Laplacian, J. Diff. Geometry, 1 (1967), 43-69.

- [7] J. MILNOR, Eigenvalues of the Laplace operator on certain manifolds, Proc. Nat. Sci. U.S.A., 51 (1964), 542.
- [8] M. OBATA, Certain conditions for a Riemannian manifold to be isometric with a sphere, J. Math. Soc. Japan, 14 (1962), 333-340.
- [9] V. K. PATODI, Curvature and the eigenforms of the Laplace operator, J. Diff. Geometry, 5 (1971), 233-249.
- [10] V. K. PATODI, Curvature and the fundamental solution of the heat operator, J. Indian Math. Soc., 34 (1970), 269-285.
- [11] T. SAKAI, On eigenvalues of Laplacian and curvature of Riemannian manifold, Tôhoku Math. J., 23 (1971), 589-603.
- [12] H. TAKAGI AND Y. WATANABE, On the holonomy groups of Kählerian manifolds with vanishing Bochner curvature tensor, Tôhoku Math. J.,
- [13] S. TANNO, Compact conformally flat Riemannian manifolds, to appear in J. Diff. Geometry, 8 (1973).
- [14] S. TANNO, Euler-Poincaré characteristics and curvature tensors, Tôhoku Math. J., 25 (1973), 33-52.
- [15] S. TANNO, An inequality for 4-dimensional Kählerian manifolds, Proc. Japan Acad., 49 (1973), 257-261.

MATHEMATICAL INSTITUTE Tôhoku University